首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dennstaedtia punctilobula (hay‐scented fern) can act as a native invasive species in forests in eastern North America where prolonged deer browsing occurs in stands with partially open overstory canopies. Ferns dominate the understory with a 60‐cm tall canopy, with little regeneration of native tree species. It has been hypothesized that, once established, ferns may continue to inhibit tree regeneration after deer browsing has been reduced. To test this hypothesis, we documented the pattern of recovery of the tree seedling understory in plantations of Pinus strobus (white pine) and Pinus resinosa (red pine) on the Quabbin Reservation watershed protection forest in central Massachusetts, where after 40 years of intensive deer browsing the deer herd was rapidly reduced through controlled hunting. Dense fern understories occur on nearly 4,000 ha of the predominantly oak–pine forest. Three years after deer herd reduction, stands with the highest density fern cover (77% of plots with>90% cover) had significantly fewer seedlings at least 30 cm in height, compared with stands with lower fern density, and those seedlings consisted almost entirely of Betula lenta (black birch) and white pine. Height growth analysis showed that black birch and white pine grew above the height of the fern canopy in 3 and 6 years, respectively. In contrast, two common species, Fraxinus americana (white ash) and Quercus rubra (red oak), grew beneath the dense fern cover for 5 years with height growth less than 5 cm/yr after the first year. A study of spring phenology indicated that the ability of black birch to grow through the fern canopy might have been due to its early leaf development in spring before the fern canopy was formed, in contrast to oak and ash with delayed leaf development. Thus, the ferns showed differential interference among species with seedling development after reduction of deer browse.  相似文献   

2.
We studied the influence of anthropogenic drivers on the distribution and regeneration of tree species in vegetation at different stages of succession from grasslands to oak forests in mid-montane Central Himalaya. We found fire, grazing, and lopping as the main factors hindering a progressive successional regime towards a late-successional oak community. Succession was studied in five vegetation formations (grasslands, pine, pine–oak, open oak, and dense oak), with similar site conditions, representing a theoretical successional sequence from early- to late-successional stages. A structured survey with uniform distribution of sampling plots in the five selected vegetation formations was conducted to gather information abut the vegetation communities. Early-successional grasslands and pine forests were found to harbour high densities of pine and oak seedling and sapling regeneration. However, recurring fires and chronic unsustainable levels of grazing in these vegetation formations obstructed progressive succession by eliminating regenerating seedling and saplings from the forest understorey. Similarly, in intermediate- and late-successional stages (including pine–oak, open oak, and dense oak), overexploitation of existing oaks trees via lopping and grazing of regenerating oak seedlings and saplings hampered oak regeneration and development. The possibility to convert pine forests into oak as well as the conservation of existing oak forests through controlled grazing and lopping are management options that can contribute to an enhanced functioning of forest ecosystems in the study area. We conclude that with strategic management that restricts the current anthropogenic disturbances, the extent of oak forest in the study area can be increased.  相似文献   

3.
黑龙江省不同地点蒙古栎林生态特点研究   总被引:10,自引:2,他引:8  
通过对黑龙江省6个地点的天然蒙古栎林的结构和更新特点的分析,蒙古栎林可划分为不同特点的蒙古栎群落,即纯蒙古栎群落、蒙古栎桦树群落、蒙古栎槭树群落、蒙古栎红松群落和蒙古栎松混交林群落,其演替趋势如下:红蒙古栎群落、蒙古栎桦树群落至蒙古栎槭树落、蒙古栎红松群落,再至蒙古栎红松混交林群落,蒙古栎群落类型的多样性主要反应群落不同的演替阶段,造成蒙古栎群落多样的原因是人类活动和自然因素作用的结果,随着群落的演替,蒙古栎的优势地位逐渐被消弱,乔木种类丰富度增多,草本种类丰富度增多;蒙栎的相对密度下降,林内环境由于干燥逐渐变中性至较湿润,蒙古栎幼苗和幼树在总幼苗和幼树中所占的比例下降,耐荫物中色木槭等的幼苗和幼树所占比例上升;在演替过程中,蒙古栎分布格局-聚集分布的聚集程度逐渐降低,并向随机分布的方向发展。  相似文献   

4.
  • One of the most important threats to peatland ecosystems is drainage, resulting in encroachment of woody species. Our main aim was to check which features – overstorey or understorey vegetation – are more important for shaping the seedling bank of pioneer trees colonising peatlands (Pinus sylvestris and Betula pubescens). We hypothesised that tree stand parameters will be more important predictors of natural regeneration density than understorey vegetation parameters, and the former will be negatively correlated with species diversity and richness and also with functional richness and functional dispersion, which indicate a high level of habitat filtering.
  • The study was conducted in the ‘Zielone Bagna’ nature reserve (NW Poland). We assessed the structure of tree stands and natural regeneration (of B. pubescens and P. sylvestris) and vegetation species composition. Random forest and DCA were applied to assess relationships between variables studied.
  • Understorey vegetation traits affected tree seedling density (up to 0.5‐m height) more than tree stand traits. Density of older seedlings depended more on tree stand traits. We did not find statistically significant relationships between natural regeneration densities and functional diversity components, except for functional richness, which was positively correlated with density of the youngest tree seedlings.
  • Seedling densities were higher in plots with lower functional dispersion and functional divergence, which indicated that habitat filtering is more important than competition. Presence of an abundant seedling bank is crucial for the process of woody species encroachment on drained peatlands, thus its dynamics should be monitored in protected areas.
  相似文献   

5.
Climate change is expected to promote migration of species. In ecotones, areas of ecological tension, disturbances may provide opportunities for some migrating species to establish in otherwise competitive environments. The size of and time since disturbance may determine the establishment ability of these species. We investigated gap dynamics of an old-growth red pine (Pinus resinosa Sol. ex Aiton) forest in the Great Lakes–St. Lawrence forest in northern Ontario, Canada, a transition zone between temperate and boreal forest. We investigated the effects of gaps of different sizes and ages on tree species abundance and basal area. Our results show that tree species from the temperate forest further south, such as red maple (Acer rubrum L.), red oak (Quercus rubra L.), and white pine (Pinus strobus L.), establish more often in large, old gaps; however, tree species that have more northern distributions, such as black spruce (Picea mariana Mill.), paper birch (Betula papyrifera Marsh.), and red pine show no difference in establishment ability with gap size or age. These differences in composition could not be attributed to autogenic succession. We conclude that treefall gaps in this forest facilitate the establishment of northward migrating species, potentially providing a pathway for future forest migration in response to recent changes in climate.  相似文献   

6.
Abstract. A nucleated pattern of establishment by pine seedlings of Pinus strobus and P. resinosa around pre-established oak trees of Quercus rubra in a sand dune succession in Ontario, Canada was examined using field observations, seed planting and habitat manipulation. Densities of young pines beneath oak canopies were approximately six times greater than in treeless areas, and densities on the north sides of the trees were significantly greater than on the south sides. However, oaks younger than 35 yr showed no preferential establishment beneath them, while the pine population structures beneath older oaks indicated single periods of successful recruitment. Pine seed planted beneath and beyond oak canopies of three sizes germinated primarily beneath the canopies of medium and large-sized oaks, but subsequent survivorship of seedlings over two growing seasons was poor. Several micro-environmental conditions were changed by oak canopies, but only shade showed a pattern closely corresponding to that of seedling establishment. A habitat manipulation experiment confirmed the primary role of shade in facilitating pine seedling establishment beneath oaks. Failure of pine to continue recruiting successfully beneath facilitating trees is tentatively attributed to intraspecific competition among pine individuals.  相似文献   

7.
Dominant understorey species influence forest dynamics by preventing tree regeneration at the seedling stage. We examined factors driving the spatial distribution of the monocarpic species Isoglossa woodii, a dominant understorey herb in coastal dune forests, and the effect that its cover has on forest regeneration. We used line transects to quantify the area of the forest understorey with I. woodii cover and with gaps in the cover. Paired experimental plots were established in semi-permanent understorey gaps with I. woodii naturally absent and in adjacent areas with I. woodii present to compare plant community composition, soil, and light availability between the two habitats. Isoglossa woodii was widespread, covering 65–95% of the understorey, while gaps covered the remaining 5–35% of the area. The spatial distribution of this species was strongly related to tree canopy structure, with I.␣woodii excluded from sites with dense tree cover. Seedling establishment was inhibited by low light availability (<1% of PAR) beneath I.␣woodii. When present, I. woodii reduced the density and species richness of tree seedlings. The tree seedling community beneath I. woodii represented a subset of the seedling community in gaps. Some species that were found in gaps did not occur beneath I. woodii at all. There were no significant differences between the sapling and canopy tree communities in areas with I. woodii gaps and cover. In the coastal dune forest system, seedling survival under I. woodii is dependent on a species’ shade tolerance, its ability to grow quickly during I. woodii dieback, and/or the capacity to regenerate by re-sprouting and multi-stemming. We propose a general conceptual model of forest regeneration dynamics in which the abundant understorey species, I. woodii, limits local tree seedling establishment and survival but gaps in the understorey maintain tree species diversity on a landscape scale.  相似文献   

8.
Questions: What is the current distribution of pine and oak species along environmental gradients in southern Spain? Do pine and oak regeneration niches differ from the environmental niches of adults? Is oak species regeneration favoured under the canopy of pine forests? Location: Forest areas of Andalusia (~87 600 km2, southern Spain). Methods: We compiled extensive forest inventory data to explore differences in abundance (basal area, m2 ha?1) patterns of adults (dbh >7.4 cm) and regeneration (dbh ≤7.4 cm) of five pine and five oak species. Canonical correspondence analysis (CCA) and generalized linear models were applied to explore species–environment relationships along climatic, edaphic, topographic and fire‐frequency gradients. Results: Both pines and oaks segregated along complex environmental gradients, with pines generally dominating in more severe (colder and drier) environments, while oaks dominated in milder, wetter winter areas. In 40‐55% of mature pine stands there was a lack of regeneration in the understorey, while in two oak species (Q. suber and Q. canariensis) 70% of stands did not show regeneration. Pine recruits were found at a higher frequency and abundance under the canopy of their congeners, whereas some oaks (Q. ilex) had greater regeneration under mixed pine–oak canopies. Conclusions: Climatic limitations and soil properties partly explained the regional distribution of pines and oaks. We found evidence for an upward shift of Q. ilex recruits towards areas with colder conditions in pine forests, which could be explained by a possible facilitative effect of the pine canopy on seedling establishment.  相似文献   

9.
S. Catovsky  F. A. Bazzaz 《Oikos》2002,98(3):403-420
To address the role of canopy‐seedling feedbacks in the structure and dynamics of mixed conifer broad‐leaved forests in the eastern US, we monitored seedling regeneration patterns and environmental conditions in the understorey of stands dominated by either hemlock (Tsuga canadensis) or red oak (Quercus rubra) for three years. Hemlock seedlings were favoured over other species’ seedlings in hemlock stands (a true positive feedback), due to a combination of high seed inputs, high seedling emergence and relatively high seedling survival during the growing season, which allowed hemlock to remain dominant under its own canopy. Red oak stands favoured a suite of mid‐successional broad‐leaved species over hemlock. A more even age structure of broad‐leaved species in red oak stands revealed that high seedling survival in such stands were driving this feedback. Canopy‐mediated variations in both understorey light availability (1.5% for hemlock vs 3.5% for red oak) and soil pH (3.9 for hemlock vs 4.4 for red oak) were found to be the primary correlates of stand‐level differences in seedling regeneration dynamics. In mixed temperate forests in the eastern US, canopy‐seedling feedbacks could act to slow successional trajectories and contribute to the maintenance of a stable landscape structure over many generations.  相似文献   

10.
Abstract. Natural regeneration of Pinus resinosa (red pine) seedlings around mature trees was studied in burned and unburned stands. Growth inhibitory effects of the forest organic matter on red pine seedlings was tested by a stair-step experiment using leachate of forest soil monoliths and also by a seed germination bio-assay using forest floor substrates. To test if higher burning temperatures can remove the allelopathic effects of red pine-Kalmia organic matter, a laboratory bio-assay was conducted by germinating red pine seeds on the organic matter burned at 200, 400, 600 and 800°C. Deposition of dry needles and a thick duff layer under red pine stands affected seedling establishment. Red pine seedling establishment increased with the decreasing thickness of duff layer away from the stump of the seed-bearing trees. Wildfire helped in removing the duff layer and increased seedling establishment. A high fuel load within a 0 - 1 m radius around the tree stump caused a deep burn of the organic matter including part of the soil seed reserve. On a burned-over surface, more seedlings established in a band between 1 and 2 m around the stump than inside and outside the band. Primary root growth of red pine was severely inhibited when the seedlings were grown in unburned forest floor organic matter where Kalmia was the principal understory species. Water leachate of a Pinus resinosa-Kalmia soil monolith was inhibitory to red pine seedling growth. In greenhouse conditions, the seedlings grew well in burned-over soil from a Pinus resinosa stand. Burned organic matter from a red pine forest showed an increase in pH with a burning temperature of 600°C. Primary root growth of red pine seedlings was similarly increased with increasing temperature up to 600°C; at higher temperatures the root length of seedlings did not increase any further.  相似文献   

11.
蒙古栎红松林物种组成和结构动态的研究   总被引:7,自引:0,他引:7       下载免费PDF全文
 通过对蒙古栎红松林3个年龄阶段物种和结构动态的研究,结果表明,该类型森林的更新状况良好,早期阶段红松(Pinus koraiensis)和阔叶树的更新数量相同,后期更新树种以红松为主;在森林发育早期阶段蒙古栎(Quercus mongolica)等阳性树种占优势,中期为红松和阔叶树占优势的混交林,后期形成红松占优势的林分;随着森林的发育,灌木和草本层动态呈现复杂的变化。通过对该类型森林直径分布变化的研究得出,在林分发育的早期,阔叶树中大径级木较多,针叶树中小径级木多,在林分发育的后期呈相反的规律。用理论概率模型拟合直径分布表明,韦布尔概率分布模型是描述蒙古栎红松林直径分布的最适模型。  相似文献   

12.
The aim of this study was to analyse the regeneration of Pinus pinaster after wildfire and the possible inter and intraspecific competition during the first 3 years after fire. The study area is located in a P. pinaster stand in León province (NW Spain). Three study sites (S1, S2 and S3) were established in an area burned in 1998. In each site, three permanent plots (20 × 1 m) were marked. A total of 20 quadrats of 1 m 2 were studied in each plot. The number and height of pine seedlings 1, 2 and 3 years after fire was recorded in each quadrat. The regeneration of understorey vegetation in the quadrats was analysed concurrently. The significance of linear correlations among the number and height of seedlings and understorey vegetation cover was tested by calculating Pearson correlation coefficients.Seed germination and seedling emergence took place massively during the first year after the fire and decreased through time. The height growth was constant over the 3 years at site S2, while a growth burst could be observed between years 2 and 3 at sites S1 and S2. Also, pines from site S2 reached shorter maximum heights in all years compared to pines from site S1 and S3. The understorey vegetation showed minimal regeneration during the first year but then increased greatly with time. Woody understorey cover and total vegetation cover were negatively correlated with pine seedling density in sites with a high number of seedlings (e.g. S1 and S3). When woody cover, total cover and pine seedling density were low (e.g. S2), there were no correlations. There was a positive correlation between vegetation cover and the maximum height of Pinus seedlings in all study sites.  相似文献   

13.
殷正  范秀华 《生态学报》2020,40(7):2194-2204
为了解次生针阔混交林和阔叶红松林林下草本植物对幼苗生长和存活的影响,基于长白山次生针阔混交林样地(Ⅰ)和阔叶红松林样地(Ⅱ),以246个1 m×1 m幼苗样方中乔木幼苗为研究对象,通过去除草本植物的对照试验探究草本植物对乔木幼苗高度生长和存活率的影响。结果表明,(1)群落水平上,草本植物去除有助于林下乔木幼苗的高度生长。次生针阔混交林和阔叶红松林中幼苗高度生长量在除草后较对照组均有显著提高,且阔叶红松林中幼苗高度增长在对照组和处理组中均高于次生针阔混交林。(2)去除草本植物对不同年龄级水平乔木幼苗高度生长影响不同。次生针阔混交林中,去除草本显著促进四年生及以上幼苗高度生长,对一至三年生幼苗影响不显著;阔叶红松中去除草本显著促进一至三年生幼苗高度生长,对四年生及以上幼苗影响不显著。(3)除草处理后,水曲柳幼苗高度生长量在两处样地均显著增加,假色槭幼苗高度增长量只在次生针阔混交林中显著增加,而其他幼苗高度增长量只在阔叶红松林中显著增加。(4)次生针阔混交林中,幼苗存活率与草本多度和物种数呈正相关关系,与草本盖度无相关关系;阔叶红松林中幼苗存活率与草本物种数呈正相关关系,与草本多度和盖度无相...  相似文献   

14.
Question: What are the age structure and growth trends in a 160‐year old not‐managed Pinus sylvestris plantation with spontaneous development of Quercus robur and can recruitment of Q. robur be related to the radial growth pattern of the P. sylvestris overstorey? Location: Mattemburgh forest reserve, The Netherlands. Methods: Throughout the forest, we sampled 103 oaks and 102 pines with an increment corer. Tree ring widths were measured and cross‐dated to produce mean ring width series. With these data we determined tree ages, investigated growth trends and identified growth releases and suppressions. Results: Q. robur is uneven‐aged: some individuals recruited around 1925, but most reached coring height in the 1940s. The latter recruitment period related to a transition from stressed to released growth of the overstorey pines, growth releases of the oldest Q. robur and occurrence of P. sylvestris regeneration. No further recruitment has taken place since 1950. Conclusions: This study demonstrates that an old pine plantation can develop spontaneously into well‐structured pine forest with an understorey of oak and pine. However, understorey recruitment in these forest types is not a continuous process and in this case a single allogenic canopy disturbance triggered its establishment.  相似文献   

15.
An increasing number of studies have reported on forest declines and vegetation shifts triggered by drought. In the Swiss Rhone valley (Valais), one of the driest inner‐Alpine regions, the species composition in low elevation forests is changing: The sub‐boreal Scots pine (Pinus sylvestris L.) dominating the dry forests is showing high mortality rates. Concurrently the sub‐Mediterranean pubescent oak (Quercus pubescens Willd.) has locally increased in abundance. However, it remains unclear whether this local change in species composition is part of a larger‐scale vegetation shift. To study variability in mortality and regeneration in these dry forests we analysed data from the Swiss national forest inventory (NFI) on a regular grid between 1983 and 2003, and combined it with annual mortality data from a monitoring site. Pine mortality was found to be highest at low elevation (below 1000 m a.s.l.). Annual variation in pine mortality was correlated with a drought index computed for the summer months prior to observed tree death. A generalized linear mixed‐effects model indicated for the NFI data increased pine mortality on dryer sites with high stand competition, particularly for small‐diameter trees. Pine regeneration was low in comparison to its occurrence in the overstorey, whereas oak regeneration was comparably abundant. Although both species regenerated well at dry sites, pine regeneration was favoured at cooler sites at higher altitude and oak regeneration was more frequent at warmer sites, indicating a higher adaptation potential of oaks under future warming. Our results thus suggest that an extended shift in species composition is actually occurring in the pine forests in the Valais. The main driving factors are found to be climatic variability, particularly drought, and variability in stand structure and topography. Thus, pine forests at low elevations are developing into oak forests with unknown consequences for these ecosystems and their goods and services.  相似文献   

16.
Abstract. We compared the species composition and species density of vascular plants in the understorey vegetation of boreal forest between Picea mariana (Black spruce) and Populus tremuloides (Trembling aspen) stands in British Columbia, Canada, and related differences in species composition and species density between the two forest types to dominant canopy tree species as well as a wide variety of environmental factors. We analysed 231 stands, distributed in three different climatic regions representing drier, wetter, and milder variations of montane boreal climate. Of these stands 118 were dominated by P. mariana and 113 by P. tremuloides. P. tremuloides stands had higher species density than P. mariana stands in all climatic regions, but species density of each dominance type varied among climatic regions. The floristic composition of the understorey vegetation was markedly different for P. mariana and P. tremuloides dominated stands. A detailed study on the effect of canopy dominance and local environmental factors on the understorey vegetation of the boreal forest was conducted using 88 stands from one of the three climatic regions. Using a combination of ordination and variation partitioning by constrained ordination we demonstrated a small but unique effect of canopy dominance type on the understorey vegetation, while a larger amount of compositional variation was shared with other factors. Our results accord with a scenario in which differences in primary environmental factors and humus form properties, the latter accentuated by the canopy dominants themselves, are the most important causes of higher species density in P. tremuloides stands than in P. mariana stands, as well as differences in species composition among the two canopy dominance types. Processes and time scales involved in the small but significant direct and indirect effects of the canopy dominant on understo‐ rey species composition are discussed.  相似文献   

17.
Question: Reliable estimates of understorey (non-tree) plant cover following fire are essential to assess early forest community recovery. Photographic digital image analysis (DIA) is frequently used in seral, single-strata vegetation, given its greater objectivity and repeatability compared to observer visual estimation; however, its efficacy in multi-strata forest vegetation may be compromised, where various visual obstructions (coarse downed wood [CDW], conifer regeneration, and shadows) may conceal plant cover in the digital imagery. We asked whether vegetation complexity influences plant cover estimated by DIA relative to two visual methods: plot-level (20 m2) estimation (PLE) and quadrat-level (1 m2) estimation (QLE)? Location: Greater Yellowstone Ecosystem, USA. Methods: We estimated understorey plant cover in subalpine forest vegetation on permanent plots (n = 141) at two study areas ~30 years after the 1988 Yellowstone fires to: (a) assess differences in visual obstructions between study areas in our digital imagery; (b) compare digital to visual estimates of plant cover; and (c) determine relationships between estimated plant cover and visual obstructions measured in situ. Results: Percent conifer regeneration pixels differed significantly (odds ratio = 8.34) between study areas which represented the greatest difference in visual obstructions. At the study area with lower conifer pixels, DIA estimated 9% (95% confidence interval [CI] = 3%–14%) and 16% (95% CI = 10%–21%) more understorey plant cover than PLE or QLE, respectively, but had comparable variability. At the study area with higher conifer pixels, DIA estimated 28% (95% CI = 24%–32%) and 22% (95% CI = 18%–26%) less understorey plant cover than PLE or QLE, respectively, and had more variability. Furthermore, plot-level subcanopy regeneration (height>137 cm) density was negatively associated with digitally derived plant cover but showed no relationship with visually derived plant cover. Conclusions: Post-fire conifer regeneration hindered the efficacy of DIA in estimating understorey plant cover. Digital estimation is advantageous in single-strata vegetation but should not be used in complex, multi-strata vegetation.  相似文献   

18.
The Sierra Madre Occidental and neighboring Madrean Sky Islands span a large and biologically diverse region of northwest Mexico and portions of the southwestern United States. Little is known about the abundance and habitat use of breeding birds in this region of Mexico, but such information is important for guiding conservation and management. We assessed densities and habitat relationships of breeding birds across Sky Island mountain ranges in Mexico and adjacent portions of the Sierra Madre from 2009 to 2012. We estimated densities at multiple spatial scales, assessed variation in densities among all major montane vegetation communities, and identified and estimated the effects of important habitat attributes on local densities. Regional density estimates of 65% of 72 focal species varied significantly among eight montane vegetation communities that ranged from oak savannah and woodland at low elevations to pine and mixed‐conifer forest at high elevations. Greater proportions of species occurred at peak densities or were relatively restricted to mixed‐conifer forest and montane riparian vegetation likely because of higher levels of structural or floristic diversity in those communities, but those species were typically rare or uncommon in the Sky Islands. Fewer species had peak densities in oak and pine‐oak woodland, and species associated with those communities were often more abundant across the region. Habitat models often included the effects of broadleaf deciduous vegetation cover (30% of species), which, together with tree density and fire severity, had positive effects on densities and suggest ways for managers to augment and conserve populations. Such patterns combined with greater threats to high‐elevation conifer forest and riparian areas underscore their value for conservation. Significant populations of many breeding bird species, including some that are of concern or were not known to occur regionally or in mountain ranges we surveyed, highlight the importance of conservation efforts in this area of Mexico.  相似文献   

19.
Question: How do spatial patterns and associations of canopy and understorey vegetation vary with spatial scale along a gradient of canopy composition in boreal mixed‐wood forests, from younger Aspen stands dominated by Populus tremuloides and P. balsamifera to older Mixed and Conifer stands dominated by Picea glauca? Do canopy evergreen conifers and broad‐leaved deciduous trees differ in their spatial relationships with understorey vegetation? Location: EMEND experimental site, Alberta, Canada. Methods: Canopy and understorey vegetation were sampled in 28 transects of 100 contiguous 0.5 m × 0.5 m quadrats in three forest stand types. Vegetation spatial patterns and relationships were analysed using wavelets. Results: Boreal mixed‐wood canopy and understorey vegetation are patchily distributed at a range of small spatial scales. The scale of canopy and understorey spatial patterns generally increased with increasing conifer presence in the canopy. Associations between canopy and understorey were highly variable among stand types, transects and spatial scales. Understorey vascular plant cover was generally positively associated with canopy deciduous tree cover and negatively associated with canopy conifer tree cover at spatial scales from 5–15 m. Understorey non‐vascular plant cover and community composition were more variable in their relationships with canopy cover, showing both positive and negative associations at a range of spatial scales. Conclusions: The spatial structure and relation of boreal mixed‐wood canopy and understorey vegetation varied with spatial scale. Differences in understorey spatial structure among stand types were consistent with a nucleation model of patch dynamics during succession in boreal mixed‐wood forests.  相似文献   

20.
Solar radiation transmission in forest stands affects many processes, including biomass and diversity of understorey vegetation and tree seedling regeneration (growth and morphogenesis). However, understorey light availability is not easy for forest managers or scientists to measure. Therefore, different models have been developed to predict light transmission in forest stands according to tree or stand structure. However, these models are generally too complex to be used operationally. This paper reports the assessment of light transmission according to stand parameters commonly measured by foresters in inventories. We measured transmittance in 29 even-aged oak stands in France for various wavebands, total solar radiation (TSR, 300–3000 nm), PAR (400–700 nm), red (R, 660 nm) and far-red (FR, 730 nm), and demonstrated that transmittance in a given waveband can be predicted from the measurement of another waveband. The R:FR ratio can be predicted according to TSR or PAR transmittance, but the opposite is also true; PAR or TSR transmittance can be predicted from the R:FR ratio. Transmittance variability was characterised, and the variation coefficient ranged from 5 to 45% with a trend to increase with tree density. By analogy to Beer–Lambert's law, we established that mean daily transmittance for the different wavebands can be assessed according to stand basal area and stand age with good accuracy (R 2>0.74). Results are discussed in comparison with other models based on the principle of parsimony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号