首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The evolutionary response of plant populations to selection for increased defense may be constrained by costs of defense. The purpose of this study was to investigate such constraints on the evolution of defense due to a cost of defense manifested as a trade-off between defense and tolerance. Variation in the response to artificial damage (tolerance) among lines of Brassica rapa that had been artificially selected for foliar glucosinolate content (defense) was examined. Leaf area was removed from replicates of three selection lines (high glucosinolates, control, and low glucosinolates) at three damage levels (0%, 20%, and 60% damage). An external cost of defense would result in a statistically significant selection line by damage treatment interaction, with those selected for high defense expressing less tolerance than those selected for low defense. Damage treatment had a significant overall effect on estimated total fitness, with fitness declining with increasing damage level. Further, selection line also had a significant overall effect on estimated total fitness, with low-defense selection lines having higher fitness compared to both control and high-defense selection lines. More importantly, a cost of defense in terms of tolerance was demonstrated by a significant selection line-by-damage treatment interaction. This interaction was in the direction to demonstrate a genetic trade-off between defense and tolerance, with low-defense selection lines decreasing estimated total fitness in response to damage less than both control and high-defense selection lines. Variation in tolerance among selection lines was due to the greater ability of low-defense lines to maintain fruit and seed production despite the presence of damage. In terms of tolerance, this cost of glucosinolate production in B. rapa could constrain the evolution of increased defense and, in so doing, maintain individuals within the population that are poorly defended yet tolerant.  相似文献   

2.
Populations of Brassica rapa were grown for three generations in each of two environments: intraspecific competition, with four surrounding Brassica rapa neighbors per pot, and interspecific competition, with two Raphanus sativus neighbors per pot. In each environment, the largest (by flower number) 10% of the plants were outcrossed and provided seeds for the next generation. As a control, a randomly chosen 10% of the plants in each environment were outcrossed to produce seed for the next generation. Each of these four treatments, the selected lines in intra- and interspecific competition and the corresponding control lines, was maintained for three generations. After a single generation of growth in a common, no-competition environment, replicate plants from each treatment were grown with no competition and with intra- and interspecific competition for determination of growth responses. After two generations of selection, flower number in the intraspecific-selection line had increased by more than 50% over that in the control line and by more than 19% over that under interspecific selection. After a common-environment generation, plants from the intraspecific-selection line were shown to have significantly faster growth in height and flower number as seedlings. Plants in the interspecific-selection line showed similar but nonsignificant trends. No differences in seed mass, emergence time, or photosynthetic rate were found between control and selected lines in either intra- or interspecific competition. Some differences between control and selected lines were noted in biomass allocation related to differences in phenology. The results demonstrate that performance in competitive environments can evolve through changes in plant development but that rates of evolution will differ in intra- and interspecific competition.  相似文献   

3.
The way populations respond to selection can be altered when populations are acclimated prior to selection. To examine this possibility, the responses of replicate lines of Drosophila melanogaster and D. simulans to selection for increased resistance to cold were compared. Flies were selected without hardening or after they had been hardened by holding them at 4°C for one hour. The selection response in both species was much greater when flies were not cold-hardened. Cold resistance in both sets of selected lines reached a plateau after a few generations. Surprisingly, continued selection for increased resistance resulted in decreasing levels of resistance. This decrease was no longer evident after selection had been relaxed for a generation, suggesting cross-generation effects. The magnitude of the cross-generation effects increased with additional generations of selection. Cross-generation effects were also detected for fitness components. Relaxing selection for a generation increased fecundity, weight, viability, and development time. Comparisons of relaxed lines and control lines indicated that only fecundity was influenced by selection. Both sets of selected lines had a lower fecundity than control lines. Crosses between control and selected lines and among replicate selected lines indicated that this decrease in fecundity was not associated with inbreeding. The direct and correlated responses to selection for cold resistance can therefore be influenced by acclimation and cross-generation effects.  相似文献   

4.
Although plants are generally attacked by a community of several species of herbivores, relatively little is known about the strength of natural selection for resistance in multiple‐herbivore communities—particularly how the strength of selection differs among herbivores that feed on different plant organs or how strongly genetic correlations in resistance affect the evolutionary responses of the plant. Here, we report on a field study measuring natural selection for resistance in a diverse community of herbivores of Solanum carolinense. Using linear phenotypic‐selection analyses, we found that directional selection acted to increase resistance to seven species. Selection was strongest to increase resistance to fruit feeders, followed by flower feeders, then leaf feeders. Selection favored a decrease in resistance to a stem borer. Bootstrapping analyses showed that the plant population contained significant genetic variation for each of 14 measured resistance traits and significant covariances in one‐third of the pairwise combinations of resistance traits. These genetic covariances reduced the plant's overall predicted evolutionary response for resistance against the herbivore community by about 60%. Diffuse (co)evolution was widespread in this community, and the diffuse interactions had an overwhelmingly constraining (rather than facilitative) effect on the plant's evolution of resistance.  相似文献   

5.
We report our studies of the effect of inbreeding on the response to selection for increased pupal weight in the flour beetle, Tribolium castaneum. We also report the effects of inbreeding and selection for pupal weight on the heritable variation in fitness and fitness components. We created replicate and independent inbred lines with F-values of 0.00, 0.375, and 0.672, by 0, 2, and 5 generations, respectively, of brother-sister mating of adult beetles from an outbred stock population. Subsequently, we imposed artificial within-family selection for increased pupal weight in each of 15 inbred lines for eight generations; each line had its own paired, unselected control. We compared the response to selection across the three levels of inbreeding with theoretical expectation, and investigated the effects of inbreeding and selection on fitness variation among families within all 30 selected and control lines. Among-line variation in pupal weight increased with increased inbreeding prior to selection but diminished with directional selection. Inbreeding reduced the realized heritability of pupal weight concordant with quantitative predictions of additive theory. Mean fitness, measured in several ways, declined with inbreeding and declined further with selection. In contrast, the genetic variation for fitness in the inbred and selected lines lines equalled or exceeded that of the outbred controls. Our results suggest that inbreeding and selection may affect traits in different ways depending on the relative amounts of additive and nonadditive genetic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号