首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 470 毫秒
1.
Detection of the human pathogen Vibrio parahaemolyticus often relies on molecular biological analysis of species-specific virulence factor genes. These genes have been employed in determinations of V. parahaemolyticus population numbers and the prevalence of pathogenic V. parahaemolyticus strains. Strains of the Vibrionaceae species Photobacterium damselae, Vibrio diabolicus, Vibrio harveyi, and Vibrio natriegens, as well as strains similar to Vibrio tubiashii, were isolated from a pristine salt marsh estuary. These strains were examined for the V. parahaemolyticus hemolysin genes tdh, trh, and tlh and for the V. parahaemolyticus type III secretion system 2α gene vscC2 using established PCR primers and protocols. Virulence-related genes occurred at high frequencies in non-V. parahaemolyticus Vibrionaceae species. V. diabolicus was of particular interest, as several strains were recovered, and the large majority (>83%) contained virulence-related genes. It is clear that detection of these genes does not ensure correct identification of virulent V. parahaemolyticus. Further, the occurrence of V. parahaemolyticus-like virulence factors in other vibrios potentially complicates tracking of outbreaks of V. parahaemolyticus infections.  相似文献   

2.
Isolation of Vibrio hollisae strains, particularly from the environment, is rare. This may be due, in part, to the difficulty encountered when using conventional biochemical tests to identify the microorganism. In this study, we evaluated whether two particular genes may be useful for the identification of V. hollisae. The two genes are presumed to be conserved among the bacterial species (gyrB) or among the species of the genus Vibrio (toxR). A portion of the gyrB sequence of V. hollisae was cloned by PCR using a set of degenerate primers. The sequence showed 80% identity with the corresponding Vibrio parahaemolyticus gyrB sequence. The toxR gene of V. hollisae was cloned utilizing a htpG gene probe derived from the V. parahaemolyticus htpG gene, which is known to be linked to the toxR gene in V. hollisae. The coding sequence of the cloned V. hollisae toxR gene had 59% identity with the V. parahaemolyticus toxR coding sequence. The results of DNA colony hybridization tests using the DNA probes derived from the two genes of V. hollisae indicated that these gene sequences could be utilized for differentiation of V. hollisae from other Vibrio species and from microorganisms found in marine fish. PCR methods targeting the two gene sequences were established. Both PCR methods were shown to specifically detect the respective target sequences of V. hollisae but not other organisms. A strain of V. hollisae added at a concentration of 1 to 102 CFU/ml to alkaline peptone water containing a seafood sample could be detected by a 4-h enrichment incubation in alkaline peptone water at 37°C followed by quick DNA extraction with an extraction kit and 35-cycle PCR specific for the V. hollisae toxR gene. We conclude that screening of seafood samples by this 35-cycle, V. hollisae toxR-specific PCR, followed by isolation on a differential medium and identification by the above htpG- and toxR-targeted PCR methods, can be useful for isolation from the environment and identification of V. hollisae.  相似文献   

3.
A molecular study of Vibrio parahaemolyticus clinical isolates containing the thermostable direct hemolysin (Tdh) gene and the Tdh-related hemolysin (Trh) gene have been conducted. Southern blot hybridization revealed that in the genomes of strains carrying the determinants of both hemolysins (tdh + trh +) the tdh gene is presented by a single copy while tdh + trh ? strains have two copies (tdh1 and tdh2). All investigated tdh + trh + and some tdh + trh ? strains did not express the tdh gene (Kanagawa-negative, KP?) or expressed it weakly and inconstantly (Kanagawa-intermediate, KP±) in contrast to several Kanagawa-positive (KP+) strains. To establish the reasons for the KP?/± phenotypes we sequenced tdh, tdh1 and tdh2 genes of 13 strains isolated in Russia and neighbouring foreign countries followed by bioinformatics analysis of the obtained sequences in comparison with those of a number of strains presented in GenBank. The results revealed that poor expression of the tdh gene depends not only on a single point mutation in the promoter region (substitution of A to G in the ?35 sequence) as it was believed earlier, but to the same extent on a second substitution (G to A at ?3 nucleotide position from the t-10 sequence) which appeared to be sufficient in the absence of the first one. Therefore, a reversion of KP-/± strains to KP+ actually may occur as a result of a single point back mutation, and such strains are to be considered as potentially dangerous. Those bearing both substitutions may reverse with less probability as this process requires two simultaneous mutations.  相似文献   

4.
Vibrio parahaemolyticus is an estuarine bacterium that is the leading cause of shellfish-associated cases of bacterial gastroenteritis in the United States. Our laboratory developed a real-time multiplex PCR assay for the simultaneous detection of the thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and thermostable-related hemolysin (trh) genes of V. parahaemolyticus. The tlh gene is a species-specific marker, while the tdh and trh genes are pathogenicity markers. An internal amplification control (IAC) was incorporated to ensure PCR integrity and eliminate false-negative reporting. The assay was tested for specificity against >150 strains representing eight bacterial species. Only V. parahaemolyticus strains possessing the appropriate target genes generated a fluorescent signal, except for a late tdh signal generated by three strains of V. hollisae. The multiplex assay detected <10 CFU/reaction of pathogenic V. parahaemolyticus in the presence of >104 CFU/reaction of total V. parahaemolyticus bacteria. The real-time PCR assay was utilized with a most-probable-number format, and its results were compared to standard V. parahaemolyticus isolation methodology during an environmental survey of Alaskan oysters. The IAC was occasionally inhibited by the oyster matrix, and this usually corresponded to negative results for V. parahaemolyticus targets. V. parahaemolyticus tlh, tdh, and trh were detected in 44, 44, and 52% of the oyster samples, respectively. V. parahaemolyticus was isolated from 33% of the samples, and tdh+ and trh+ strains were isolated from 19 and 26%, respectively. These results demonstrate the utility of the real-time PCR assay in environmental surveys and its possible application to outbreak investigations for the detection of total and pathogenic V. parahaemolyticus.  相似文献   

5.
Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) are the major virulence determinants of Vibrio parahaemolyticus. TRH is further differentiated into TRH1 and TRH2 on the basis of genetic and phenotypic differences. We developed a novel and highly specific loop-mediated isothermal amplification (LAMP) assay for sensitive and rapid detection of the tdh, trh1, and trh2 genes of V. parahaemolyticus. The LAMP assay was designed for both combined and individual detection of the tdh, trh1, and trh2 genes and combined detection of the trh1 and trh2 genes. Our results showed that it gave the same results as DNA probes and conventional PCR assays for 125 strains of V. parahaemolyticus, 3 strains of Grimontia hollisae, and 2 strains of Vibrio mimicus carrying the tdh, trh1, and trh2 genes in various combinations. No LAMP products were detected for any of the 20 bacterial strains lacking the tdh, trh1, and trh2 genes. The sensitivities of the LAMP assay for detection of tdh-, trh1-, and trh2-carrying V. parahaemolyticus strains in spiked shrimp samples were 0.8, 21.3, and 5.0 CFU per LAMP reaction tube, respectively. Starting with DNA extraction from a single colony and from spiked shrimp samples, the LAMP assay required only 27 to 60 min and less than 80 min, respectively. This is the first report of a rapid and specific LAMP assay for detection and differentiation of the tdh, trh1, and trh2 genes of V. parahaemolyticus and related Vibrio species.Vibrio parahaemolyticus, which is widely distributed in estuarine, marine, and coastal environments of tropical and temperate zones, causes seafood-borne gastrointestinal disorders in humans (9). Because most clinical isolates of V. parahaemolyticus produce the thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH), or both (5, 11, 14), these products are considered important virulence markers of V. parahaemolyticus (4, 5, 9, 11, 14). TDH and TRH are encoded by the tdh and trh genes, respectively. Five sequence variants of the tdh gene (tdh1 to tdh5) can be distinguished, which are >97% identical (1, 10). The tdh gene has also been detected in Grimontia (Vibrio) hollisae and some strains of Vibrio mimicus isolated from patients with diarrhea (9). The trh gene shares ca. 68% sequence identity with the tdh gene (5). Although trh gene sequences vary somewhat among strains, the trh variants can be clustered into two subgroups represented by two trh genes (trh1 and trh2), which share 84% sequence identity (5).Although most clinical isolates carry the tdh and trh genes, either alone or in combination, approximately 99% of environmental isolates do not possess either gene (9). These genes are therefore considered important virulence and epidemiological markers (5, 11, 14). Detection of the tdh and trh genes of V. parahaemolyticus using DNA probe methods is time-consuming and laborious. PCR assays, in contrast, although providing rapid detection of both tdh and trh genes (2, 15), require electrophoresis on an agarose gel, which is time-consuming and tedious. A recent real-time PCR assay for detection of the tdh and trh genes (12) is more rapid than conventional PCR assays but requires sophisticated and expensive equipment.A recently developed novel nucleic acid amplification method termed loop-mediated isothermal amplification (LAMP) (13) is a promising candidate for rapid and easy detection of the tdh and trh genes. A LAMP assay allows one-step detection of gene amplification by simple turbidity analysis and requires only a simple incubator, such as a heat block or a water bath providing a constant temperature. LAMP assays are faster, easier to perform, and more specific than conventional PCR assays (6, 7). Further, they synthesize a large amount of DNA and its by-product, an insoluble white precipitate of magnesium pyrophosphate, and the by-product can be detected by simple turbidity analysis. The increase in the turbidity of the reaction mixture due to the production of the white precipitate correlates with the amount of DNA synthesized (6, 7, 13). Thus, LAMP assays do not require expensive equipment and are highly precise (3, 18, 19).Here we describe a rapid and simple LAMP assay for detection of the tdh, trh1, and trh2 genes of V. parahaemolyticus. We also determined the sensitivity of this LAMP assay using spiked shrimp samples.  相似文献   

6.
Since 1997, cases of Vibrio parahaemolyticus-related gastroenteritis from the consumption of raw oysters harvested in Washington State have been higher than historical levels. These cases have shown little or no correlation with concentrations of potentially pathogenic V. parahaemolyticus (positive for the thermostable direct hemolysin gene, tdh) in oysters, although significant concentrations of tdh+ V. parahaemolyticus strains were isolated from shellfish-growing areas in the Pacific Northwest (PNW). We compared clinical and environmental strains isolated from the PNW to those from other geographic regions within the United States and Asia for the presence of virulence-associated genes, including the thermostable direct hemolysin (tdh), the thermostable-related hemolysin (trh), urease (ureR), the pandemic group specific markers orf8 and toxRS, and genes encoding both type 3 secretion systems (T3SS1 and T3SS2). The majority of clinical strains from the PNW were positive for tdh, trh, and ureR genes, while a significant proportion of environmental isolates were tdh+ but trh negative. Hierarchical clustering grouped the majority of these clinical isolates into a cluster distinct from that including the pandemic strain RIMD2210633, clinical isolates from other geographical regions, and tdh+, trh-negative environmental isolates from the PNW. We detected T3SS2-related genes (T3SS2β) in environmental strains that were tdh and trh negative. The presence of significant concentrations of tdh+, trh-negative environmental strains in the PNW that have not been responsible for illness and T3SS2β in tdh- and trh-negative strains emphasizes the diversity in this species and the need to identify additional virulence markers for this bacterium to improve risk assessment tools for the detection of this pathogen.  相似文献   

7.
Pseudomonas syringae are differentiated into approximately 50 pathovars with different plant pathogenicities and host specificities. To understand its pathogenicity differentiation and the evolutionary mechanisms of pathogenicity-related genes, phylogenetic analyses were conducted using 56 strains belonging to 19 pathovars. gyrB and rpoD were adopted as the index genes to determine the course of bacterial genome evolution, and hrpL and hrpS were selected as the representatives of the pathogenicity-related genes located on the genome (chromosome). Based on these data, NJ, MP, and ML phylogenetic trees were constructed, and thus 3 trees for each gene and 12 gene trees in total were obtained, all of which showed three distinct monophyletic groups: Groups 1, 2 and 3. The observation that the same set of OTUs constitute each group in all four genes suggests that these genes had not experienced any intergroup horizontal gene transfer within P. syringae but have been stable on and evolved along with the P. syringae genome. These four index genes were then compared with another pathogenicity-related gene, argK (the phaseolotoxin-resistant ornithine carbamoyltransferase gene, which exists within the argK–tox gene cluster). All 13 strains of pv. phaseolicola and pv. actinidiae used had been confirmed to produce phaseolotoxin and to have argK, whose sequences were completely identical, without a single synonymous substitution among the strains used (Sawada et al. 1997a). On the other hand, argK were not present on the genomes of the other 43 strains used other than pv. actinidiae and pv. phaseolicola. Thus, the productivity of phaseolotoxin and the possession of the argK gene were shown at only two points on the phylogenetic tree: Group 1 (pv. actinidiae) and Group 3 (pv. phaseolicola). A t test between these two pathovars for the synonymous distances of argK and the tandemly combined sequence of the four index genes showed a high significance, suggesting that the argK gene (or argK–tox gene cluster) experienced horizontal gene transfer and expanded its distribution over two pathovars after the pathovars had separated, thus showing a base substitution pattern extremely different from that of the noncluster region of the genome. Received: 18 January 1999 / Accepted: 25 May 1999  相似文献   

8.
A total of 18 strains of V. parahaemolyticus isolated from patients of past food poisoning cases occurring in Kanagawa Prefecture, Japan, were assayed for presence of the thermostable direct hemolysin (TDH) gene and the TDH-related hemolysin (TRH) genes (trh 1 and trh 2) with specific reference to their ability to hydrolyze urea and TDH production. A polymerase chain reaction assay revealed that all urea-hydrolyzing strains (9 strains) carried either trh 1 gene or trh 2 gene. The strains carrying the trh genes as well as the tdh gene produced TDH less by a factor of 4 to 16 than those carrying only the tdh gene, suggesting the expression of the tdh gene was suppressed by the presence of trh gene through a mechanism yet to be defined. Received: 20 September 1996 / Accepted: 6 November 1996  相似文献   

9.
Aims: Two well‐characterized Vibrio parahaemolyticus pathogenicity factors – thermostable direct haemolysin (TDH) and TDHrelated haemolysin – are produced by strains containing the tdh and trh genes, respectively. Most strains of V. parahaemolyticus contain two nonredundant type III secretion systems (T3SS), T3SS1 and T3SS2, both of which contribute to pathogenicity. Furthermore, a recent study has revealed two distinct lineages of the V. parahaemolyticus T3SS2: T3SS2α and T3SS2β. The aim of this study was to determine the incidence of these pathogenicity factors in environmental isolates of V. parahaemolyticus. Methods and Results: We collected 130 V. parahaemolyticus isolates (TCBS agar) containing tdh and/or trh (determined by colony hybridization) from sediment, oyster and water in the northern Gulf of Mexico and screened them and 12 clinical isolates (PCR and agarose gel electrophoresis) for pathogenicity factors tdh, trh, T3SS1, T3SS2α and T3SS2β. The majority of potential pathogens were detected in the sediment, including all tdh?/trh+ isolates. T3SS2α components were detected in all tdh+/trh ? isolates and zero of 109 trh+ isolates. One T3SS2α gene, vopB2, was found in all tdh+/trh? clinical strains but not in any of the 130 environmental strains. Fluorescence in situ hybridization adapted for individual gene recognition (RING‐FISH) was used to confirm the presence/absence of vopB2. T3SS2β was found in all tdh?/trh+ isolates and in no tdh+/trh? isolates. Conclusions: The combination of haemolysins found in each isolate consistently corresponded to the presence and type of T3SS detected. The vopB2 gene may represent a novel marker for identifying increased virulence among strains. Significance and Impact of the Study: This is the first study to confirm the presence of T3SS2β genes in V. parahaemolyticus strains isolated from the Gulf of Mexico and one of the few that examines the distribution and co‐existence of tdh, trh, T3SS1, T3SS2α and T3SS2β in a large collection of environmental strains.  相似文献   

10.
Vibrio parahaemolyticus is a seafood-borne halophilic pathogen that causes acute gastroenteritis in humans. During the course of an investigation on the incidence of V. parahaemolyticus in sewage water samples of Calcutta, India, we isolated eight (26.7%) strains of V. parahaemolyticus from 30 samples. Among these strains, five (62.5%) carried the thermostable direct hemolysin (tdh) gene, a major virulence marker of V. parahaemolyticus. Two strains belonged to serovar O5:K3 and the remaining three to O5:KUT, which is common among clinical strains of V. parahaemolyticus isolated from hospitalized patients of Calcutta with acute diarrhoea. The tdh positive sewage strains of V. parahaemolyticus were compared by randomly amplified polymorphic DNA (RAPD)-PCR and pulsed-field gel electrophoresis (PFGE) with strains of similar serovars selected from our culture collection to determine the genetic relatedness. Our results showed that except for sharing the similar serovar, sewage and clinical strains of V. parahaemolyticus were genetically different. In addition, toxRS-targeted group-specific (GS) PCR and open reading frame 8 (ORF-8) PCR showed that the sewage strains did not belong to the pandemic genotype. Since the sewage in Calcutta is directly used for cultivation of vegetables and for pisciculture, the presence of tdh positive V. parahaemolyticus in the sewage highlights the need for constant monitoring of the environment.  相似文献   

11.
Twelve Vibrio cholerae isolates with genes for a type III secretion system (T3SS) were detected among 110 environmental and 14 clinical isolates. T3SS‐related genes were distributed among the various serogroups and pulsed‐field gel electrophoresis of NotI‐digested genomes showed genetic diversity in these strains. However, the restriction fragment length polymorphism profiles of the T3SS‐related genes had similar patterns. Additionally, naturally competent T3SS‐negative V. cholerae incorporated the ca. 47 kb gene cluster of T3SS, which had been integrated into a site on the chromosome by recombination. Therefore, it is suggested that horizontal gene transfer of T3SS‐related genes occurs among V. cholerae in natural ecosystems.  相似文献   

12.
The role of lateral gene transfer (LGT) in prokaryotes has been shown to rapidly change the genome content, providing new gene tools for environmental adaptation. Features related to pathogenesis and resistance to strong selective conditions have been widely shown to be products of gene transfer between bacteria. The genomes of the γ-proteobacteria from the genus Xanthomonas, composed mainly of phytopathogens, have potential genomic islands that may represent imprints of such evolutionary processes. In this work, the evolution of genes involved in the pathway responsible for arginine biosynthesis in Xanthomonadales was investigated, and several lines of evidence point to the foreign origin of the arg genes clustered within a potential operon. Their presence inside a potential genomic island, bordered by a tRNA gene, the unusual ranking of sequence similarity, and the atypical phylogenies indicate that the metabolic pathway for arginine biosynthesis was acquired through LGT in the Xanthomonadales group. Moreover, although homologues were also found in Bacteroidetes (Flavobacteria group), for many of the genes analyzed close homologues are detected in different life domains (Eukarya and Archaea), indicating that the source of these arg genes may have been outside the Bacteria clade. The possibility of replacement of a complete primary metabolic pathway by LGT events supports the selfish operon hypothesis and may occur only under very special environmental conditions. Such rare events reveal part of the history of these interesting mosaic Xanthomonadales genomes, disclosing the importance of gene transfer modifying primary metabolism pathways and extending the scenario for bacterial genome evolution.  相似文献   

13.
Summary The two pathogenic species of Neisseria, N. meningitidis and N. gonorrhoeae, have evolved resistance to penicillin by alterations in chromosomal genes encoding the high molecular weight penicillin-binding proteins, or PBPs. The PBP 2 gene (penA) has been sequenced from over 20 Neisseria isolates, including susceptible and resistant strains of the two pathogenic species, and five human commensal species. The genes from penicillin-susceptible strains of N. meningitidis and N. gonorrhoeae are very uniform, whereas those from penicillin-resistant strains consist of a mosaic of regions resembling those in susceptible strains of the same species, interspersed with regions resembling those in one, or in some cases, two of the commensal species. The mosaic structure is interpreted as having arisen from the horizontal transfer, by genetic transformation, of blocks of DNA, usually of a few hundred base pairs. The commensal species identified as donors in these interspecies recombinational events (N. flavescens and N. cinerea) are intrinsically more resistant to penicillin than typical isolates of the pathogenic species. Transformation has apparently provided N. meningitidis and N. gonorrhoeae with a mechanism by which they can obtain increased resistance to penicillin by replacing their penA genes (or the relevant parts of them) with the penA genes of related species that fortuitously produce forms of PBP 2 that are less susceptible to inhibition by the antibiotic. The ends of the diverged blocks of DNA in the penA genes of different penicillin-resistant strains are located at the same position more often than would be the case if they represent independent crossovers at random points along the gene. Some of these common crossover points may represent common ancestry, but reasons are given for thinking that some may represent independent events occurring at recombinational hotspots. Offprint requests to: B.G. Spratt  相似文献   

14.
Wolbachia are a genus of widespread bacterial endosymbionts in which some strains can hijack or manipulate arthropod host reproduction. Male killing is one such manipulation in which these maternally transmitted bacteria benefit surviving daughters in part by removing competition with the sons for scarce resources. Despite previous findings of interesting genome features of microbial sex ratio distorters, the population genomics of male-killers remain largely uncharacterized. Here, we uncover several unique features of the genome and population genomics of four Arizonan populations of a male-killing Wolbachia strain, wInn, that infects mushroom-feeding Drosophila innubila. We first compared the wInn genome with other closely related Wolbachia genomes of Drosophila hosts in terms of genome content and confirm that the wInn genome is largely similar in overall gene content to the wMel strain infecting D. melanogaster. However, it also contains many unique genes and repetitive genetic elements that indicate lateral gene transfers between wInn and non-Drosophila eukaryotes. We also find that, in line with literature precedent, genes in the Wolbachia prophage and Octomom regions are under positive selection. Of all the genes under positive selection, many also show evidence of recent horizontal transfer among Wolbachia symbiont genomes. These dynamics of selection and horizontal gene transfer across the genomes of several Wolbachia strains and diverse host species may be important underlying factors in Wolbachia’s success as a male-killer of divergent host species.  相似文献   

15.
This study was aimed for the detection of Vibrio parahaemolyticus by biochemical and molecular methods in seafood samples collected from the markets of Cochin located at the southwest coast of India. A total of seventy-two V. parahaemolyticus cultures were isolated by selecting sucrose and cellobiose non-fermenting colonies. All the biochemically confirmed strains were found to have 368-bp toxR gene fragment, while an additional 24% of the samples were confirmed as V. parahaemolyticus by toxR based polymerase chain reaction (PCR) from enrichment broths. PCR based methods are used to detect tdh, trh, and orf8 genes for the identification of pathogenic and pandemic V. parahaemolyticus. Only one out of two urease positive isolates amplified the trh (500bp) gene. About 10% of the isolates showed weak haemolysis and none were found to amplify tdh (269 bp) and orf8 (746 bp) genes, thus indicating the meager incidence of pandemic strains from this area. The incidence of trh positive isolates from market samples signals towards the adoption of stringent seafood safety measures for the products meant for human consumption.  相似文献   

16.
Although thermostable direct hemolysin (TDH)-producing Vibrio parahaemolyticus has caused many infections in Asian countries, the United States, and other countries, it has been difficult to detect the same pathogen in seafoods and other environmental samples. In this study, we detected and enumerated tdh gene-positive V. parahaemolyticus in Japanese seafoods with a tdh-specific PCR method, a chromogenic agar medium, and a most-probable-number method. The tdh gene was detected in 33 of 329 seafood samples (10.0%). The number of tdh-positive V. parahaemolyticus ranged from <3 to 93/10 g. The incidence of tdh-positive V. parahaemolyticus tended to be high in samples contaminated with relatively high levels of total V. parahaemolyticus. TDH-producing strains of V. parahaemolyticus were isolated from 11 of 33 tdh-positive samples (short-necked clam, hen clam, and rock oyster). TDH-producing strains of V. parahaemolyticus were also isolated from the sediments of rivers near the coast in Japan. Representative strains of the seafood and sediment isolates were examined for the O:K serovar and by the PCR method specific to the pandemic clone and arbitrarily primed PCR and pulsed-field gel electrophoresis techniques. The results indicated that most O3:K6 tdh-positive strains belonged to the pandemic O3:K6 clone and suggested that serovariation took place in the Japanese environment.  相似文献   

17.
Flocculation has primarily been studied as an important technological property of Saccharomyces cerevisiae yeast strains in fermentation processes such as brewing and winemaking. These studies have led to the identification of a group of closely related genes, referred to as the FLO gene family, which controls the flocculation phenotype. All naturally occurring S. cerevisiae strains assessed thus far possess at least four independent copies of structurally similar FLO genes, namely FLO1, FLO5, FLO9 and FLO10. The genes appear to differ primarily by the degree of flocculation induced by their expression. However, the reason for the existence of a large family of very similar genes, all involved in the same phenotype, has remained unclear. In natural ecosystems, and in wine production, S. cerevisiae growth together and competes with a large number of other Saccharomyces and many more non-Saccharomyces yeast species. Our data show that many strains of such wine-related non-Saccharomyces species, some of which have recently attracted significant biotechnological interest as they contribute positively to fermentation and wine character, were able to flocculate efficiently. The data also show that both flocculent and non-flocculent S. cerevisiae strains formed mixed species flocs (a process hereafter referred to as co-flocculation) with some of these non-Saccharomyces yeasts. This ability of yeast strains to impact flocculation behaviour of other species in mixed inocula has not been described previously. Further investigation into the genetic regulation of co-flocculation revealed that different FLO genes impact differently on such adhesion phenotypes, favouring adhesion with some species while excluding other species from such mixed flocs. The data therefore strongly suggest that FLO genes govern the selective association of S. cerevisiae with specific species of non-Saccharomyces yeasts, and may therefore be drivers of ecosystem organisational patterns. Our data provide, for the first time, insights into the role of the FLO gene family beyond intraspecies cellular association, and suggest a wider evolutionary role for the FLO genes. Such a role would explain the evolutionary persistence of a large multigene family of genes with apparently similar function.  相似文献   

18.
The heat-stable enterotoxin (O1-ST) gene (sto) was cloned from chromosome of the strain GP156 of Vibrio cholerae O1 (Inaba, El Tor) in Escherichia coli K-12, and its nucleotide seqence was determined. The nucleotide sequence of sto was very similar to that of NAG-ST gene (stn) of V. cholerae non-O1. Both sto and stn were flanked by 123-base pair direct repeats which had at least 93% homology to one another and included some inverted repeats. All the strains of V. cholerae, V. mimicus, V. metschnikovii, V. hollisae and Yersinia enterocolitica examined by colony hybridization had the direct repeat sequence regardless of ST-gene possession.  相似文献   

19.
The occurrence of the hemolysin genes, tdh and trh, in Vibrio parahaemolyticus strains isolated from environmental samples collected from various exported seafood products comprising of fishes and shellfish (Mytilus edulis and Crassostrea gigas) or seawater, was studied. Eight strains were confirmed as V. parahaemolyticus by toxR -based polymerase chain reaction and only one strain out of these 8 strains was positive for tdh and trh genes. Toxigenic V. parahaemolyticus isolates are present in Tunisian coastal areas and they may also be present in Tunisian exported seafood products.  相似文献   

20.
We present phylogenetic evidence that a group I intron in an angiosperm mitochondrial gene arose recently by horizontal transfer from a fungal donor species. A 1,716-bp fragment of the mitochondrial coxI gene from the angiosperm Peperomia polybotrya was amplified via the polymerase chain reaction and sequenced. Comparison to other coxI genes revealed a 966-bp group I intron, which, based on homology with the related yeast coxI intron aI4, potentially encodes a 279-amino-acid site-specific DNA endonuclease. This intron, which is believed to function as a ribozyme during its own splicing, is not present in any of 19 coxI genes examined from other diverse vascular plant species. Phylogenetic analysis of intron origin was carried out using three different tree-generating algorithms, and on a variety of nucleotide and amino acid data sets from the intron and its flanking exon sequences. These analyses show that the Peperomia coxI gene intron and exon sequences are of fundamentally different evolutionary origin. The Peperomia intron is more closely related to several fungal mitochondrial introns, two of which are located at identical positions in coxI, than to identically located coxI introns from the land plant Marchantia and the green alga Prototheca. Conversely, the exon sequence of this gene is, as expected, most closely related to other angiosperm coxI genes. These results, together with evidence suggestive of co-conversion of exonic markers immediately flanking the intron insertion site, lead us to conclude that the Peperomia coxI intron probably arose by horizontal transfer from a fungal donor, using the double-strand-break repair pathway. The donor species may have been one of the symbiotic mycorrhizal fungi that live in close obligate association with most plants. Correspondence to: J.C. Vaughn  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号