首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Survival of zebrafish Danio rerio embryos subjected to yolk redistribution during early development (cleavage to segmentation) was found to be dependent on the stage of manipulation and the quantity of redistributed yolk. The findings point to the presence and importance of yolk intrinsic organization during early development.  相似文献   

4.
5.
Ribonuclease like 5 (Rnasel5) is a novel member of the zebrafish ribonuclease A family and its expression is increased during early embryogenesis. However, the in vivo biological function of Rnasel5 remains to be elucidated. Here, we report that knockdown of Rnasel5 by morhpolinos caused shrunken yolk extension as well as increased DNA damage at yolk syncytial layer and external tissue layers via the activation of p53 pathway. In addition, the morphological defects caused by Rnasel5 knockdown can be partially rescued by mRNA injection. Our findings provide the first functional characterization of Rnasel5 in zebrafish development and reveal its critical role in yolk extension by modulation of the p53 pathway.  相似文献   

6.
Antioxidant cellular mechanisms are essential for cell redox homeostasis during animal development and in adult life. Previous in situ hybridization analyses of antioxidant enzymes in zebrafish have indicated that they are ubiquitously expressed. However, spatial information about the protein distribution of these enzymes is not available. Zebrafish embryos are particularly suitable for this type of analysis due to their small size, transparency and fast development. The main objective of the present work was to analyze the spatial and temporal gene expression pattern of the two reported zebrafish glutathione peroxidase 4 (GPx4) genes during the first day of zebrafish embryo development. We found that the gpx4b gene shows maternal and zygotic gene expression in the embryo proper compared to gpx4a that showed zygotic gene expression in the periderm covering the yolk cell only. Following, we performed a GPx4 protein immunolocalization analysis during the first 24-h of development. The detection of this protein suggests that the antibody recognizes GPx4b in the embryo proper during the first 24 h of development and GPx4a at the periderm covering the yolk cell after 14-somite stage. Throughout early cleavages, GPx4 was located in blastomeres and was less abundant at the cleavage furrow. Later, from the 128-cell to 512-cell stages, GPx4 remained in the cytoplasm but gradually increased in the nuclei, beginning in marginal blastomeres and extending the nuclear localization to all blastomeres. During epiboly progression, GPx4b was found in blastoderm cells and was excluded from the yolk cell. After 24 h of development, GPx4b was present in the myotomes particularly in the slow muscle fibers, and was excluded from the myosepta. These results highlight the dynamics of the GPx4 localization pattern and suggest its potential participation in fundamental developmental processes.  相似文献   

7.
8.
One of the earliest morphogenetic processes in the development of many animals is epiboly. In the zebrafish, epiboly ensues when the animally localized blastoderm cells spread, thin over, and enclose the vegetally localized yolk. Only a few factors are known to function in this fundamental process. We identified a maternal-effect mutant, betty boop (bbp), which displays a novel defect in epiboly, wherein the blastoderm margin constricts dramatically, precisely when half of the yolk cell is covered by the blastoderm, causing the yolk cell to burst. Whole-blastoderm transplants and mRNA microinjection rescue demonstrate that Bbp functions in the yolk cell to regulate epiboly. We positionally cloned the maternal-effect bbp mutant gene and identified it as the zebrafish homolog of the serine-threonine kinase Mitogen Activated Protein Kinase Activated Protein Kinase 2, or MAPKAPK2, which was not previously known to function in embryonic development. We show that the regulation of MAPKAPK2 is conserved and p38 MAP kinase functions upstream of MAPKAPK2 in regulating epiboly in the zebrafish embryo. Dramatic alterations in calcium dynamics, together with the massive marginal constrictive force observed in bbp mutants, indicate precocious constriction of an F-actin network within the yolk cell, which first forms at 50% epiboly and regulates epiboly progression. We show that MAPKAPK2 activity and its regulator p38 MAPK function in the yolk cell to regulate the process of epiboly, identifying a new pathway regulating this cell movement process. We postulate that a p38 MAPKAPK2 kinase cascade modulates the activity of F-actin at the yolk cell margin circumference allowing the gradual closure of the blastopore as epiboly progresses.  相似文献   

9.
Early developmental staging from the zygote stage to the gastrula is a basic step for studying embryonic development and biotechnology. We described the early embryonic development of the loach, Misgurnus anguillicaudatus, based on morphological features and gene expression. Synchronous cleavage was repeated for 9 cycles about every 27 min at 20 degrees C after the first cleavage. After the 10th synchronous cleavage, asynchronous cleavage was observed 5.5 h post-fertilization (hpf), indicating the mid-blastula transition. The yolk syncytial layer (YSL) was formed at this time. Expressions of goosecoid and no tail were detected by whole-mount in situ hybridization from 6 hpf. This time corresponded to the late-blastula period. Thereafter, epiboly started and a blastoderm covered over the yolk cell at 8 hpf. At 10 hpf, the germ ring and the embryonic shield were formed, indicating the stage of early gastrula. Afterward, the epiboly advanced at the rate of 10% of the yolk cell each hour. The blastoderm covered the yolk cell completely at 15 hpf. The embryonic development of the loach resembled that of the zebrafish in terms of morphological change and gene expression. Therefore, it is possible that knowledge of the developmental stages of the zebrafish might be applicable to the loach.  相似文献   

10.
11.
12.
13.
14.
Members of the Rh glycoprotein family have been shown to be involved in ammonia transport in a variety of species. Here we show that zebrafish Rhcg1, a member of the Rh glycoprotein family, is highly expressed in the yolk sac, gill, and renal tubules. Molecular cloning and characterization indicate that zebrafish Rhcg1 shares 82% sequence identity with the pufferfish ortholog fRhcg1. RT-PCR, combined with in situ hybridization, revealed that Rhcg1 is first expressed in vacuolar-type H(+)-ATPase/mitochondrion-rich cells (vH-MRC) on the yolk sac of larvae at 3 days postfertilization (dpf) and later in vH-MRC-like cells in the gill at 4-5 dpf. Ammonia excretion from zebrafish larvae increased in parallel with the expression of Rhcg1. At larval stages, Rhcg1 mRNA was detected only on the yolk sac and gill; however, the kidney, as well as the gill, becomes a major site of Rhcg1 expression in adults. Using a zebrafish Tol2 transgenic line whose vH-MRC are labeled with green fluorescent protein (GFP) and an antibody against zebrafish Rhcg1, we demonstrate that Rhcg1 is located in the apical regions of 1) vH-MRC on the yolk sac and vH-MRC-like cells (cell population with the expression of Rhcg1 and GFP) in the gill and 2) cells in the renal distal tubule and intercalated cell-like cells in the collecting duct of the kidney. Remarkably, expression of Rhcg1 mRNA at the larval stage was changed by environmental ionic strength. These results suggest that roles of zebrafish Rhcg1 are not solely ammonia secretion to eliminate nitrogen from the gill.  相似文献   

15.
Dye coupling and cell lineages of blastomeres that participate in the formation of the yolk syncytial layer (YSL) in the zebrafish Brachydanio rerio have been examined. The YSL is a multinucleate layer of nonyolky cytoplasm underlying the cellular blastoderm at one pole of the giant yolk cell. It forms at the time of the 10th (sometimes 9th) cleavage by a collapse of a set of blastomeres, termed marginal blastomeres, into the yolk cell. Marginal blastomeres possess cytoplasmic bridges to the yolk cell before the YSL forms, and injections of fluorescein-dextran into the cells revealed that bridges between the yolk cell and blastoderm do not persist after this time. Injections of Lucifer yellow revealed that shortly after the YSL forms the yolk cell and blastoderm are dye coupled, presumably by gap junctions, and that this coupling disappears gradually during early gastrulation. Lineage analyses revealed that not all of the progeny of early marginal blastomeres participate in YSL formation. Although some descendants of marginal blastomeres remained on the margin during successive cleavages, neither "compartment" nor "strict lineage" models are sufficient to explain the origin of the YSL. It is proposed that the position of a cell on the blastoderm margin, and not the cell's lineage, determines YSL cell fate.  相似文献   

16.
17.
The zebrafish spinal cord is an effective investigative model for nervous system research for several reasons. First, genetic, transgenic and gene knockdown approaches can be utilized to examine the molecular mechanisms underlying nervous system development. Second, large clutches of developmentally synchronized embryos provide large experimental sample sizes. Third, the optical clarity of the zebrafish embryo permits researchers to visualize progenitor, glial, and neuronal populations. Although zebrafish embryos are transparent, specimen thickness can impede effective microscopic visualization. One reason for this is the tandem development of the spinal cord and overlying somite tissue. Another reason is the large yolk ball, which is still present during periods of early neurogenesis. In this article, we demonstrate microdissection and removal of the yolk in fixed embryos, which allows microscopic visualization while preserving surrounding somite tissue. We also demonstrate semipermanent mounting of zebrafish embryos. This permits observation of neurodevelopment in the dorso-ventral and anterior-posterior axes, as it preserves the three-dimensionality of the tissue.  相似文献   

18.
Cyclosporine A, a potent immunosuppressive agent extensively used to prevent allograft rejections, is under scrutiny due to severe toxic effects. CsA therapy is often continued during pregnancy in conditions such as organ transplantations and autoimmune diseases. Herein, we investigated the effects of CsA on early morphogenesis of zebrafish and identified a spectrum of proteins whose expression was altered in the drug treated embryos. Time-lapse fluorescence imaging of germ-line double transgenic zebrafish embryos treated with CsA revealed severe blood regurgitation in heart chambers, absence of blood circulation in vessels, pericardial and yolk sac edema. We also observed lack of mature blood vessels and down-regulation of endothelial markers in CsA treated embryos. Proteomic analysis using 2D-DIGE followed by mass-spectrometry led to the identification of 37 proteins whose expression was significantly modulated in presence of the drug. These proteins were mostly associated with cytoskeletal/structural assembly, lipid-binding, stress response and metabolism. Furthermore, mRNA expression analysis of eight proteins and Western blotting of actin revealed consistency between the changes observed in protein expression and its corresponding mRNA levels. Our findings demonstrate that CsA administration during early morphogenesis in zebrafish modulates the expression of some proteins which are known to be involved in important physiological processes.  相似文献   

19.
B Chen  O W Blaschuk  B F Hales 《Teratology》1991,44(5):581-590
Whole rat embryo cultures are being used in increasing numbers of laboratories to study the mechanisms by which teratogens disturb development. The development of early somite stage embryos in vitro is very similar morphologically to that in vivo, yet few biochemical comparisons have been made. The purpose of this study was to determine the steady-state mRNA concentrations of a family of Ca(2+)-dependent cell adhesion molecules, the cadherins, during rat embryonic development in vivo and in vitro. Embryos and yolk sacs were collected on days 10, 11, and 12 of gestation (in vivo); they were also obtained from day 10 embryos after growth in culture for 24 hr (day 11 in vitro) or 45 hr (day 12 in vitro). Total RNAs isolated from embryos and yolk sacs were studied by Northern blot analysis using specific cDNA probes for three cadherins, E-cadherin, N-cadherin, and P-cadherin. Although E-cadherin mRNA was detected in embryos, it was present at much higher concentrations in yolk sacs. In addition, multiple species of E-cadherin mRNA ranging from 3.0 to 13 kb were detected. Interestingly, the concentration of the major 4.5-kb E-cadherin mRNA species in yolk sac after 45 hr in culture was increased 2.8-fold over that on day 12 of gestation in vivo. Second, two species (4.3 and 3.5 kb) of N-cadherin mRNA were detected, almost exclusively in embryos. In yolk sac, N-cadherin mRNA was detected only after 45 hr in culture. Third, P-cadherin mRNA was detected as a single 3.5-kb species, mainly in embryos. P-cadherin mRNA concentrations in yolk sac after 45 hr in culture were 5.6-fold higher than in vivo. Thus, these results demonstrate that there is a differential distribution of cadherin mRNAs in rat embryos and yolk sacs. Further, there appear to be multiple species of mRNAs for E-cadherin and N-cadherin. Finally, while whole embryo culture in vitro did not significantly alter the steady-state concentrations of cadherin mRNAs in the embryo, these concentrations were dramatically increased in the yolk sac.  相似文献   

20.
Taurine and its transporter (TauT) are expressed in preimplantation embryos, but their role in embryogenesis is not known. To investigate the role of TauT during embryonic development, we cloned and functionally characterized the zebrafish TauT. The zebrafish TauT cDNA codes for a protein of 625 amino acids which is highly homologous to mammalian TauT. When expressed in mammalian cells, zebrafish TauT mediates taurine uptake in a Na(+)/Cl(-)-dependent manner with a Na(+):Cl(-):taurine stoichiometry of 2:1:1. In the zebrafish embryo, taurine and TauT mRNA are present during early cleavage stages, indicating that both the transporter and its substrate are maternally derived. During embryogenesis, zygotic expression of TauT mRNA is evident in the retina, brain, heart, kidney, and blood vessels. Knockdown of TauT by antisense morpholino oligonucleotides leads to cell death in the central nervous system and increased mortality. These findings suggest a specific role for TauT during development in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号