首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: A cohort of rhesus macaques (Macaca mulatta), obtained from the California Regional Primate Research Center (CRPRC) and necropsied in 1970–72 with lesions suggestive of simian immunodeficiency virus (SIV) infection, was identified at the New England Regional Primate Research Center (NERPRC). Polymerase chain reaction (PCR), DNA sequence analysis, and in situ hybridization were used to confirm the presence of SIV nucleic acids. This represents the earliest case of SIV infection at the NERPRC and suggests a common source for present day SIV isolates.  相似文献   

2.
Sooty mangabeys naturally infected with simian immunodeficiency virus (SIV) remain healthy though they harbor viral loads comparable to those in rhesus macaques that progress to AIDS. To assess the immunologic basis of disease resistance in mangabeys, we compared the effect of SIV infection on T-cell regeneration in both monkey species. Measurement of the proliferation marker Ki-67 by flow cytometry showed that mangabeys harbored proliferating T cells at a level of 3 to 4% in peripheral blood irrespective of their infection status. In contrast, rhesus macaques demonstrated a naturally high fraction of proliferating T cells (7%) that increased two- to threefold following SIV infection. Ki-67(+) T cells were predominantly CD45RA(-), indicating increased proliferation of memory cells in macaques. Quantitation of an episomal DNA product of T-cell receptor alpha rearrangement (termed alpha1 circle) showed that the concentration of recent thymic emigrants in blood decreased with age over a 2-log unit range in both monkey species, consistent with age-related thymic involution. SIV infection caused a limited decrease of alpha1 circle numbers in mangabeys as well as in macaques. Dilution of alpha1 circles by T-cell proliferation likely contributed to this decrease, since alpha1 circle numbers and Ki-67(+) fractions correlated negatively. These findings are compatible with immune exhaustion mediated by abnormal T-cell proliferation, rather than with early thymic failure, in SIV-infected macaques. Normal T-cell turnover in SIV-infected mangabeys provides an explanation for the long-term maintenance of a functional immune system in these hosts.  相似文献   

3.
To evaluate how viral variants may affect disease progression in human pediatric AIDS, we studied the potential of three simian immunodeficiency virus (SIV) isolates to induce simian AIDS in newborn rhesus macaques. The three virus isolates were previously shown to range from pathogenic (SIVmac251 and SIVmac239) to nonpathogenic (SIVmac1A11) when inoculated intravenously into juvenile and adult rhesus macaques. Six newborn macaques inoculated with pathogenic, uncloned SIVmac251 developed persistent, high levels of cell-associated and cell-free viremia, had no detectable antiviral antibodies, and had poor weight gain; these animals all exhibited severe clinical disease and pathologic lesions diagnostic for simian AIDS and were euthanatized 10 to 26 weeks after inoculation. Two newborns inoculated with pathogenic, molecularly cloned SIVmac239 developed persistent high virus load in peripheral blood, but both animals had normal weight gain and developed antiviral antibodies. One of the SIVmac239-infected neonates exhibited pathologic lesions diagnostic for SAIDS and was euthanatized at 34 weeks after inoculation; the other SIVmac239-infected neonate remained alive and exhibited no significant clinical disease for more than 1 year after inoculation. In contrast, three newborn rhesus macaques inoculated with the nonpathogenic molecular clone, SIVmac1A11, had transient, low-level viremia, seroconverted by 10 weeks after inoculation, had normal weight gain, and remained healthy for over 1 year. These results indicate that (i) newborn rhesus macaques infected with an uncloned, virulent SIVmac isolate have a more rapid, fulminant disease course than do adults inoculated with the same virus, (ii) the most rapid disease progression is associated with lack of a detectable humoral immune response in SIV-infected infant macaques, (iii) a molecularly cloned, attenuated SIV isolate is nonpathogenic in neonatal macaques, and (iv) SIV-infected neonatal macaques exhibit patterns of infection, virus load, and disease progression similar to those observed in human immunodeficiency virus-infected children. This SIV/neonatal rhesus model of pediatric AIDS provides a rapid, sensitive model with which to compare the virulence of SIV isolates and to study the mechanisms underlying the differences in disease progression in human immunodeficiency virus-infected infants.  相似文献   

4.
Animal models of AIDS   总被引:21,自引:0,他引:21  
M B Gardner  P A Luciw 《FASEB journal》1989,3(14):2593-2606
Animal models of AIDS are essential for understanding the pathogenesis of retrovirus-induced immune deficiency and encephalopathy and for development and testing of new therapies and vaccines. AIDS and related disorders are etiologically linked to members of the lentivirus subfamily of retroviruses; these lymphocytopathic lentiviruses are designated human immuno-deficiency virus type 1 (HIV-1) and human immuno-deficiency virus type 2 (HIV-2). The only animals susceptible to experimental HIV-1 infection are the chimpanzee, gibbon ape, and rabbit but AIDS-like disease has not yet been reported in these species. Macaques can be persistently infected with some strains of HIV-2 but no AIDS-like disease has resulted. It is not yet clear how suitable HIV-infected SCID-hu mice will be as a model for AIDS. Several subfamilies of naturally occurring cytopathic retroviruses cause immune suppression, including fatal immunodeficiency syndromes in chickens, mice, cats, and monkeys. Domestic cats suffer immunosuppression from both an onco-virus, feline leukemia virus, and a member of the lentivirus subfamily, feline immunodeficiency virus (FIV). Asian macaques are susceptible to fatal simian AIDS from a type D retrovirus, indigenous in macaques, and from a lentivirus, simian immunodeficiency virus (SIV), which is indigenous to healthy African monkeys. SIV is the animal lentivirus most closely related to HIV. Of these animal models, the lentivirus infections of cats (FIV) and macaques (SIV) appear to bear the closest similarity in their pathogenesis to HIV infection and AIDS. This review will summarize these various animal model systems for AIDS and illustrate their usefulness for antiviral therapy and vaccinology.  相似文献   

5.
Background Tuberculosis (TB) and AIDS together present a devastating public health challenge. Over 3 million deaths every year are attributed to these twin epidemics. Annually, ~11 million people are coinfected with HIV and Mycobacterium tuberculosis (Mtb). AIDS is thought to alter the spontaneous rate of latent TB reactivation. Methodology Macaques are excellent models of both TB and AIDS. Therefore, it is conceivable that they can also be used to model coinfection. Using clinical, pathological, and microbiological data, we addressed whether latent TB infection in rhesus macaques can be reactivated by infection with simian immunodeficiency virus (SIV). Results A low‐dose aerosol infection of rhesus macaques with Mtb caused latent, asymptomatic TB infection. Infection of macaques exhibiting latent TB with a rhesus‐specific strain of SIV significantly reactivated TB. Conclusions Rhesus macaques are excellent model of TB/AIDS coinfection and can be used to study the phenomena of TB latency and reactivation.  相似文献   

6.
Abstract: Evaluation of cellular immunity in the intestinal lamina propria of rhesus macaques has been used previously to assess protective immunity against mucosal simian immunodeficiency virus (SIV) challenges. As this technique requires survival surgery to obtain jejunal tissue, effects of surgical stress on the immune system were investigated. SIV-specific immune responses, including IgG and IgA binding antibodies in sera and mucosal secretions, IgG and IgA secreting cells in peripheral blood, IgG neutralizing antibodies, T-cell proliferative responses, and interferon-γ secretion by peripheral blood mononuclear cells, were evaluated pre- and post-surgery in macaques immunized with adenovirus-SIV recombinant vaccines and SIV envelope protein and in SIV-infected macaques. No differences in these immune parameters were observed in SIV-naïve, immunized macaques or healthy SIV-infected macaques with regard to surgery. A dramatic increase in total IgA antibody level following surgery in the rectal secretions of one SIV-infected macaque that was rapidly progressing to AIDS and failed to recover from surgery was attributed to an abscess that developed at the intestinal site. To date, nearly 30 other macaques have undergone the intestinal survival surgery, some on more than one occasion, without experiencing any clinical difficulty. Overall, our results suggest that in healthy macaques, intestinal resection survival surgery can be conducted safely. Further, the method can be used to reliably sample the intestinal mucosa without major or persistent impact on humoral or cellular immune responses.  相似文献   

7.
A number of studies have shown that simian immunodeficiency virus (SIV) infection in rhesus macaques parallels many aspects of HIV disease in humans. The purpose of this study was to further characterize the rhesus macaque infected with neurovirulent SIV as a model of neuroAIDS. Using a motor skill task, our objective was to detect SIV-related movement impairments in behaviorally trained macaques. The motor skill task required retrieval of a food pellet from a cup in a rotating turntable across a range of speeds. Nine monkeys were infected with neurovirulent strains of SIVmac (R71/17E): four monkeys served initially as controls pre-inoculation. Seven monkeys developed simian AIDS within 4 months of inoculation (rapid progressors), and two survived more than 18 months post-inoculation (slow progressors). Of the rapid progressors, five exhibited significant deficits in this task, most showing a gradual decline in performance terminating in a sharp drop to severely impaired levels of performance. One slow progressor (AQ15) showed no performance declines. The other slow progressor (AQ94) showed a significant decrease in maximum speed that was concurrent with the onset of clinical signs. For AQ94, the role of sickness behavior related to late stage simian AIDS could not be ruled out. These results demonstrate that motor system impairment can be detected early in the course of SIV infection in rhesus macaques, further establishing the SIVmac-infected macaque monkey as a viable model of neuroAIDS.  相似文献   

8.
Background  Prevalence of simian retrovirus-2 (SRV-2) and simian T lymphotropic virus type I (STLV-I), was unknown in 337 captive cynomolgus macaques.
Methods and Results  Molecular assays identified 29% of animals as SRV-2 mono-infected, 4% of animals as STLV-I mono-infected and 9% of animals as dual-infected. Of 108 juvenile animals, 83% were SRV-2-negative and no juvenile animal was STLV-I-positive. A subsequent study of juvenile macaques over a period of 2.5 years detected no STLV-I and 10 SRV-2 infections, six of which occurred between testing and day of colony formation. The study also highlighted that an anti-SRV-2 serological response does not presuppose infection. Tissue reservoirs of latent SRV-2 were not identified in suspected SRV-2 infections.
Conclusions  Low transmissibility of the viruses present in the parental cohort and improved knowledge of the host response to SRV-2 has facilitated the creation of specific-retrovirus-free colonies of cynomolgus macaques.  相似文献   

9.
Although increased lymphocyte turnover in chronic human immunodeficiency virus and simian immunodeficiency virus (SIV) infection has been reported in blood, there is little information on cell turnover in tissues, particularly in primary SIV infection. Here we examined the levels of proliferating T cell subsets in mucosal and peripheral lymphoid tissues of adult macaques throughout SIV infection. To specifically label cells in S-phase division, all animals were inoculated with bromodeoxyuridine 24 h prior to sampling. In healthy macaques, the highest levels of proliferating CD4+ and CD8+ T cells were in blood and, to a lesser extent, in spleen. Substantial percentages of proliferating cells were also found in intestinal tissues, including the jejunum, ileum, and colon, but very few proliferating cells were detected in lymph nodes (axillary and mesenteric). Moreover, essentially all proliferating T cells in uninfected animals coexpressed CD95 and many coexpressed CCR5 in the tissues examined. Confocal microscopy also demonstrated that proliferating cells were substantial viral target cells for SIV infection and viral replication. After acute SIV infection, percentages of proliferating CD4+ and CD8+ T cells were significantly higher in tissues of chronically infected macaques and macaques with AIDS than in those of the controls. Surprisingly, however, we found that proliferating CD4+ T cells were selectively decreased in very early infection (8 to 10 days postinoculation [dpi]). In contrast, levels of proliferating CD8+ T cells rapidly increased after SIV infection, peaked by 13 to 21 dpi, and thereafter remained significantly higher than those in the controls. Taken together, these findings suggest that SIV selectively infects and destroys dividing, nonspecific CD4+ T cells in acute infection, resulting in homeostatic changes and perhaps continuing loss of replication capacity to respond to nonspecific and, later, SIV-specific antigens.  相似文献   

10.
Various simian immunodeficiency virus (SIV)sm/mac and simian/human immunodeficiency virus (SHIV) strains are used in different macaque species to study AIDS pathogenesis, as well as to evaluate candidate vaccine and anti-retroviral drugs efficacy. In this study we investigated the effect of route of infection, species of macaques and nature of virus stock on early plasma viral RNA load. We monitored the plasma RNA concentrations of 63 rhesus (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis) infected with well-characterised virus stocks administered either by oral, rectal, vaginal or intravenous (i.v.) routes. In SIV(mac)-infected macaques, no significant difference in plasma RNA loads was observed between the rectal, oral and i.v. routes of infection. Cynomolgus macaques developed lower steady state SIV plasma RNA concentrations compared with rhesus macaques and no significant difference was observed between rectal and i.v. routes of infection. In SHIV(89.6p)-infected macaques, no difference between species or between route of infection was observed with this particular chimeric virus.  相似文献   

11.
Natural infection with simian retrovirus (SRV) has long been recognized in rhesus macaques (RMs) and may result in an AIDS-like disease. Importantly, SRV infections persist as a problem in recently imported macaques. Therefore, there is a clear need to control SRV spread in macaque colonies. We developed a recombinant vesicular stomatitis virus (VSV)-SRV vaccine consisting of replication-competent hybrid VSVs that express SRV gag and env in separate vectors. The goal of this study was to assess the immunogenicity and protective efficacy of the VSV-SRV serotype 2 vaccine prime-boost approach in RMs. The VSV-SRV vector (expressing either SRV gag or env) vaccines were intranasally administered in 4 RMs, followed by a boost 1 month after the first vaccination. Four RMs served as controls and received the VSV vector alone. Two months after the boost, all animals were intravenously challenged with SRV-2 and monitored for 90 days. After the SRV-2 challenge, all four controls became infected, and viral loads (VLs) ranged from 10(6) to 10(8) SRV RNA copies/ml of plasma. Two animals in the control group developed simian AIDS within 7 to 8 weeks postinfection and were euthanized. Anemia and weight loss were observed in the remaining controls. During acute infection, severe B-cell depletion and no significant changes in T-cell population were observed in the control group. Control RMs with greater preservation of B cells and lower VLs survived longer. SRV-2 was undetectable in vaccinated animals, which remained healthy, with no clinical or biological signs of infection and preservation of B cells. Our study showed that the VSV-SRV vaccine is a strong approach for preventing clinically relevant type D retrovirus infection and disease in RMs, with protection of 4/4 RMs from SRV infection and prevention of B-cell destruction. B-cell protection was the strongest correlate of the long-term survival of all vaccinated and control RMs.  相似文献   

12.
Background Studies of hematologic abnormalities in HIV‐infected patients are confounded by a multitude of factors. A retrospective data analysis of simian immunodeficieny virus (SIV)‐infected rhesus macaques (RM) of Indian origin was performed to determine the prevalence of hematologic abnormalities free of these confounds. Methods Hematologic data from RM inoculated with SIV and without antiviral therapy were examined pre‐inoculation, and throughout infection and the development of AIDS. Results Anemia, thrombocytopenia, lymphopenia, eosinophilia, and neutropenia all increased in prevalence with SIV infection. Significant increases in prevalence for both neutropenia and neutrophilia were also detected in SIV‐infected macaques. SIV‐infected macaques also had lower lymphocyte counts and increased prevalence of lymphopenia compared with non‐infected subjects. The prevalence of eosinophilia was significantly increased during SIV infection. Conclusions Concordance of hematologic abnormalities during SIV infection of macaques with similar changes in HIV infection of humans suggests that, like in HIV infection, hematologic abnormalities are major complications of SIV infection.  相似文献   

13.
Transfusion of blood from a simian immunodeficiency virus (SIV)- and simian T-cell lymphotropic virus-infected sooty mangabey (designated FGb) to rhesus and pig-tailed macaques resulted in the development of neurologic disease in addition to AIDS. To investigate the role of SIV in neurologic disease, virus was isolated from a lymph node of a pig-tailed macaque (designated PGm) and the cerebrospinal fluid of a rhesus macaque (designated ROn2) and passaged to additional macaques. SIV-related neuropathogenic effects were observed in 100% of the pig-tailed macaques inoculated with either virus. Lesions in these animals included extensive formation of SIV RNA-positive giant cells in the brain parenchyma and meninges. Based upon morphology, the majority of infected cells in both lymphoid and brain tissue appeared to be of macrophage lineage. The virus isolates replicated very well in pig-tailed and rhesus macaque peripheral blood mononuclear cells (PBMC) with rapid kinetics. Differential replicative abilities were observed in both PBMC and macrophage populations, with viruses growing to higher titers in pig-tailed macaque cells than in rhesus macaque cells. An infectious molecular clone of virus derived from the isolate from macaque PGm (PGm5.3) was generated and was shown to have in vitro replication characteristics similar to those of the uncloned virus stock. While molecular analyses of this virus revealed its similarity to SIV isolates from sooty mangabeys, significant amino acid differences in Env and Nef were observed. This virus should provide an excellent system for investigating the mechanism of lentivirus-induced neurologic disease.  相似文献   

14.
Rhesus macaques infected with simian immunodeficiency virus (SIV) containing either a large nef deletion (SIVmac239Delta(152)nef) or interleukin-2 in place of nef developed high virus loads and progressed to simian AIDS. Viruses recovered from both juvenile and neonatal macaques with disease produced a novel truncated Nef protein, tNef. Viruses recovered from juvenile macaques infected with serially passaged virus expressing tNef exhibited a pathogenic phenotype. These findings demonstrated strong selective pressure to restore expression of a truncated Nef protein, and this reversion was linked to increased pathogenic potential in live attenuated SIV vaccines.  相似文献   

15.
We have monitored changes in the simian immunodeficiency virus (SIV) envelope (env) gene in two macaques which developed AIDS after inoculation with a molecular clone of SIV. As the animals progressed to AIDS, selection occurred for viruses with variation in two discrete regions (V1 and V4) but not for viruses with changes in the region of SIV env that corresponds to the immunodominant, V3 loop of human immunodeficiency virus. Within the highly variable domains, the vast majority of nucleotide changes encoded an amino acid change (98%), suggesting that these envelope variants had evolved as a result of phenotypic selection. Analysis of the biological properties of these variants, which have been selected for in the host, may be useful in defining the mechanisms underlying viral persistence and progression to simian AIDS.  相似文献   

16.
Among the most effective vaccine candidates tested in the simian immunodeficiency virus (SIV)/macaque system, live attenuated viruses have been shown to provide the best protection from challenge. To investigate if preimmunization would increase the level of protection afforded by live attenuated SIVmac239Deltanef (Deltanef), macaques were given two priming immunizations of DNA encoding SIV Gag and Pol proteins, with control macaques receiving vector DNA immunizations. In macaques receiving the SIV DNA inoculation, SIV-specific cellular but not humoral responses were readily detectable 2 weeks after the second DNA inoculation. Following boosting with live attenuated virus, control of Deltanef replication was superior in SIV-DNA-primed macaques versus vector-DNA-primed macaques and was correlated with higher levels of CD8+/gamma-interferon-positive and/or interleukin-2-positive cells. Challenge with an intravenous inoculation of simian/human immunodeficiency virus (SHIV) strain SHIV89.6p resulted in infection of all animals. However, macaques receiving SIV DNA as the priming immunizations had statistically lower viral loads than control animals and did not develop signs of disease, whereas three of seven macaques receiving vector DNA showed severe CD4+ T-cell decline, with development of AIDS in one of these animals. No correlation of immune responses to protection from disease could be derived from our analyses. These results demonstrate that addition of a DNA prime to a live attenuated virus provided better protection from disease following challenge than live attenuated virus alone.  相似文献   

17.
Sera from 510 macaques consisting of Macaca mulatta, Macaca assamensis, Macaca fascicularis, Macaca nemestrina, and Macaca arctoides were investigated for antibodies to simian AIDS type D retrovirus (SRV) by ELISA and Western blot with viral antigens purified from supernatants of SRV-1 infected cell cultures. Of these monkeys, 104 were seropositive by ELISA; only 23 were confirmed by Western blot. The true positive reaction to SRV was found in 15 of 463 (3.2%) M. mulatta and eight of eleven (72.7%) M. assamensis.  相似文献   

18.
A fraction of simian immunodeficiency virus (SIV)-infected macaques develop rapidly progressive disease in the apparent absence of detectable SIV-specific antibody responses. To characterize the immunopathogenesis of this syndrome, we studied viral load, CD4+ T-lymphocyte numbers as well as cellular and humoral immune responses to SIV and other exogenous antigens in four SIVsm-infected rhesus macaques that progressed to AIDS 9 to 16 weeks postinoculation. Each of these animals exhibited high levels of viremia but showed relatively preserved CD4 T lymphocytes in blood and lymphoid tissues at the time of death. Transient SIV-specific antibody responses and cytotoxic T-lymphocyte responses were observed at 2 to 4 weeks postinoculation. Two of the macaques that were immunized sequentially with tetanus toxoid and hepatitis A virus failed to develop antibody to either antigen. These studies show that the SIV-infected rapid progressor macaques initially mounted an appropriate but transient cellular and humoral immune response. The subsequent immune defect in these animals appeared to be global, affecting both cellular and humoral immunity to SIV as well as immune responses against unrelated antigens. The lack of CD4 depletion and loss of humoral and cellular immune responses suggest that their immune defect may be due to an early loss in T helper function.  相似文献   

19.
The recognition of naturally occurring rhadinoviruses in macaque monkeys has spurred interest in their use as models for human infection with Kaposi sarcoma-associated herpesvirus (human herpesvirus 8). Rhesus macaques (Macaca mulatta) and pig-tailed macaques (Macaca nemestrina) were inoculated intravenously with rhadinovirus isolates derived from these species (rhesus rhadinovirus [RRV] and pig-tailed rhadinovirus [PRV]). Nine rhadinovirus antibody-negative and two rhadinovirus antibody-positive monkeys were used for these experimental inoculations. Antibody-negative animals clearly became infected following virus inoculation since they developed persisting antibody responses to virus and virus was isolated from peripheral blood on repeated occasions following inoculation. Viral sequences were also detected by PCR in lymph node, oral mucosa, skin, and peripheral blood mononuclear cells following inoculation. Experimentally infected animals developed peripheral lymphadenopathy which resolved by 12 weeks following inoculation, and these animals have subsequently remained free of disease. No increased pathogenicity was apparent from cross-species infection, i.e., inoculation of rhesus macaques with PRV or of pig-tailed macaques with RRV, whether the animals were antibody positive or negative at the time of virus inoculation. Coinoculation of additional rhesus monkeys with simian immunodeficiency virus (SIV) isolate SIVmac251 and macaque-derived rhadinovirus resulted in an attenuated antibody response to both agents and shorter mean survival compared to SIVmac251-inoculated controls (155.5 days versus 560.1 days; P < 0.019). Coinfected and immunodeficient macaques died of a variety of opportunistic infections characteristic of simian AIDS. PCR analysis of sorted peripheral blood mononuclear cells indicated a preferential tropism of RRV for CD20(+) B lymphocytes. Our results demonstrate persistent infection of macaque monkeys with RRV and PRV following experimental inoculation, but no specific disease was readily apparent from these infections even in the context of concurrent SIV infection.  相似文献   

20.
We investigated the role of Interleukin-6 (IL-6) as an autocrine growth factor for the retroperitoneal fibromatosis (RF) cells present in macaques infected with the simian retrovirus type 2 (SRV-2). Elevated levels of IL-6 were found in serum of SRV-2 antibody-positive macaques, ascites from RF-positive animals, and RF cell line culture media. IL-6 mRNA levels increased approximately five-fold in RF cells incubated with exogenous SRV-2. In RF cells, SRV-2 functions to increase IL-6 mRNA and protein production and presumably serves as autocrine growth factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号