首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variation among modules of a single genet could provide a means of adaptation to environmental heterogeneity. Two mechanisms that can give rise to such variation are programmed developmental change and phenotypic plasticity. I quantified the relative roles of these two mechanisms in causing within-individual variation in six leaf traits of an annual plant. Under controlled temperatures, morphological, anatomical, and physiological traits of leaves produced by the same individual differed as a function of both the node at which they were produced and the temperature they experienced during development. Temperature, node, and interactions between them all contributed significantly to the pattern of within-individual variation in leaf traits, although the relative contributions of programmed developmental change and phenotypic plasticity differed for different traits. I hypothesize that these two mechanisms for generating within-individual variation in module phenotype are favored by different patterns of environmental heterogeneity; when the sequence of environments encountered by modules of a single individual is predictable, programmed developmental change may be favored, and phenotypic plasticity may be favored when the sequence of environments is irregular with respect to individual ontogeny and therefore not predictable.  相似文献   

2.
Our previous quantitative genetic study of leaf resin production in Diplacus aurantiacus revealed large environmental and maternal effects on variation in resin production, which suggests the possibility of a genotype×environment interaction for this trait when plants grow in heterogeneous environments. Our objectives in this study were to observe the genetic variation in plasticity of resin production under field and chamber conditions, compare phenotypic correlations of resin content with growth traits under these two environmental conditions, and distinguish the possible basis of the maternal effect on resin production using parents and half-sib progeny. A significant genotype×environment interaction (P<0.0001) in leaf resin production was found, which suggests a potential for the evolution of plasticity of these secondary metabolites under heterogeneous environments. The phenotypic correlation between resin content and growth rate also exhibited plasticity. In addition, the resin content of dam half-sib families grown in the chamber had a closer relationship with their maternal parents in the field (r=0.65, P=0.059) than in the chamber (r=0.39, P=0.34), suggesting an environmentally based maternal effect on the secondary chemicals. We suggest that the maternal environmental effect may act as a contributor to plasticity of resin production and, while it may not diminish the appearance of the genotype×environment interaction, the heritable variation of plasticity of resin production may be confounded.  相似文献   

3.
Byers DL 《Genetica》2005,123(1-2):107-124
The maintenance of genetic variation in traits of adaptive significance has been a major dilemma of evolutionary biology. Considering the pattern of increased genetic variation associated with environmental clines and heterogeneous environments, selection in heterogeneous environments has been proposed to facilitate the maintenance of genetic variation. Some models examining whether genetic variation can be maintained, in heterogeneous environments are reviewed. Genetic mechanisms that constrain evolution in quantitative genetic traits indicate that genetic variation can be maintained but when is not clear. Furthermore, no comprehensive models have been developed, likely due to the genetic and environmental complexity of this issue. Therefore, I have suggested two empirical approaches to provide insight for future theoretical and empirical research. Traditional path analysis has been a very powerful approach for understanding phenotypic selection. However, it requires substantial information on the biology of the study system to construct a causal model and alternatives. Exploratory path analysis is a data driven approach that uses the statistical relationships in the data to construct a set of models. For example, it can be used for understanding phenotypic selection in different environments, where there is no prior information to develop path models in the different environments. Data from Brassica rapa grown in different nutrients indicated that selection changed in the different environments. Experimental evolutionary studies will provide direct tests as to when genetic variation is maintained.  相似文献   

4.
Environmental stress can alter genetic variation and covariation underlying functional traits, and thus affect adaptive evolution in response to natural selection. However, the genetic basis of functional traits is rarely examined in contrasting resource environments, and consequently, there is no consensus regarding whether environmental stress constrains or facilitates adaptive evolution. We tested whether resource availability affects genetic variation for and covariation among seven physiological traits and seven morphological/performance traits by growing the annual grass Avena barbata in dry and well-watered treatments. We found that differences in the overall genetic variance–covariance ( G ) matrix between environments were driven by physiological traits rather than morphology and performance traits. More physiological traits were heritable in the dry treatment than the well-watered treatment and many of the genetic correlations among physiological traits were environment dependent. In contrast, genetic variation and covariation among the morphological and performance traits did not differ across treatments. Furthermore, genetic correlations between physiology and performance were stronger in the dry treatment, which contributed to differences in the overall G -matrix. Our results therefore suggest that physiological adaptation would be constrained by low heritable variation in resource-rich environments, but facilitated by higher heritable variation and stronger genetic correlations with performance traits in resource-poor environments.  相似文献   

5.
The worldwide leaf economic spectrum (WLES) is a strikingly consistent pattern of correlations among leaf traits. Although the WLES effectively summarizes variation in plant ecological strategies, little is known about its evolution. We reviewed estimates of natural selection and genetic variation for leaf traits to test whether the evolution of the WLES was limited by selection against unfit trait combinations or by genetic constraints. There was significant selection for leaf traits on both ends of the WLES spectrum, as well as significant genetic variation for these traits. In addition, genetic correlations between WLES traits were variable in strength and direction. These data suggest that genetic constraints have had a smaller role than selection in the evolution of the WLES.  相似文献   

6.
Within-individual variation in floral advertising and reward traits is a feature experienced by pollinators that visit different flowers of the same plant. Pollinators can use advertising traits to gather information about the quality and amount of rewards, leading to the evolution of signal–reward correlations. As long as plants differ in the reliability of their signals and pollinators base their foraging decisions on this information, natural selection should act on within-individual correlations between signals and rewards. Because birds and bees differ in their cognitive capabilities, and use different floral traits as signals, we tested the occurrence of adaptive divergence of the within-individual signal–reward correlations among Salvia species that are pollinated either by bees or by hummingbirds. They are expected to use different floral advertising traits: frontal traits in the case of bees and side traits in the case of hummingbirds. We confirmed this expectation as bee- and hummingbird-pollinated species differed in which specific traits are predominantly associated with nectar reward at the within-individual level. Our findings highlight the adaptive value of within-individual variation and covariation patterns, commonly disregarded as ‘environmental noise’, and are consistent with the hypothesis that pollinator-mediated selection affects the correlation pattern among floral traits.  相似文献   

7.
The distribution and proportion of the sexual species Rana lessonae to the hemiclonal hybrid R. esculenta among natural habitats suggests that these anurans may differ in adaptive abilities. I used a half-sib design to partition phenotypic and quantitative genetic variation in tadpole responses at two food levels into causal variance components. Rana lessonae displays strong phenotypic variation across food levels. Growth rate is strictly determined by environmental factors and includes weak maternal effects. Larval period and body size at metamorphosis both contain moderate levels of additive genetic variance. The sire x food interactions and the lack of environmental correlations indicate that adaptive phenotypic plasticity is present in both of these traits. In contrast, R. esculenta displays less phenotypic variation across food levels, especially for larval period. Variation in body size at metamorphosis is underlain by genetic variation as shown by high levels of additive genetic variance, yet growth rate and larval period are not. Significant environmental correlations between larval period at high food level and growth, larval period, and body size at low food, indicate phenotypic plasticity is absent. A positive phenotypic correlation between body size at metamorphosis and larval period for R. lessonae at both food levels suggests a trade-off between growing large and metamorphosing quickly to escape predation or pond drying. The lack of a similar correlation for R. esculenta at the high food level suggests it may be less constrained. Different levels of adaptive genetic variation among larval traits suggest that the sexual species and the hybridogenetic hemiclone differ in their abilities to cope with temporally and spatially heterogeneous environments.  相似文献   

8.
Behavior of wild vertebrate individuals can vary in response to environmental or social factors. Such within-individual behavioral variation is often mediated by hormonal mechanisms. Hormones also serve as a basis for among-individual variations in behavior including animal personalities and the degree of responsiveness to environmental and social stimuli. How do relationships between hormones and behavioral traits evolve to produce such behavioral diversity within and among individuals? Answering questions about evolutionary processes generating among-individual variation requires characterizing how specific hormones are related to variation in specific behavioral traits, whether observed hormonal variation is related to individual fitness and, whether hormonal traits are consistent (repeatable) aspects of an individual's phenotype. With respect to within-individual variation, we need to improve our insight into the nature of the quantitative relationships between hormones and the traits they regulate, which in turn will determine how they may mediate behavioral plasticity of individuals. To address these questions, we review the actions of two steroid hormones, corticosterone and testosterone, in mediating changes in vertebrate behavior, focusing primarily on birds. In the first part, we concentrate on among-individual variation and present examples for how variation in corticosterone concentrations can relate to behaviors such as exploration of novel environments and parental care. We then review studies on correlations between corticosterone variation and fitness, and on the repeatability over time of corticosterone concentrations. At the end of this section, we suggest that further progress in our understanding of evolutionary patterns in the hormonal regulation of behavior may require, as one major tool, reaction norm approaches to characterize hormonal phenotypes as well as their responses to environments.In the second part, we discuss types of quantitative relationships between hormones and behavioral traits within individuals, using testosterone as an example. We review conceptual models for testosterone-behavior relationships and discuss the relevance of these models for within-individual plasticity in behavior. Next, we discuss approaches for testing the nature of quantitative relationships between testosterone and behavior, concluding that again reaction norm approaches might be a fruitful way forward.We propose that an integration of new tools, especially of reaction norm approaches into the field of behavioral endocrinology will allow us to make significant progress in our understanding of the mechanisms, the functional implications and the evolution of hormone–behavior relationships that mediate variation both within and among individuals. This knowledge will be crucial in light of already ongoing habitat alterations due to global change, as it will allow us to evaluate the mechanisms as well as the capacity of wild populations to adjust hormonally-mediated behaviors to altered environmental conditions.  相似文献   

9.
Substantial variation in seed mass within individual seed parents is at odds with predictions of models for the evolution of optimum offspring size and with empirical observations of directional selection on seed mass. To elucidate the ultimate causes of this variation, I examined several proximal sources of within-individual variation in seed mass in the perennial herb Prunella vulgaris. Position of inflorescence, position of flower within an inflorescence, date of anthesis, and number of seeds produced per flower all explained some within-individual variation in seed mass. Hand pollination in the field failed to reveal any effect of pollen source (self pollen or outcross pollen) on seed mass. My results, in conjunction with those from studies of selection on seed mass in P. vulgaris, do not support hypotheses that within-individual variation in seed mass is favored by the pattern of natural selection on seed mass. Rather, the results suggest that seed parents are not capable of producing a uniform seed crop in the face of changes in resource availability in the course of a season. The inability to produce a uniform seed crop may persist because of selection for variability in traits correlated with seed mass or because of a true constraint on the evolution of uniform offspring size.  相似文献   

10.
Phenotypic plasticity in life-history traits is common. The relationship between phenotype and environment, or reaction norm, associated with life-history plasticity can evolve by natural selection if there is genetic variation within a population for the reaction norm and if the traits involved affect fitness. As with other traits, selection on plasticity in a particular trait or in response to a particular environmental factor may be constrained by trade-offs with other traits that affect fitness. In this paper, I experimentally evaluated broad-sense genetic variation in the reaction norms of age and size at metamorphosis in response to two environmental factors, food level and temperature. Differences among full-sib families in one or both traits were evident in all treatments. However, variation among families in their responses to each treatment (genotype-environment interaction) resulted in variation among treatments in estimated heritabilities and genetic correlations. Age at metamorphosis was equally sensitive to temperature in all families, but size at metamorphosis was more sensitive to temperature in some families than in others. Size at metamorphosis was equally sensitive to food level in all families, but age at metamorphosis was sensitive to food in some families but not in others. At high temperature or low food, the genetic correlation between age and size at metamorphosis was positive, generating a potential trade-off between metamorphosing early to attain higher larval survival and metamorphosing later to achieve larger size. This trade-off extends across treatments: families with the largest average size at metamorphosis achieved larger size with the longest average and greatest plasticity in age at metamorphosis. Other families achieved shorter average larval periods by exhibiting greater plasticity in size at metamorphosis but had the smallest average size at metamorphosis. This trade-off may reflect an underlying functional constraint on the ability to respond optimally to all environments, resulting in persistent genetic variation in reaction norms.  相似文献   

11.
Theory suggests that heterogeneous environments should maintain more genetic variation within populations than homogeneous environments, yet experimental evidence for this effect in quantitative traits has been inconsistent. To examine the effect of heterogeneity on quantitative genetic variation, we maintained replicate populations of Drosophila melanogaster under treatments with constant temperatures, temporally variable temperature, or spatially variable temperature with either panmictic or limited migration. Despite observing differences in fitness and divergence in several wing traits between the environments, we did not find any differences in the additive genetic variance for any wing traits among any of the treatments. Although we found an effect of gene flow constraining adaptive divergence between cages in the limited migration treatment, it did not tend to increase within‐population genetic variance relative to any of the other treatments. The lack of any clear and repeatable patterns of response to heterogeneous versus homogeneous environments across several empirical studies suggests that a single general mechanism for the maintenance of standing genetic variation is unlikely; rather, the relative importance of putative mechanisms likely varies considerably from one trait and ecological context to another.  相似文献   

12.
植物叶片功能性状能够响应环境条件的变化,反应了植物对环境的适应策略。当前,针对藤本植物叶片功能性状地理格局及其环境驱动力的研究较少。以国家重点保护植物永瓣藤(Monimopetalum chinense)为研究对象,对其分布区内11个种群的15个叶片功能性状进行测量,并结合气候、土壤因子来解释叶性状变异。比较叶片性状在局域和区域尺度上的种内变异程度,利用多元逐步回归分析环境因子对叶性状的影响。结果表明,在局域尺度上,永瓣藤叶功能性状变异系数介于3.0%-22.5%,其中,叶面积变异程度最大,叶片碳含量变异最小。永瓣藤叶片形状随纬度上升而变得宽且圆。叶片磷含量相对较低,永瓣藤的生长可能受到了磷限制。土壤与气候因子是叶片性状的重要驱动因素,解释了25%-97%的叶片性状变异。在温度和水分充足的情况下,永瓣藤叶片趋向于的慢速生长的保守策略。总体来说,永瓣藤叶片功能性状通过一定的种内变异和性状组合,并与气候、土壤因子相互作用,适应当前的环境条件。  相似文献   

13.
Summary Morphological variation within organisms is integrated and often modular in nature. That is to say, the size and shape of traits tend to vary in a coordinated and structured manner across sets of organs or parts of an organism. The genetic basis of this morphological integration is largely unknown. Here, we report on quantitative trait loci (QTL) analysis of leaf and floral organ size in Arabidopsis thaliana. We evaluate patterns of genetic correlations among traits and perform whole-genome scans using QTL mapping methods. We detected significant genetic variation for the size and shape of each floral and leaf trait in our study. Moreover, we found large positive genetic correlations among sets of either flower or leaf traits, but low and generally nonsignificant genetic correlations between flower and leaf traits. These results support the hypothesis of independent floral and vegetative modules. We consider co-localization of QTL for different traits as support for a pleiotropic basis of morphological integration and modularity. A total of eight QTL affecting flower and three QTL affecting leaf traits were identified. Most QTL affected either floral or leaf traits, providing a general explanation for high correlations within and low correlations between modules. Only two genomic locations affected both flower and leaf growth. These results are discussed in the context of the evolution of modules, pleiotropy, and the putative homologous relationship between leaves and flowers.  相似文献   

14.
Within-locality correlations among eight morphological traits of the fundatrix and among 15 morphological traits of the alate fundatrigeniae of the aphid Pemphigus populicaulis Fitch were examined for among-locality variation. A jackknife procedure revealed highly significant differences among correlation matrices representing 34 local samples from eastern North America. Most bivariate correlations also differed significantly among samples. Although very low correlations cannot differ, for moderate or strong correlations the average magnitude of correlation is not a good predictor of the degree of interlocality difference. Nearly half of the variation among localities is in the level of “overall correlation,” which is positively correlated with intralocality size variation. Despite significant differences among localities, spatial autocorrelation tests failed to reveal any significant geographic pattern in correlations. Monte Carlo experiments suggest that if geographic patterns in the correlations were of the same magnitude as those for the means of these traits, some of these patterns would have been detected. Factor analyses of the pooled within-locality correlation matrices, after oblique rotation to simple structure, reveal appendage and body-size factors for both alates and stem mothers. In general, correlations between traits with high loadings on the same factor differ among localities, whereas substantial correlations that do not vary geographically are between traits that are not well resolved by the factor analyses. It is hypothesized that the apparently random geographic differences in correlation are caused by chance differences in the mode of response to short-term selection. Geographic patterns in trait means are established by selection, but, because local population sizes are finite, similar response to selection occurs by diverse physiological or developmental mechanisms in different populations, just as replicate lines in artificial selection experiments may achieve the same response by diverse mechanisms. These diverse mechanisms of response will have diverse effects on genetic variance and covariance, causing correlation patterns to vary geographically. Several forces will oppose continued divergence of these patterns.  相似文献   

15.
The evolutionary trajectory of a trait depends not only on the presence of genetic variation, but also on the pattern of genetic correlations (rg) among traits. Genetic correlations are most easily measured under homogeneous, controlled laboratory conditions, whereas natural populations typically experience a higher degree of environmental variability. The effect of environmental variability on genetic correlations in the cricket, Gryllus pennsylvanicus, was studied by measuring genetic correlations within and between two environments differing in levels of environmental heterogeneity. Within-environment rg among morphological traits measured in the homogeneous laboratory environment were found to be reliable predictors of rg measured in the experimental field environment. Laboratory measures of rg involving life-history traits, though, were not found to reflect the same correlations measured in the heterogeneous environment. A significant negative genetic correlation between fecundity and developmental time was found in the field environment, yet was not detectable when measured in the laboratory. Phenotypic correlations may be obtained much more easily than genetic correlations, but their usefulness in evolutionary inference depends on the pattern of similarity between the two correlations. A comparison of genetic and phenotypic correlations revealed a close match between the two measures for morphological traits, but revealed only broad similarities when considering life-history traits. Male-female genetic correlations between morphological traits were high (all rg > 0.73) and were consistently higher in the field environment than in the laboratory. The genetic correlations between the sexes in developmental time followed the same trend, but the male-female genetic correlation of gonad weights was low in both environments. Across-environment correlations were found to be strong for morphological traits and for gonad weight, whereas the genetic expression of developmental time was found to be dependent on the environment in which the crickets were raised.  相似文献   

16.
Empirical studies of phenotypic plasticity have often relied on the plausibility that a plastic response to the environment would increase fitness in order to diagnose the response as adaptive. I conducted a test of the hypothesis that seasonal variation in leaf traits is an adaptive response to seasonal variation in environmental conditions faced by the annual plant Dicerandralinearifolia. This species exhibits variation in leaf morphology and anatomy in response to temperature that is consistent with the expectations for adaptive plasticity. I examined variation in the size, thickness and density of stomata of leaves that develop in summer and winter and used analysis of phenotypic selection during winter and summer seasons to test the hypothesis that seasonal variation in these traits is adaptive. Regression analyses of estimated dry mass (as a proxy for fitness) on leaf traits revealed no evidence supporting the adaptive hypothesis. Selection favoured individuals with large and thick leaves in both winter and summer, and density of stomata had little or no effect on estimated relative fitness in any season. Correspondence between seasonal variation in leaf thickness and density of stomata and expectations for adaptive plasticity appears to be purely fortuitous. Seasonal variation in leaf traits may persist simply because there is no selection against individuals in which these traits vary. My results underscore the importance of definitive tests of the hypothesis of adaptation to distinguish adaptive plasticity from neutral or nonadaptive phenotypic plasticity.  相似文献   

17.
Plant responses to crowding may be mediated by resource availability and/or by a specific environmental cue, the ratio of red:far red wavelengths (R:FR) perceived by phytochrome. This study examined the contribution of phytochrome-mediated photomorphogenesis to genetic variation in plastic responses to density in the annual plant Impatiens capensis. Inbred lines derived from open and woodland populations were grown under low density high density, and high density with selective removal of FR wavelengths to block phytochrome-mediated perception of neighbor proximity. Genetic variation in plasticity to density and to the R:FR cue was detected for several traits Plants grown at high density displayed increased internode elongation; decreased branch, flower, and node production; increased menstem dormancy; and decreased leaf area and specific leaf weight compared to plants grown at low density. Stem elongation responses to density were suppressed when phytochrome perception was blocked at high density. For these phytochrome-mediated traits, a genotype's plasticity to density was strongly correlated with its response to R:FR. Phytochrome-mediated traits were tightly correlated with one another, regardless of the density environment. However, the responses to density of meristem allocation to branching and leaf traits were less strongly phytochrome-mediated. These traits differed in patterns of plasticity, and their genetic correlations often differed across environments. In particular, genetic trade-offs involving meristem allocation to branching were expressed only at low density. The observed density dependence of phenotypic and genetic correlations implies that indirect selection and the potential for correlated response to selection will depend upon the competitive environment. Thus the differential sensitivity of characters to the R:FR cue can influence the evolution of integrated plastic responses to density.  相似文献   

18.
While phenotypic plasticity has been the focus of much research and debate in the recent ecological and evolutionary literature, the developmental nature of the phenomenon has been mostly overlooked. A developmental perspective must ultimately be an integral part of our understanding of how organisms cope with heterogeneous environments. In this paper I use the rapid cycling Arabidopsis thaliana to address the following questions concerning developmental plasticity. (1) Are there genetic and/or environmental differences in parameters describing ontogenetic trajectories? (2) Is ontogenetic variation produced by differences in genotypes and/or environments for two crucial traits of the reproductive phase of the life cycle, stem elongation and flower production? (3) Is there ontogenetic variability for the correlation between the two characters? I found genetic variation, plasticity, and variation for plasticity affecting at least some of the growth parameters, indicating potential for evolution via heterochronic shifts in ontogenetic trajectories. Within-population differences among families are determined before the onset of the reproductive phase, while among-population variation is the result of divergence during the reproductive phase of the ontogeny. Finally, the ontogenetic profiles of character correlations are very distinct between the ecologically meaningful categories of early- and late-flowering “ecotypes” in this species, and show susceptibility to environmental change.  相似文献   

19.
以84个香椿(Toona sinensis(A.Juss.)Roem.)种质为材料,对其2个生长性状和18个叶部性状(包含6个质量性状和12个数量性状)进行测定。结果显示,香椿6个叶部质量性状变异类型丰富,呈现出多态化特点,单一性状的主要表型多为1~2个。苗高、地径及叶部表型等14个数量性状在种质间的差异均达到极显著水平,且除地径外,其他性状的遗传方差分量均大于环境方差分量,表明此类性状主要受遗传控制。参试的14个数量性状的平均表型变异系数为20.35%,平均遗传变异系数为16.36%;综合表型和遗传变异系数,叶柄长度较其他性状变异大,而叶片夹角稳定性最高,各数量性状(除地径外)遗传变异系数与表型变异系数之差小于7%。香椿种质各性状间Shannon-Weaver遗传多样性指数相差不大(1.892~2.069),遗传多样性水平高,具有良好的遗传改良基础。聚类分析可将84个香椿种质分为5类,类群Ⅰ表现为生长旺盛、小比叶重型;类群Ⅱ生长较快、叶片较大;类群Ⅲ种质数量最多,属生长缓慢、大比叶重型;类群Ⅳ特征为大叶片、多叶型;类群Ⅴ为小叶片、稀叶型。研究结果表明参试香椿种质变异丰富,遗传多样性水平高,能为良种选育、遗传改良等研究提供丰富的遗传材料。  相似文献   

20.
Light-induced plasticity in plant morphology is considered adaptive in terrestrial habitats that vary in light, but remains unexplored for marine habitats. This is despite similar modes of growth, development and photosynthetic equipment in terrestrial and marine photoautotrophs and similarly dynamic light environments. We tested whether manipulations of light quantity and quality induce morphological plasticity in the marine macroalga, Asparagopsis armata. Using multivariate analyses (principal components analyses and multivariate analyses of covariance), we show that correlated morphological traits underlie a fundamental growth strategy characterized by the production of phalanx and guerrilla phenotypes in environments that mimic light and shade respectively. This foraging response is not under simple genetic or environmental control, but influenced by interactions between genotype and environment. Evidence of plasticity and genetic variation in plasticity in a marine modular organism generates additional, testable hypotheses on the ecological consequences of variation in growth form that may further explain the evolution of plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号