首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Inbreeding adversely affects life history traits as well as various other fitness‐related traits, but its effect on cognitive traits remains largely unexplored, despite their importance to fitness of many animals under natural conditions. We studied the effects of inbreeding on aversive learning (avoidance of an odour previously associated with mechanical shock) in multiple inbred lines of Drosophila melanogaster derived from a natural population through up to 12 generations of sib mating. Whereas the strongly inbred lines after 12 generations of inbreeding (0.75 < F < 0.93) consistently showed reduced egg‐to‐adult viability (on average by 28%), the reduction in learning performance varied among assays (average = 18% reduction), being most pronounced for intermediate conditioning intensity. Furthermore, moderately inbred lines (F = 0.38) showed no detectable decline in learning performance, but still had reduced egg‐to‐adult viability, which indicates that overall inbreeding effects on learning are mild. Learning performance varied among strongly inbred lines, indicating the presence of segregating variance for learning in the base population. However, the learning performance of some inbred lines matched that of outbred flies, supporting the dominance rather than the overdominance model of inbreeding depression for this trait. Across the inbred lines, learning performance was positively correlated with the egg‐to‐adult viability. This positive genetic correlation contradicts a trade‐off observed in previous selection experiments and suggests that much of the genetic variation for learning is owing to pleiotropic effects of genes affecting functions related to survival. These results suggest that genetic variation that affects learning specifically (rather than pleiotropically through general physiological condition) is either low or mostly due to alleles with additive (semi‐dominant) effects.  相似文献   

2.
Traditional models of genetic drift predict a linear decrease in additive genetic variance for populations passing through a bottleneck. This perceived lack of heritable variance limits the scope of founder-effect models of speciation. We produced 55 replicate bottleneck populations maintained at two male-female pairs through four generations of inbreeding (average F = 0.39). These populations were formed from an F2 intercross of the LG/J and SM/J inbred mouse strains. Two contemporaneous control strains maintained with more than 60 mating pairs per generation were formed from this same source population. The average level of within-strain additive genetic variance for adult body weight was compared between the control and experimental lines. Additive genetic variance for adult body weight within experimental bottleneck strains was significantly higher than expected under an additive genetic model This enhancement of additive genetic variance under inbreeding is likely to be due to epistasis, which retards or reverses the loss of additive genetic variance under inbreeding for adult body weight in this population. Therefore, founder-effect speciation processes may not be constrained by a loss of heritable variance due to population bottlenecks.  相似文献   

3.
Severe inbreeding depression is routinely observed in outcrossing species. If inbreeding load is due largely to deleterious alleles of large effect, such as recessive lethals or steriles, then most of it is expected to be purged during brief periods of inbreeding. In contrast, if inbreeding depression is due to the cumulative effects of many deleterious alleles of small effect, then it will be maintained in the face of periodic inbreeding. Whether or not inbreeding depression can be purged with inbreeding in the short term has important implications for the evolution of mating systems and the probability that a small population will go extinct. In this paper I evaluate the extent to which the tremendous inbreeding load in a primarily outcrossing population of the wildflower, Mimulus guttatus, is due to alleles of large effect. To do this, I first constructed a large outbred “ancestral” population by randomly mating plants collected as seeds from a natural population. From this population I formed 1200 lines that were maintained by self-fertilization and single seedling descent: after five generations of selling, 335 lines had survived the inbreeding process. Selection during the line formation is expected to have largely purged alleles of large effect from the collection of highly inbred lines. Because alleles with minor effects on fitness should have been effectively neutral, the inbreeding depression due to this class of genes should have been unchanged. The inbred lines were intercrossed to form a large, outcrossed “purged” population. Finally, I estimated the fitness of outbred and selfed progeny from the ancestral and purged populations to determine the contribution of major deleterious alleles on inbreeding depression. I found that although the average fitness of the outcrossed progeny nearly doubled following purging, the limited decline in inbreeding depression and limited increase in inbred fitness indicates that alleles of large effect are not the principle cause of inbreeding depression in this population. In aggregate, the data suggest that lethals and steriles make a minority contribution to inbreeding depression and that the increased outbred fitness is due primarily to adaptation to greenhouse conditions.  相似文献   

4.
Theoretical analyses of inbreeding suggest that following an increased degree of inbreeding there may be a temporary recovery of fitness, because of selection either within or among inbred lineages. This is possible because selection can act more efficiently to remove deleterious alleles given the greater homozygosity of such populations. If common, recovery of fitness following inbreeding may be important for understanding some evolutionary processes and for management strategies of remnant populations, yet empirical evidence for such recovery in animals is scant. Here we describe the effects of single-pair population bottlenecks on a measure of fitness in Drosophila melanogaster. We compared a large number of families from each of 52 inbred lines with many families from the outbred population from which the inbred lineages were derived. Measures were made at the third and the 20th generations after the bottleneck. In both generations there was, on average, substantial inbreeding depression together with a highly significant variance among the inbred lines in the amount of fitness reduction. The average fitness of inbred lines was correlated across generations. Our data provide evidence for the possibility of recovery of fitness at two levels, because (i) the average fitness reduction in the F20 generation was significantly less than in the F3 generation, which implies that selection within lines has occurred, and (ii) the large variance in inbreeding depression among inbred lines implies that selection among them is possible. The high variance in inbreeding depression among replicate lines implies that modes of evolution which require a low level of inbreeding depression can function at least in a fraction of inbred populations within a species and that results from studies with low levels of replication should be treated with caution.  相似文献   

5.
Fecundity is usually considered as a trait closely connected to fitness and is expected to exhibit substantial nonadditive genetic variation and inbreeding depression. However, two independent experiments, using populations of different geographical origin, indicate that early fecundity in Drosophila melanogaster behaves as a typical additive trait of low heritability. The first experiment involved artificial selection in inbred and non-inbred lines, all of them started from a common base population previously maintained in the laboratory for about 35 generations. The realized heritability estimate was 0.151 +/- 0.075 and the inbreeding depression was very small and nonsignificant (0.09 +/- 0.09% of the non-inbred mean per 1% increase in inbreeding coefficient). With inbreeding, the observed decrease in the within-line additive genetic variance and the corresponding increase of the between-line variance were very close to their expected values for pure additive gene action. This result is at odds with previous studies showing inbreeding depression and, therefore, directional dominance for the same trait and species. All experiments, however, used laboratory populations, and it is possible that the original genetic architecture of the trait in nature was subsequently altered by the joint action of random drift and adaptation to captivity. Thus, we carried out a second experiment, involving inbreeding without artificial selection in a population recently collected from the wild. In this case we obtained, again, a maximum-likelihood heritability estimate of 0.210 +/- 0.027 and very little nonsignificant inbreeding depression (0.06 +/- 0.12%). The results suggest that, for fitness-component traits, low levels of additive genetic variance are not necessarily associated with large inbreeding depression or high levels of nonadditive genetic variance.  相似文献   

6.
Mating between relatives generally results in reduced offspring viability or quality, suggesting that selection should favor behaviors that minimize inbreeding. However, in natural populations where searching is costly or variation among potential mates is limited, inbreeding is often common and may have important consequences for both offspring fitness and phenotypic variation. In particular, offspring morphological variation often increases with greater parental relatedness, yet the source of this variation, and thus its evolutionary significance, are poorly understood. One proposed explanation is that inbreeding influences a developing organism’s sensitivity to its environment and therefore the increased phenotypic variation observed in inbred progeny is due to greater inputs from environmental and maternal sources. Alternatively, changes in phenotypic variation with inbreeding may be due to additive genetic effects alone when heterozygotes are phenotypically intermediate to homozygotes, or effects of inbreeding depression on condition, which can itself affect sensitivity to environmental variation. Here we examine the effect of parental relatedness (as inferred from neutral genetic markers) on heritable and nonheritable components of developmental variation in a wild bird population in which mate choice is often constrained, thereby leading to inbreeding. We found greater morphological variation and distinct contributions of variance components in offspring from highly related parents: inbred offspring tended to have greater environmental and lesser additive genetic variance compared to outbred progeny. The magnitude of this difference was greatest in late-maturing traits, implicating the accumulation of environmental variation as the underlying mechanism. Further, parental relatedness influenced the effect of an important maternal trait (egg size) on offspring development. These results support the hypothesis that inbreeding leads to greater sensitivity of development to environmental variation and maternal effects, suggesting that the evolutionary response to selection will depend strongly on mate choice patterns and population structure.  相似文献   

7.
In prior work we detected no significant inbreeding depression for pollen and ovule production in the highly selfing Mimulus micranthus, but both characters showed high inbreeding depression in the mixed-mating M. guttatus. The goal of this study was to determine if the genetic load for these traits in M. guttatus could be purged in a program of enforced selfing. These characters should have been under much stronger selection in our artificial breeding program than previously reported characters such as biomass and total flower production because, for example, plants unable to produce viable pollen could not contribute to future generations. Purging of genetic load was investigated at the level of both the population and the individual maternal line within two populations of M. guttatus. Mean ovule number, pollen number, and pollen viability declined significantly as plants became more inbred. The mean performance of outcross progeny generated from crosses between pairs of maternal inbred lines always exceeded that of self progeny and was fairly constant for each trait through all five generations. The consistent performance of outcross progeny and the universally negative relationships between performance and degree of inbreeding are interpreted as evidence for the weakness of selection relative to the quick fixation of deleterious alleles due to drift during the inbreeding process. The selective removal (purging) of deleterious alleles from our population would have been revealed by an increase in performance of outcross progeny or an attenuation of the effects of increasing homozygosity. The relationships between the mean of each of these traits and the expected inbreeding coefficient were linear, but one population displayed a significant negative curvilinear relationship between the log of male fertility (a function of pollen number and viability) and the inbreeding coefficient. The generally linear form of the responses to inbreeding were taken as evidence consistent with an additive model of gene action, but the negative curvilinear relationship between male fertility and the inbreeding coefficient suggested reinforcing epistasis. Within both populations there was significant genetic variation among maternal lineages for the response to inbreeding in all traits. Although all inbred lineages declined at least somewhat in performance, several maternal lines maintained levels of performance just below outcross means even after four or five generations of selfing. We suggest that selection among maternal lines will have a greater effect than selecting within lines in lowering the genetic load of populations.  相似文献   

8.
Perspective: purging the genetic load: a review of the experimental evidence   总被引:11,自引:0,他引:11  
Inbreeding depression, the reduction in fitness that accompanies inbreeding, is one of the most important topics of research in evolutionary and conservation genetics. In the recent literature, much attention has been paid to the possibility of purging the genetic load. If inbreeding depression is due to deleterious alleles, whose effect on fitness are negative when in a homozygous state, then successive generations of inbreeding may result in a rebound in fitness due to the selective decrease in frequency of deleterious alleles. Here we examine the experimental evidence for purging of the genetic load by collating empirical tests of rebounds in fitness-related traits with inbreeding in animals and plants. We gathered data from 28 studies including five mammal, three insect, one mollusc, and 13 plant species. We tested for purging by examining three measures of fitness-component variation with serial generations of inbreeding: (1) changes in inbreeding depression, (2) changes in fitness components of inbred lines relative to the original outbred line, and (3) purged population (outcrossed inbred lines) trait means as a function of ancestral outbred trait means. Frequent and substantial purging was found using all three measures, but was particularly pronounced when tracking changes in inbreeding depression. Despite this, we found little correspondence between the three measures of purging within individual studies, indicating that the manner in which a researcher chooses to estimate purging will affect interpretation of the results obtained. The discrepancy suggests an alternative hypothesis: rebounds in fitness with inbreeding may have resulted from adaptation to laboratory conditions and not to purging when using outcrossed inbred lines. However, the pronounced reduction in inbreeding depression for a number of studies provides evidence for purging, as the measure is likely less affected by selection for laboratory conditions. Unlike other taxon-specific reviews on this topic, our results provide support for the purging hypothesis, but firm predictions about the situations in which purging is likely or the magnitude of fitness rebound possible when populations are inbred remain difficult. Further research is required to resolve the discrepancy between the results obtained using different experimental approaches.  相似文献   

9.
Inbreeding is expected to decrease the heritability within populations. However, results from empirical studies are inconclusive. In this study, we investigated the effects of three breeding treatments (fast and slow rate of inbreeding - inbred to the same absolute level - and a control) on heritability, phenotypic, genetic and environmental variances of sternopleural bristle number in Drosophila melanogaster. Heritability, and phenotypic, genetic and environmental variances were estimated in 10 replicate lines within each of the three treatments. Standard least squares regression models and Bayesian methods were used to analyse the data. Heritability and additive genetic variance within lines were higher in the control compared with both inbreeding treatments. Heritabilities and additive genetic variances within lines were higher in slow compared with fast inbred lines, indicating that slow inbred lines retain more evolutionary potential despite the same expected absolute level of inbreeding. The between line variance was larger with inbreeding and more than twice as large in the fast than in the slow inbred lines. The different pattern of redistribution of genetic variance within and between lines in the two inbred treatments cannot be explained invoking the standard model based on selective neutrality and additive gene action. Environmental variances were higher with inbreeding, and more so with fast inbreeding, indicating that inbreeding and the rate of inbreeding affect environmental sensitivity. The phenotypic variance decreased with inbreeding, but was not affected by the rate of inbreeding. No inbreeding depression for mean sternopleural bristle number was observed in this study. Considerable variance between lines in additive genetic variance within lines was observed, illustrating between line variation in evolutionary potential.  相似文献   

10.
Inbreeding is known to reduce heterozygosity of neutral genetic markers, but its impact on quantitative genetic variation is debated. Theory predicts a linear decline in additive genetic variance (V(A)) with increasing inbreeding coefficient (F) when loci underlying the trait act additively, but a nonlinear hump-shaped relationship when dominance and epistasis are important. Predictions for heritability (h2) are similar, although the exact shape depends on the value of h2 in the absence of inbreeding. We located 22 published studies in which the level of genetic variation in experimentally inbred populations (measured by V(A) or h2) was compared with that in outbred control populations. For life-history traits, the data strongly supported a nonlinear change in genetic variation with increasing F. V(A) and h2 were, respectively, 244% and 50% higher at F = 0.4 than in outbred populations, and dominance plus epistatic variance together exceeded additive variance by a factor of four. For nonfitness traits the decline was linear and estimates of nonadditive variance were small. These results confirm that population bottlenecks frequently increase V(A) in some traits, and imply that life-history traits are underlain by substantial dominance or epistasis. However, the importance of drift-induced genetic variation in conservation or evolutionary biology is questionable, in part because inbreeding depression usually accompanies inbreeding.  相似文献   

11.
Inbreeding depression varies among species and among populations within a species. Few studies, however, have considered the extent to which inbreeding depression varies within a single population. We report on two experiments to provide evidence that inbreeding depression is genetically variable, such that within a single population some lineages suffer severe inbreeding depression, others suffer only mild inbreeding depression, and some lineages actually increase in phenotypic value at higher levels of inbreeding. We examine the effects of population structure on inbreeding depression for two traits in the first experiment (adult dry weight and female relative fitness), and for seven traits in the second experiment (female and male adult dry weight, female and male relative fitness, female and male developmental time, and egg-to-adult viability). In the first experiment, we collected data from 4 families within each of 38 lineages derived from a single ancestral stock population and maintained for four generations of full-sib mating. Both traits demonstrate significant inbreeding depression and provide evidence that even within a single lineage there is significant genetic variability in inbreeding depression. In the second experiment, we collected data from 5 replicates for each of 15 lineages derived from the same ancestral population used in the first experiment; these lineages were maintained for four generations of full-sib mating. We also collected data on outbred control beetles in each generation and incorporated these data into the analyses to account for environmental effects in an unbiased manner. All traits except female and male developmental time show significant inbreeding depression. All traits showing inbreeding depression are genetically variable in inbreeding depression, as is evident from a significant linear lineage-×-f component. For both experiments, the effect of population structure on inbreeding depression is further evident from the increasing amount of variation that can be explained by the models used to measure inbreeding depression when additional levels of population structure are included. Genetic variation in inbreeding depression has important implications for conservation biology and may be an important factor in mating-system evolution.  相似文献   

12.
Stochastic simulations were run to compare the effects of nine breeding schemes, using full-sib mating, on the rate of purging of inbreeding depression due to mutations with equal deleterious effect on viability at unlinked loci in an outbred population. A number of full-sib mating lines were initiated from a large outbred population and maintained for 20 generations (if not extinct). Selection against deleterious mutations was allowed to occur within lines only, between lines or equal within and between lines, and surviving lines were either not crossed or crossed following every one or three generations of full-sib mating. The effectiveness of purging was indicated by the decreased number of lethal equivalents and the increased fitness of the purged population formed from crossing surviving lines after 20 generations under a given breeding scheme. The results show that the effectiveness of purging, the survival of the inbred lines and the inbreeding level attained are generally highest with between-line selection and lowest with within-line selection. Compared with no crossing, line crossing could lower the risk of extinction and the inbreeding coefficient of the purged population substantially with little loss of the effectiveness of purging. Compromising between the effectiveness of purging, and the risk of extinction and inbreeding coefficient, the breeding scheme with equal within- and between-line selection and crossing alternatively with full-sib mating is generally the most desirable scheme for purging deleterious mutations. Unless most deleterious mutations have relatively large effects on fitness in species with reproductive ability high enough to cope with the depressed fitness and thus increased risk of extinction with inbreeding, it is not justified to apply a breeding programme aimed at purging inbreeding depression by inbreeding and selection to a population of conservation concern.  相似文献   

13.
The handicap principle predicts that sexual traits are more susceptible to inbreeding depression than nonsexual traits. However, this hypothesis has received little testing and results are inconsistent. We used 11 generations of full‐sibling mating to test the effect of inbreeding on sexual and nonsexual traits in the stalk‐eyed fly Diasemopsis meigenii. Consistent with the theoretical predictions, the male sexual trait (eyespan) decreased more than nonsexual traits (female eyespan and male wing length), even after controlling for body size variation. In addition, male eyespan was a reliable predictor of line extinction, unlike other nonsexual traits. After 11 generations, inbred lines were crossed to generate inbred and outbred families. All morphological traits were larger in outbred individuals than inbred individuals. This heterosis was greater in male eyespan than in male wing length, but not female eyespan. The elevated response in male eyespan to genetic stress mirrored the result found using environmental stress during larval development and suggests that common mechanisms underlie the patterns observed. Overall, these results support the hypothesis that male sexual traits suffer more from inbreeding depression than nonsexual traits and are in line with predictions based on the handicap principle.  相似文献   

14.
The two principal theories of the causal mechanism for inbreeding depression are the partial dominance hypothesis and the overdominance hypothesis. According to the first hypothesis, inbreeding increases the frequency of homozygous combinations of deleterious recessive alleles thereby decreasing fitness, whereas the overdominance hypothesis posits that inbreeding increases homozygosity and thus reduces the frequency of the superior heterozygotes. These two hypotheses make different predictions on the effect of crossing inbred lines: the overdominance hypothesis predicts that trait means will be restored to the outbred means, whereas the partial dominance hypothesis predicts that trait means will exceed those of the outbred population. I tested these predictions using seven inbred lines of the sand cricket, Gryllus firmus. Fourteen generations of brother-sister mating resulted in an inbreeding depression of 20-34% in four traits: nymphal weights at ages 14 days, 21 days, 28 days, and early fecundity. An incomplete diallel cross of these lines showed genetic variation among lines and an increase in all trait means above the outbred means, with three being significantly higher. These results provide support for the partial dominance hypothesis and are inconsistent with the overdominance hypothesis.  相似文献   

15.
In some species, populations with few founding individuals can be resilient to extreme inbreeding. Inbreeding seems to be the norm in the common bed bug, Cimex lectularius, a flightless insect that, nevertheless, can reach large deme sizes and persist successfully. However, bed bugs can also be dispersed passively by humans, exposing inbred populations to gene flow from genetically distant populations. The introduction of genetic variation through this outbreeding could lead to increased fitness (heterosis) or be costly by causing a loss of local adaptation or exposing genetic incompatibility between populations (outbreeding depression). Here, we addressed how inbreeding within demes and outbreeding between distant populations impact fitness over two generations in this re‐emerging public health pest. We compared fitness traits of families that were inbred (mimicking reproduction following a founder event) or outbred (mimicking reproduction following a gene flow event). We found that outbreeding led to increased starvation resistance compared to inbred families, but this benefit was lost after two generations of outbreeding. No other fitness benefits of outbreeding were observed in either generation, including no differences in fecundity between the two treatments. Resilience to inbreeding is likely to result from the history of small founder events in the bed bug. Outbreeding benefits may only be detectable under stress and when heterozygosity is maximized without disruption of coadaptation. We discuss the consequences of these results both in terms of inbreeding and outbreeding in populations with genetic and spatial structuring, as well as for the recent resurgence of bed bug populations.  相似文献   

16.
Under the inifinitesimal model of gene effects, selection reduces the additive genetic variance by inducing negative linkage disequilibrium among selected genes. If the selected genes are linked, the decay of linkage disequilibrium is delayed, and the reduction of additive genetic variance is enhanced. Inbreeding in an infinite population also alters the additive genetic variance through the generation of positive association among genes within a locus. In the present study, the joint effect of selection, linkage and partial inbreeding (partial selfing or partial full-sib mating) on the additive genetic variance was modeled. The recurrence relations of the additive genetic variance between successive generations and the prediction equation of the asymptotic additive genetic variance were derived. Numerical computation showed that although partially inbred populations initially maintain larger genetic variances, the accumulated effect of selection overrides the effect of inbreeding. Stochastic simulation was carried out to check the precision of prediction, showing that the obtained equations give a satisfactory prediction during initial generations. However, the predicted values always overestimate the simulated values, especially in later generations. Based on these results, possible extensions and perspectives of the assumed model were discussed.  相似文献   

17.
The effects of inbreeding, with (IS) and without selection (IO) for reproductive fitness, on inbreeding depression and heterozygosity were evaluated in 20 lines of each treatment inbred over seven generations using full-sib mating. The survival of lines was significantly greater in IS (20/20) than in IO (15/20). The competitive index measure of reproductive fitness was significantly lower in the inbred lines than in the outbred base population, but not significantly different in surviving IS and IO lines. There was a trend for higher fitness in the IS treatment as relative fitnesses were 19% higher in IS than IO for surviving lines and 59% higher for all lines. Heterozygosities were lower in the inbred lines than in the base population, and significantly higher in the IS than the IO lines. Consequently, the reduction of inbreeding depression in IS has been achieved, at least in part, by slowing the rate of fixation.  相似文献   

18.
Mallet MA  Chippindale AK 《Heredity》2011,106(6):994-1002
Stronger selection on males has the potential to lower the deleterious mutation load of females, reducing the cost of sex. However, few studies have directly quantified the strength of selection for both sexes. As the magnitude of inbreeding depression (ID) is related to the strength of selection, we measured the cost of inbreeding for both males and females in a laboratory population of Drosophila melanogaster. Using a novel technique for inbreeding, we found significant ID for both juvenile viability and adult fitness in both sexes. The genetic variation responsible for this depression in fitness appeared to be recessive for adult fitness (h=0.11) and partially additive for juvenile viability (h=0.29). ID was identical across the sexes in terms of juvenile viability but was significantly more deleterious for males than females as adults, even though female X-chromosome homogamety should predispose them to a higher inbreeding load. We estimated the strength of selection on adult males to be 1.24 greater than on adult females, and this appears to be a consequence of selection arising from competition for mates. Combined with the generally positive intersexual genetic correlation for inbred lines, our results suggest that the mutation load of sexual females could be meaningfully reduced by stronger selection acting on males.  相似文献   

19.
Artificial selection is a powerful approach to unravel constraints on genetic adaptation. Although it has been frequently used to reveal genetic trade-offs among different fitness-related traits, only a few studies have targeted genetic correlations across developmental stages. Here, we test whether selection on increased cold tolerance in the adult stage increases cold resistance throughout ontogeny in the butterfly Bicyclus anynana. We used lines selected for decreased chill-coma recovery time and corresponding controls, which had originally been set up from three levels of inbreeding (outbred control, one or two full-sib matings). Four generations after having terminated selection, a response to selection was found in 1-day-old butterflies (the age at which selection took place). Older adults showed a very similar although weaker response. Nevertheless, cold resistance did not increase in either egg, larval or pupal stage in the selection lines but was even lower compared to control lines for eggs and young larvae. These findings suggest a cost of increased adult cold tolerance, presumably reducing resource availability for offspring provisioning and thereby stress tolerance during development, which may substantially affect evolutionary trajectories.  相似文献   

20.
Whitlock MC  Fowler K 《Genetics》1999,152(1):345-353
We performed a large-scale experiment on the effects of inbreeding and population bottlenecks on the additive genetic and environmental variance for morphological traits in Drosophila melanogaster. Fifty-two inbred lines were created from the progeny of single pairs, and 90 parent-offspring families on average were measured in each of these lines for six wing size and shape traits, as well as 1945 families from the outbred population from which the lines were derived. The amount of additive genetic variance has been observed to increase after such population bottlenecks in other studies; in contrast here the mean change in additive genetic variance was in very good agreement with classical additive theory, decreasing proportionally to the inbreeding coefficient of the lines. The residual, probably environmental, variance increased on average after inbreeding. Both components of variance were highly variable among inbred lines, with increases and decreases recorded for both. The variance among lines in the residual variance provides some evidence for a genetic basis of developmental stability. Changes in the phenotypic variance of these traits are largely due to changes in the genetic variance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号