首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Innate immunity is the first line of host defense against invading pathogens, and it is recognized by a variety of pattern recognition molecules, including mannose-binding lectin (MBL). MBL binds to mannose and N-acetylglucosamine residues present on the glycopolymers of microorganisms. Human serum MBL functions as an opsonin and activates the lectin complement pathway. However, which glycopolymer of microorganism is recognized by MBL is still uncertain. Here, we show that wall teichoic acid of Staphylococcus aureus, a bacterial cell surface glycopolymer containing N-acetylglucosamine residue, is a functional ligand of MBL. Whereas serum MBL in adults did not bind to wall teichoic acid because of an inhibitory effect of anti-wall teichoic acid antibodies, MBL in infants who had not yet fully developed their adaptive immunity could bind to S. aureus wall teichoic acid and then induced complement C4 deposition. Our data explain the molecular reasons of why MBL-deficient infants are susceptible to S. aureus infection.  相似文献   

2.
Staphylococcus aureus is a major foodborne pathogen. Gram-positive bacteria have unique teichoic acids as cell-wall components. In order to identify ligands specific to the bacteria, we developed an RNA aptamer against the teichoic acid of Staphylococcus aureus using SELEX technology. To this end, we used a polystyrene 96-well-based selection method and confirmed the binding activity of the RNA aptamer to the teichoic acid using real-time PCR. Of note, the teichoic acid-specific RNA aptamer was observed to bind to S. aureus bacterial cells also. This RNA aptamer could therefore be useful as a diagnostic ligand against S. aureus-associated foodborne illness.  相似文献   

3.
The surface-located fibrinogen-binding protein (clumping factor; ClfA) of Staphylococcus aureus has an unusual dipeptide repeat linking the ligand binding domain to the wall-anchored region. Southern blotting experiments revealed several other loci in the S. aureus Newman genome that hybridized to a probe comprising DNA encoding the dipeptide repeat. One of these loci is analysed here. It also encodes a fibrinogen-binding protein, which we have called ClfB. The overall organization of ClfB is very similar to that of ClfA, and the proteins have considerable sequence identity in the signal sequence and wall attachment domains. However, the A regions are only 26% identical. Recombinant biotinylated ClfB protein bound to fibrinogen in Western ligand blots. ClfB reacted with the α- and β-chains of fibrinogen in the ligand blots in contrast to ClfA, which binds exclusively to the γ-chain. Analysis of proteins released from the cell wall of S. aureus Newman by Western immunoblotting using antibody raised against the recombinant A region of ClfB identified a 124 kDa protein as the clfB gene product. This protein was detectable only on cells that were grown to the early exponential phase. It was absent from cells from late exponential phase or stationary phase cultures. Using a clfB mutant isolated by allelic replacement alone and in combination with a clfA mutation, the ClfB protein was shown to promote (i) clumping of exponential-phase cells in a solution of fibrinogen, (ii) adherence of exponential-phase bacteria to immobilized fibrinogen in vitro, and (iii) bacterial adherence to ex vivo human haemodialysis tubing, suggesting that it could contribute to the pathogenicity of biomaterial-related infections. However, in wild-type exponential-phase S. aureus Newman cultures, ClfB activity was masked by the ClfA protein, and it did not contribute at all to interactions of cells from stationary-phase cultures with fibrinogen. ClfB-dependent bacterial adherence to immobilized fibrinogen was inhibited by millimolar concentrations of Ca2+ and Mn2+, which indicates that, like ClfA, ligand binding by ClfB is regulated by a low-affinity inhibitory cation binding site.  相似文献   

4.
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a growing health threat worldwide. Efforts to identify novel antibodies that target S. aureus cell surface antigens are a promising direction in the development of antibiotics that can halt MRSA infection. We biochemically and structurally characterized three patient-derived MRSA-targeting antibodies that bind to wall teichoic acid (WTA), which is a polyanionic surface glycopolymer. In S. aureus, WTA exists in both α- and β-forms, based on the stereochemistry of attachment of a N-acetylglucosamine residue to the repeating phosphoribitol sugar unit. We identified a panel of antibodies cloned from human patients that specifically recognize the α or β form of WTA, and can bind with high affinity to pathogenic wild-type strains of S. aureus bacteria. To investigate how the β-WTA specific antibodies interact with their target epitope, we determined the X-ray crystal structures of the three β-WTA specific antibodies, 4462, 4497, and 6078 (Protein Data Bank IDs 6DWI, 6DWA, and 6DW2, respectively), bound to a synthetic WTA epitope. These structures reveal that all three of these antibodies, while utilizing distinct antibody complementarity-determining region sequences and conformations to interact with β-WTA, fulfill two recognition principles: binding to the β-GlcNAc pyranose core and triangulation of WTA phosphate residues with polar contacts. These studies reveal the molecular basis for targeting a unique S. aureus cell surface epitope and highlight the power of human patient-based antibody discovery techniques for finding novel pathogen-targeting therapeutics.  相似文献   

5.
A series of mec transformants of Staphylococcus aureus strain NCTC8325 were analysed for alterations in wall teichoic acid and lipoteichoic acid. Although the methicillin resistance determinant alters the autolytic behaviour of S. aureus, it had no effects on the cellular content, chain length, and alanine substitution of the lipoteichoic acid, or on the wall teichoic acid content and composition. However, independently of the presence or absence of the methicillin resistance determinant, level of methicillin resistance, or autolytic behaviour, a correlation was found between a 25% reduced cell wall phosphate content and either loss of prophages φ11 and 13 or a 30-kb deletion in the chomosmal SmaI-F fragment adjacent to the prophage φ11 attachment site. Received: 23 February 1998 / Accepted: 15 May 1998  相似文献   

6.
Immunochemical analyses of the major cell-wall antigens (teichoic acid, mucopeptide, and protein A) demonstrated quantitative but not qualitative differences between these antigens prepared from aerobically and anaerobically grownStaphylococcus aureus 7167. The reduced rate of oxygen uptake observed in anaerobically grownS. aureus 7167, indicating a repressed electron transport system and a reduction in the number of proteins (enzymes) associated with this system, was interpreted as evidence for the significant reduction in the number of protein antigens observed in immunochemical analyses of cell homogenate and intracellular antigen fractions prepared from anaerobically grown cells. Immunoelectrophoretic analyses indicated that a quantitatively greater amount of polysaccharide capsular material was obtained from anaerobically grownS. aureus 7167, and a relationship betweenin vivo pathogenicity and anaerobiosis was proposed.  相似文献   

7.
Staphylococcus aureus is a common skin commensal but is also associated with various skin and soft tissue pathologies. Upon invasion, S. aureus is detected by resident innate immune cells through pattern‐recognition receptors (PRRs), although a comprehensive understanding of the specific molecular interactions is lacking. Recently, we demonstrated that the PRR langerin (CD207) on epidermal Langerhans cells senses the conserved β‐1,4‐linked N‐acetylglucosamine (GlcNAc) modification on S. aureus wall teichoic acid (WTA), thereby increasing skin inflammation. Interestingly, the S. aureus ST395 lineage as well as certain species of coagulase‐negative staphylococci (CoNS) produce a structurally different WTA molecule, consisting of poly‐glycerolphosphate with α‐O‐N‐acetylgalactosamine (GalNAc) residues, which are attached by the glycosyltransferase TagN. Here, we demonstrate that S. aureus ST395 strains interact with the human Macrophage galactose‐type lectin (MGL; CD301) receptor, which is expressed by dendritic cells and macrophages in the dermis. MGL bound S. aureus ST395 in a tagN‐ and GalNAc‐dependent manner but did not interact with different tagN‐positive CoNS species. However, heterologous expression of Staphylococcus lugdunensis tagN in S. aureus conferred phage infection and MGL binding, confirming the role of this CoNS enzyme as GalNAc‐transferase. Functionally, the detection of GalNAc on S. aureus ST395 WTA by human monocyte‐derived dendritic cells significantly enhanced cytokine production. Together, our findings highlight differential recognition of S. aureus glycoprofiles by specific human innate receptors, which may affect downstream adaptive immune responses and pathogen clearance.  相似文献   

8.
Susceptibilities of several preparations of Staphylococcus aureus cells to various peptidoglycan hydrolases with known bond specificity were analyzed by zymography. The substrates were intact S. aureus cells, cells boiled in the presence of SDS and cells treated with trichloroacetic acid after treatment with boiling SDS solution (TCA-cells). Twofold dilutions of lysostaphin (LS), lysozyme (LZ), S. aureus 51 kDa glucosaminidase (GL) or S. aureus 62 kDa amidase (AM) were electrophoresed, and the minimal enzyme dose showing a visible bacteriolytic band was defined as MBD (minimal bacteriolytic dose). Under the same experimental conditions, this method gave reproducible results. As the substrate for zymogram, TCA-cells were the most sensitive to LS, LZ and AM, whereas the three substrate were equally sensitive to GL. A zymographic analysis of methicillin-resistant S. aureus treated with methicillin together with previous studies suggest that this method can be used for the preliminary characterization of S. aureus cell wall peptidoglycan.  相似文献   

9.
Four lectins were used to recognize galactose/N-acetyl-galactosamine (Gal/GalNAc) and sialic acid residues in proteins of Chinese hamster metaphase chromosomes. In situ binding pattern of a fluorescein isothiocyanate-labelled (Gal/GalNAc)-specific lectin Sophora japonica agglutinin (SJA) showed that chromosomal SJA-binding proteins are primarily localized to the helically coiled substructure of chromatids. Numerous SJA-binding proteins were identified in Western blots of chromosomal proteins, their molecular weights ranging from 26 to 200kDa. Another Gal/GalNAc-specific lectin, peanut agglutinin (PNA), with a slightly different sugar binding specificity, did not bind to Chinese hamster metaphase chromosomes, and in Western blots only two chromosomal protein bands were faintly stained. The in situ labelling patterns of two sialic acid-specific lectins, Maackia amurensis (MAA) and Sambucus nigra (SNA) agglutinins, both showed that the helically coiled substructure of chromatids is also enriched in sialylated proteins. In Western blot analysis 11 MAA-binding protein bands with molecular weights ranging from 54 to 215kDa were identified, while SNA only bound to one protein band of 67kDa. MAA and SNA are specific for α (2|ad3)- and α (2|ad6)-linked sialic acid residues, respectively. Thus, it is likely that α (2|ad3)-linked sialic acid residues are more common in chromosomal proteins than α(2|ad6)-linked sialic acid residues. These data suggest that Gal/GalNAc and sialic acid-containing glycoproteins exist in metaphase chromosomes and that these proteins may have a role in the formation of higher order metaphase chromosome structures.  相似文献   

10.
Summary During the Schmidt-Thannhauser fractionation procedure at nucleic acid determinations of Streptomyces griseus, a phosphorous-containing compound(s) was found which could not be taken as nucleic acid or polyphosphate. The hydrolisate of the isolated substance proved to have almost the same composition as teichoic acid from Staphylococcus aureus Duncan.Teichoic acid was found both intracellular and in the isolated cell wall of Streptomyces griseus mycelia.In the cell wall only the ribitol type of teichoic acids could be detected but not the glycerol type.  相似文献   

11.
Summary In the present work the chemical cell wall composition and some other biochemical characteristics were studied in staphylococci with the intention of utilizing the data obtained in their classification.According to the cell wall peptidoglycans and teichoic acids, the 130 strains of staphylococci studied are divided into 10 major groups. This division of staphylococci into groups is in good agreement with their present classification only in some cases. All of the 47Staphylococcus aureus strains contain a cell wall peptidoglycan of thel-Lys-Gly5–6 type and ribitol teichoic acid. Coagulase-negative staphylococci are more heterogeneous and are divided according to their cell wall composition into 9 major groups. 21 strains of them are classified asS. epidermidis sensu stricto. They form a natural group and are distinguished by the occurrence of thel-Lys-Gly4–5,l-Ser0.5–1.8 peptidoglycan type, glycerol teichoic acid and anl-lactate dehydrogenase which is activated by fructose-1,6-diphosphate. 8 strains with peptidoglycan of thel-Lys-Gly4–5,l-Ser0.5–1.8 type and ribitol teichoic acid are labeled asS. saprophyticus. The remaining groups have not been given species names and require further extensive comparative study.  相似文献   

12.
Nasal colonization is a major risk factor for S. aureus infections. The mechanisms responsible for colonization are still not well understood and involve several factors on the host and the bacterial side. One key factor is the cell wall teichoic acid (WTA) of S. aureus, which governs direct interactions with nasal epithelial surfaces. We report here the first receptor for the cell wall glycopolymer WTA on nasal epithelial cells. In several assay systems this type F-scavenger receptor, termed SREC-I, bound WTA in a charge dependent manner and mediated adhesion to nasal epithelial cells in vitro. The impact of WTA and SREC-I interaction on epithelial adhesion was especially pronounced under shear stress, which resembles the conditions found in the nasal cavity. Most importantly, we demonstrate here a key role of the WTA-receptor interaction in a cotton rat model of nasal colonization. When we inhibited WTA mediated adhesion with a SREC-I antibody, nasal colonization in the animal model was strongly reduced at the early onset of colonization. More importantly, colonization stayed low over an extended period of 6 days. Therefore we propose targeting of this glycopolymer-receptor interaction as a novel strategy to prevent or control S. aureus nasal colonization.  相似文献   

13.
Antigenic surface properties of Staphylococcus aureus strains grown in milk whey were compared with TSB-grown bacteria using immuno-gold electron microscopy. It is shown that colloidal gold (CG) particles coated with polyclonal antibody raised against Staphylococcus aureus surface antigen expressed in vivo bound to the surface of S. aureus strain F1440 grown in milk whey, but not to homologous bacteria grown in TSB. S. aureus strains grown in milk whey agglutinated in the presence of the polyclonal antibody, whereas the corresponding bacteria grown in TSB did not agglutinate. Immuno-gold particles did not bind to milk whey-grown bacteria treated with periodate. Periodate-treated milk whey-grown bacteria did not agglutinate in the presence of the polyclonal antibody, whereas periodate treatment had no effect on TSB-grown bacteria.  相似文献   

14.
Cell lines stably resistant to ouabain were isolated from an unstably resistant HeLa line after growth in nonselective medium. Stable resistant lines bound ouabain at levels 10-fold higher than did HeLa cells and at similar levels to those bound by the unstable C+ line previously described (J. F. Ash, R. M. Fineman, T. Kalka, M. Morgan, and B. Wire, J. Cell Biol. 99: 971-983). Expression and synthesis of the Na+, K+ -ATPase alpha chain showed a similar amplification over that for HeLa cells by Western blots and [35S]methionine pulse-labeling. In addition, a glycoprotein labeled with [3H]fucose and comigrating with the Na+, K+ -ATPase beta chain was eight- to ninefold amplified in stably resistant lines. Dot blots with a cDNA clone specific for Na+, K+ -ATPase alpha chain gene sequences confirmed the amplification of this gene. Karyotyping suggested that the amplification is associated with an expanded, abnormal banded region on the long (q) arm of one chromosome 17.  相似文献   

15.
Recent clinical trials to develop anti‐methicillin‐resistant Staphylococcus aureus (MRSA) therapeutic antibodies have met unsuccessful sequels. To develop more effective antibodies against MRSA infection, a panel of mAbs against S. aureus cell wall was generated and then screened for the most protective mAb in mouse infection models. Twenty‐two anti‐S. aureus IgG mAbs were obtained from mice that had been immunized with alkali‐processed, deacetylated cell walls of S. aureus. One of these mAbs, ZBIA5H, exhibited life‐saving effects in mouse models of sepsis caused by community‐acquired MRSA strain MW2 and vancomycin‐resistant S. aureus strain VRS1. It also had a curative effect in a MW2‐caused pneumonia model. Curiously, the target of ZBIA5H was considered to be a conformational epitope of either the 1,4‐β‐linkage between N‐acetylmuramic acid and N‐acetyl‐D‐glucosamine or the peptidoglycan per se. Reactivity of ZBIA5H to S. aureus whole cells or purified peptidoglycan was weaker than that of most of the other mAbs generated in this study. However, the latter mAbs did not have the protective activities against S. aureus that ZBIA5H did. These data indicate that the epitopes that trigger production of high‐yield and/or high‐affinity antibodies may not be the most suitable epitopes for developing anti‐infective antibodies. ZBIA5H or its humanized form may find a future clinical application, and its target epitope may be used for the production of vaccines against S. aureus infection.  相似文献   

16.
Actinobacillus actinomycetemconitans OMZ 346 A and Haemophilus aphrophilus OMZ 384 A, isolated on a synthetic selective and differentiating agar, show the highly cohesive and wall adherent growth in liquid medium which is typical for all primary oral isolates of these species. From each of them a low cohesion variant, OMZ 346 F and OMZ 384 F, respectively, was obtained by selection for cells growing in suspension. Screening of Western blots of these four strains with several human sera revealed the loss of a 4000 Mr antigen in both F strains. Human antibodies bound to the 400 Mr band material on preparative Western blots of the A strains were cluted with 4M magnesium chloride. These antibodies showed no cross-reaction between the 4000 Mr material of the two closely related species.  相似文献   

17.
18.
Staphylococcal cell separation depends largely on the bifunctional autolysin Atl that is processed to amidase‐R1,2 and R3‐glucosaminidase. These murein hydrolases are targeted via repeat domains (R) to the septal region of the cell surface, thereby allowing localized peptidoglycan hydrolysis and separation of the dividing cells. Here we show that targeting of the amidase repeats is based on an exclusion strategy mediated by wall teichoic acid (WTA). In Staphylococcus aureus wild‐type, externally applied repeats (R1,2) or endogenously expressed amidase were localized exclusively at the cross‐wall region, while in ΔtagO mutant that lacks WTA binding was evenly distributed on the cell surface, which explains the increased fragility and autolysis susceptibility of the mutant. WTA prevented binding of Atl to the old cell wall but not to the cross‐wall region suggesting a lower WTA content. In binding studies with ConcanavalinA‐fluorescein (ConA‐FITC) conjugate that binds preferentially to teichoic acids, ConA‐FITC was bound throughout the cell surface with the exception of the cross wall. ConA binding suggest that either content or polymerization of WTA gradually increases with distance from the cross‐wall. By preventing binding of Atl, WTA directs Atl to the cross‐wall to perform the last step of cell division, namely separation of the daughter cells.  相似文献   

19.
Recently, we demonstrated that human serum amyloid P component (SAP) specifically recognizes exposed bacterial peptidoglycan (PGN) of wall teichoic acid (WTA)-deficient Staphylococcus aureus ΔtagO mutant cells and then induces complement-independent phagocytosis. In our preliminary experiments, we found the existence of human serum immunoglobulins that recognize S. aureus PGN (anti-PGNIgGs), which may be involved in complement-dependent opsonophagocytosis against infected S. aureus cells. We assumed that purified serum anti-PGN-IgGs and S. aureus ΔtagO mutant cells are good tools to study the molecular mechanism of anti-PGN-IgG-mediated phagocytosis. Therefore, we tried to identify the intracellular molecule(s) that is involved in the anti-PGN-IgG-mediated phagocytosis using purified human serum anti-PGN-IgGs and different S. aureus mutant cells. Here, we show that anti-PGN-IgG-mediated phagocytosis in phorbol myristate acetate-treated U937 cells is mediated by Ca2+ release from intracellular Ca2+ stores and anti-PGN-IgGdependent Ca2+ mobilization is controlled via a phospholipase Cγ-2-mediated pathway. [BMB Reports 2015; 48(1): 36-41]  相似文献   

20.
The presence and possible role of products of nuclear (c-fos and c-jun) and c-ras proto-oncogenes were investigated in preimplantation embryonic development in mice. Polyclonal antibodies to c-fos or c-jun proto-oncogene products did not affect development of in vitro-cultured embryos from two-cell to morula or from morula to late blastocyst stages. However, v-H-ras monoclonal antibody (mAb) to c-ras protein (p21), although it did not inhibit the development of in vitro-cultured embryos from two-cell to morula stages, it significantly (P < .001–.005) inhibited the development of morula to late blastocyst stages in a dose-dependent manner. The effects of v-H-ras mAb were specific, since immunoabsorption with synthetic ras peptide completely blocked inhibitory effects of v-H-ras mAb. Neither c-fos nor c-jun antibodies reacted with specific proteins corresponding to c-fos (62 kDa) and c-jun (39 kDa) products on the Western blots of various murine ova/embryos extracts. However, the c-fos and c-jun antibodies reacted with 62 and 39 kDa protein bands, respectively, on the blot of NIH 3T3 cells extract. The v-H-ras mAb specifically identified 21 ± 3 kDa protein corresponding to c-ras p21 on the blots of early as well as late blastocyst extracts. The rat control ascites IgG1 did not react with any protein band on the blots of various ova/embryo extracts. The reactions of v-H-ras mAb on the Western blots of blastocyst extracts were specific, since immunoabsorbed antibody was unable to react with any specific band on blots of early or late blastocyst extract. These results were further confirmed by immunoprecipitation procedure utilizing v-H-ras mAb. Again, the v-H-ras mAb immunoprecipitated a 21 kDa band from early as well as late blastocyst extracts. The rat control ascites IgG1 did not react with any band corresponding to p 21 in the immunoprecipitation procedure. These results suggest that the specific products of nuclear proto-oncogenes, the c-fos and c-jun, are not detected in murine ova and preimplantation embryos, and the respective antibodies do not inhibit embryogenesis, indicating that they may not play a major role in early embryonic development. On the other hand, the product of c-ras proto-oncogene is specifically expressed in the blastocyst-stage embryos and may have a possible role in preimplantation embryonic development in mice. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号