首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
Body size of many animals increases with increasing latitude, a phenomenon known as Bergmann's rule (Bergmann clines). Latitudinal gradients in mean temperature are frequently assumed to be the underlying cause of this pattern because temperature covaries systematically with latitude, but whether and how temperature mediates selection on body size is unclear. To test the hypothesis that the \"relative\" advantage of being larger is greatest at cooler temperatures we compare the fitness of replicate lines of the seed beetle, Stator limbatus, for which body size was manipulated via artificial selection (\"Large,\"Control,\" and \"Small\" lines), when raised at low (22 degrees C) and high (34 degrees C) temperatures. Large-bodied beetles (Large lines) took the longest to develop but had the highest lifetime fecundity, and highest fitness (r(C)), at both low and high temperatures. However, the relative difference between the Large and Small lines did not change with temperature (replicate 2) or was greatest at high temperature (replicate 1), contrary to the prediction that the fitness advantage of being large relative to being small will decline with increasing temperature. Our results are consistent with two previous studies of this seed beetle, but inconsistent with prior studies that suggest that temperature-mediated selection on body size is a major contributor to the production of Bergmann clines. We conclude that other environmental and ecological variables that covary with latitude are more likely to produce the gradient in natural selection responsible for generating Bergmann clines.  相似文献   

3.
4.
    
Explanations for the evolution of body size in mammals have remained surprisingly elusive despite the central importance of body size in evolutionary biology. Here, we present a model which argues that the body sizes of Nearctic mammals were moulded by Cenozoic climate and vegetation changes. Following the early Eocene Climate Optimum, forests retreated and gave way to open woodland and savannah landscapes, followed later by grasslands. Many herbivores that radiated in these new landscapes underwent a switch from browsing to grazing associated with increased unguligrade cursoriality and body size, the latter driven by the energetics and constraints of cellulose digestion (fermentation). Carnivores also increased in size and digitigrade, cursorial capacity to occupy a size distribution allowing the capture of prey of the widest range of body sizes. With the emergence of larger, faster carnivores, plantigrade mammals were constrained from evolving to large body sizes and most remained smaller than 1 kg throughout the middle Cenozoic. We find no consistent support for either Cope's Rule or Bergmann's Rule in plantigrade mammals, the largest locomotor guild (n = 1186, 59% of species in the database). Some cold‐specialist plantigrade mammals, such as beavers and marmots, showed dramatic increases in body mass following the Miocene Climate Optimum which may, however, be partially explained by Bergmann's rule. This study reemphasizes the necessity of considering the evolutionary history and resultant form and function of mammalian morphotypes when attempting to understand contemporary mammalian body size distributions.  相似文献   

5.
6.
    
Cope's Rule describes increasing body size in evolutionary lineages through geological time. This pattern has been documented in unitary organisms but does it also apply to module size in colonial organisms? We address this question using 1169 cheilostome bryozoans ranging through the entire 150 million years of their evolutionary history. The temporal pattern evident in cheilostomes as a whole shows no overall change in zooid (module) size. However, individual subclades show size increases: within a genus, younger species often have larger zooids than older species. Analyses of (paleo)latitudinal shifts show that this pattern cannot be explained by latitudinal effects (Bergmann's Rule) coupled with younger species occupying higher latitudes than older species (an “out of the tropics” hypothesis). While it is plausible that size increase was linked to the advantages of large zooids in feeding, competition for trophic resources and living space, other proposed mechanisms for Cope's Rule in unitary organisms are either inapplicable to cheilostome zooid size or cannot be evaluated. Patterns and mechanisms in colonial organisms cannot and should not be extrapolated from the better‐studied unitary organisms. And even if macroevolution simply comprises repeated rounds of microevolution, evolutionary processes occurring within lineages are not always detectable from macroevolutionary patterns.  相似文献   

7.
8.
    
Animal body size commonly shows a relationship with latitude to the degree that this phenomenon is one of the few ‘rules’ discussed in evolutionary ecology: Bergmann's rule. Although exaggerated secondary sexual traits frequently exhibit interesting relationships with body size (allometries) and are expected to evolve rapidly in response to environmental variation, the way in which allometry might interact with latitude has not been addressed. We present data showing latitudinal variation in body size and weapon allometry for the New Zealand giraffe weevil (Lasiorhynchus barbicornis). Males display an extremely elongated rostrum used as a weapon during fights for access to females. Consistent with Bergmann's rule, mean body size increased with latitude. More interestingly, weapon allometry also varied with latitude, such that lower latitude populations exhibited steeper allometric slopes between weapon and body size. To our knowledge, this is the first study to document a latitudinal cline in weapon allometry and is therefore a novel contribution to the collective work on Bergmann's rule and secondary sexual trait variation.  相似文献   

9.
Bergmann's rule predicts larger body sizes in species living in higher latitudes and altitudes. This rule appears to be valid for endotherms, but its relevance to ectotherm vertebrates has largely been debated. In squamate reptiles (lizards and snakes), only one study, based on Liolaemus species of the boulengeri clade, has provided phylogenetic evidence in favour of Bergmann's clines. We reassessed this model in the same lizard clade, using a more representative measure of species body size and including a larger number of taxa in the sample. We found no evidence to support Bergmann's rule in this lineage. However, these non-significant results appear to be explained only by the inclusion of further species rather than by a different estimation of body size. Analyses conducted on the 16 species included in the previous study always revealed significant relationships between body size and latitude-altitude, whereas, the enlarged sample always rejected the pattern predicted by Bergmann's rule.  相似文献   

10.
    
The inverse relationship between body size and environmental temperature is a widespread ecogeographic pattern. However, the underlying forces that produce this pattern are unclear in many taxa. Expectations are particularly unclear for migratory species, as individuals may escape environmental extremes and reorient themselves along the environmental gradient. In addition, some aspects of body size are largely fixed while others are environmentally flexible and may vary seasonally. Here, we used a long‐term dataset that tracked multiple populations of the migratory piping plover Charadrius melodus across their breeding and non‐breeding ranges to investigate ecogeographic patterns of phenotypically flexible (body mass) and fixed (wing length) size traits in relation to latitude (Bergmann's Rule), environmental temperature (heat conservation hypothesis), and migratory distance. We found that body mass was correlated with both latitude and temperature across the breeding and non‐breeding ranges, which is consistent with predictions of Bergmann's Rule and heat conservation. However, wing length was correlated with latitude and temperature only on the breeding range. This discrepancy resulted from low migratory connectivity across seasons and the tendency for individuals with longer wings to migrate farther than those with shorter wings. Ultimately, these results suggest that wing length may be driven more by conditions experienced during the breeding season or tradeoffs related to migration, whereas body mass is modified by environmental conditions experienced throughout the annual lifecycle.  相似文献   

11.
    
Studying phenotypic variations along gradients may provide insights into mechanisms that drive species distributions and thus can be useful indicators of environmental change. In mountains, the study of phenotypic variation along elevation gradients is of increasing relevance due to the impacts of climate change. We analysed European ringing data to measure the direction of phenotypic variation along elevation gradients in six common, resident songbird species occurring along a wide elevational range. We modelled intraspecific change in wing length, body mass and their ratio with elevation and found a significant increase in wing length and a decrease in body mass at high elevations. The results of our exploratory analysis show the potential that continent-wide ringing databases offer to describe patterns of phenotypic variation along environmental gradients.  相似文献   

12.
Evolutionary biologists have long been fascinated by both the ways in which species respond to ecological conditions at the edges of their geographic ranges and the way that species'' body sizes evolve across their ranges. Surprisingly, though, the relationship between these two phenomena is rarely studied. Here, we examine whether carnivore body size changes from the interior of their geographic range towards the range edges. We find that within species, body size often varies strongly with distance from the range edge. However, there is no general tendency across species for size to be either larger or smaller towards the edge. There is some evidence that the smallest guild members increase in size towards their range edges, but results for the largest guild members are equivocal. Whether individuals vary in relation to the distance from the range edges often depends on the way edge and interior are defined. Neither geographic range size nor absolute body size influences the tendency of size to vary with distance from the range edge. Therefore, we suggest that the frequent significant association between body size and the position of individuals along the edge-core continuum reflects the prevalence of geographic size variation and that the distance to range edge per se does not influence size evolution in a consistent way.  相似文献   

13.
Bergmann's rule describes the macroecological pattern of increasing body size in response to higher latitudes and elevations. This pattern is extensively documented in endothermic vertebrates, within and among species; however, studies involving ectotherms are less common and suggest no consistent pattern for amphibians and reptiles. Moreover, adaptive traits, such as epidermal features like scales, have not been widely examined in conjunction with Bergmann's rule, even though these traits affect physiological processes, such as thermoregulation, which are hypothesized as underlying mechanisms for the pattern. Here, we investigate how scale characters correlate with elevation among 122 New World pitviper species, representing 15 genera. We found a contra‐Bergmann's pattern, where body size is smaller at higher elevations. This pattern was mainly driven by the presence of small‐bodied clades at high elevations and large‐bodied clades at low elevations, emphasizing the importance of taxonomic scope in studying macroecological patterns. Within a subset of speciose clades, we found that only Crotalus demonstrated a significant negative relationship between body size and elevation, perhaps because of its wide elevational range. In addition, we found a positive correlation between scale counts and body size but no independent effect of elevation on scale numbers. Our study increases our knowledge of Bergmann's rule in reptiles by specifically examining characters of squamation and suggests a need to reexamine macroecological patterns for this group.  相似文献   

14.
    
Patterns of geographic variation in body size are predicted to evolve as adaptations to local environmental gradients. However, many of these clinal patterns in body size, such as Bergmann's rule, are controversial and require further investigation into ectotherms such as reptiles on a regional scale. To examine the environmental variables (temperature, precipitation, topography and primary productivity) that shaped patterns of geographic variation in body size in the reptile Calotes versicolor, we sampled 180 adult specimens (91 males and 89 females) at 40 locations across the species range in China. The MANOVA results suggest significant sexual size dimorphism in C. versicolor (F23,124 = 11.32, p < .001). Our results showed that C. versicolor failed to fit the Bergmann's rule. We found that the most important predictors of variation in body size of C. versicolor differed for males and females, but mechanisms related to heat balance and water availability hypotheses were involved in both sexes. Temperature seasonality, precipitation of the driest month, precipitation seasonality, and precipitation of the driest quarter were the most important predictors of variation in body size in males, whereas mean precipitation of the warmest quarter, mean temperature of the wettest quarter, precipitation seasonality, and precipitation of the wettest month were most important for body size variation in females. The discrepancy between patterns of association between the sexes suggested that different selection pressures may be acting in males and females.  相似文献   

15.
    
While ecogeographic variation in adult human body proportions has been extensively explored, relatively less attention has been paid to the effect of Bergmann's and Allen's rules on human body shape during growth. The relationship between climate and immature body form is particularly important, as immature mortality is high, mechanisms of thermoregulation differ between young and mature humans, and immature body proportions fluctuate due to basic parameters of growth. This study explores changes in immature ecogeographic body proportions via analyses of anthropometric data from children included in Eveleth and Tanner's (1976) Worldwide Variation in Human Growth, as well as limb proportion measurements in eight different skeletal samples. Moderate to strong correlations exist between climatic data and immature stature, weight, BMI, and bi-iliac breadth; these relationships are as strong, if not stronger, in immature individuals as they are in adults. Correlations between climate and trunk height relative to stature are weak or nonexistent. Altitude also has significant effects on immature body form, with children from higher altitudes displaying smaller statures and lower body weights. Brachial and crural indices remain constant over the course of growth and display consistent, moderate correlations with latitude across ontogeny that are just as high as those detected in adults. The results of this study suggest that while some features of immature body form, such as bi-iliac breadth and intralimb indices, are strongly dictated by ecogeographic principles, other characteristics of immature body proportions are influenced by intrinsic and extrinsic factors such as nutrition and basic constraints of growth.  相似文献   

16.
    
Progressive body‐size dwarfing of animal populations is predicted under chronic mortality stress, such as that inflicted by human harvesting. However, empirical support for such declines in body size due to elevated mortality is lacking. In fact, the size of three macropodid species ─ the two grey kangaroo species, Macropus fuliginosus and M. giganteus, and the Red‐necked Wallaby, M. rufogriseus ─ appears to have increased since European settlement in Australia, despite these species being subjected to size‐selective harvesting over this period. To test whether this unexpected trend also characterises other species, we sought evidence of human‐induced body‐size changes in the two most widely distributed kangaroo species, the Euro Macropus robustus and Red Kangaroo M. rufus, from the late 19th Century onwards. Spatial autoregressive models controlling for age, sex and island effects were first used to identify environmental predictors of body size and to evaluate multi‐causal explanations for spatial body‐size patterns. Primary productivity emerged as the key driver of body size in both species, while heat conservation was supported as a further mechanism explaining the large body size of M. robustus in cold climatic regions. After controlling for these environmental factors, we find that the size of M. rufus has been stable over time and limited support for a small increase in the size of M. robustus. Hence, there is no empirical evidence that contemporary size‐selective harvesting has reduced body size in these species. Rather, the latter result supports the possibility that pasture improvement and/or dingo control (and associated reduction in predation pressure) facilitated body‐size increases following European settlement in Australia.  相似文献   

17.
    
1. In most birds and mammals, larger individuals of the same species tend to be found at higher latitudes, but in insects, body size–latitude relationships are highly variable. 2. Recent studies have shown that larger‐bodied insect species are more likely to decrease in size when reared at increased temperature, compared with smaller‐sized species. These findings have led to the prediction that a positive relationship between body size and latitude should be more prevalent in larger‐bodied insect species. 3. This study measured the body size of > 4000 beetle specimens (12 species) collected throughout North America. Some beetle species increased in size with latitude, while others decreased. Importantly, mean species body size explained c. 30% of the interspecific variation in the size–latitude response. 4. As predicted, larger‐bodied beetle species were more likely to show a positive relationship between body size and latitude (Bergmann's rule), and smaller‐bodied species were more likely to show a negative body size–latitude relationship (inverse Bergmann's rule). 5. These body size–latitude patterns suggest that size‐specific responses to temperature may underlie global latitudinal distributions of body size in Coleoptera, as well as other insects.  相似文献   

18.
Despite the great interest it generates, the definition of Bergmann's Rule is vague and often contested. Debate focuses on whether the rule should be described in terms of pattern or process, what taxa it should apply to and what taxonomic level it should be associated with. Here I review the historical development of studies of Bergmann's Rule. I suggest that Bergmann thought that his rule should be strongest at the intra‐specific level, rather than between closely related species as is usually thought. I argue that the rule is a pattern that can be studied regardless of mechanism in any taxon and at any taxonomic level.  相似文献   

19.
    
  相似文献   

20.
    
1. Variation in thermal conditions and season length along latitudinal gradients affect body size‐related traits over different life stages. Selection is expected to optimise these size traits in response to the costs and benefits. 2. Egg, hatchling, larval and adult size in males and females were estimated along a latitudinal gradient of 2730 km across Europe in the univoltine damselfly Lestes sponsa, using a combination of field‐collection and laboratory‐rearing experiments. In the laboratory, individuals were grown in temperatures and photoperiod simulating those at the latitude of origin, and in common‐garden conditions. 3. The size of adults sampled in nature was negatively correlated with latitude. In all populations the females were larger than the males. Results from simulated and common‐garden rearing experiments supported this pattern of size difference across latitudes and between sexes, suggesting a genetic component for the latitudinal size trend and female‐biased size dimorphism. In contrast, hatchling size showed a positive relationship with latitude, but egg size, although differing between latitudes, showed no such relationship. 4. The results support a converse Bergmann cline, i.e. a negative body size cline towards the north. This negative cline in body size is probably driven by progressively stronger seasonal time and temperature constraints towards the higher latitudes and by the obligate univoltine life cycle of L. sponsa. As egg size showed no relationship with latitude, other environmental factors besides temperature, such as desiccation risk, probably affect this trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号