首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear-encoded genes for proteins of the photosynthetic maschinery represent a particular subset of genes. Their expression is cooperatively stimulated by discrete factors including the developmental stage of plastids and light. We have analyzed in transgenic tobacco the plastid- and light-dependent expression of a series of 5 promoter deletions of various nuclear genes from spinach, of fusions of defined promoter segments with the 90-bp 35S RNA CaMV minimal promoter, as well as with mutations in sequences with homologies to characterizedcis-elements, to address the question of whether the plastid signal and light operate via the same or differentcis-acting elements. In none of the 160 different transgenic lines (representing 32 promoter constructs from seven genes) analyzed, could significant differences be identified in the responses to the two regulatory pathways. The data are compatible with the idea that both signals control the expression of nuclear genes for plastid proteins via the samecis-acting elements.  相似文献   

2.
In a hypersensitive reaction to pathogen infection, expression of the β-1,3-glucanase gn1 gene is induced in cells surrounding the necrotic lesions. The 5′-flanking sequence of gn1 was examined to investigate the molecular basis controlling activation of gene expression during this plant defense response. Studies on transgenic tobacco plants containing gn1 promoter deletions fused to the β-glucuronidase reporter gene revealed the presence of negative and positive regulatory sequences mediating both the level and the spatial distribution of gn1 expression. Promoter sequences to ?138 bp were sufficient to confer increased gene expression around the necrotic lesions produced in response to Pseudomonas syringae pv. syringae inoculation. It is demonstrated by electrophoretic mobility shift assays that nuclear proteins in both healthy and hypersensitively reacting tobacco leaves interact with DNA sequences within the regulatory elements identified. Among the binding sequences characterized, the promoter region extending from ?250 to ?217 bp contained the DNA motif -GGCGGC- found to be conserved in most if not all promoters of genes encoding pathogenesis-related basic proteins. The activity bound by this promoter sequence was stronger in hypersensitively responding tissues than in healthy untreated tobacco leaves.  相似文献   

3.
Nuclear-encoded genes for proteins of the photosynthetic maschinery represent a particular subset of genes. Their expression is cooperatively stimulated by discrete factors including the developmental stage of plastids and light. We have analyzed in transgenic tobacco the plastid- and light-dependent expression of a series of 5′ promoter deletions of various nuclear genes from spinach, of fusions of defined promoter segments with the 90-bp 35S RNA CaMV minimal promoter, as well as with mutations in sequences with homologies to characterizedcis-elements, to address the question of whether the plastid signal and light operate via the same or differentcis-acting elements. In none of the 160 different transgenic lines (representing 32 promoter constructs from seven genes) analyzed, could significant differences be identified in the responses to the two regulatory pathways. The data are compatible with the idea that both signals control the expression of nuclear genes for plastid proteins via the samecis-acting elements.  相似文献   

4.
5.
For the strong expression of genes in plant tissue, the availability of specific gene regulatory sequences is desired. We cloned promoter and terminator sequences of an apple (Malus x domestica) ribulose biphosphate carboxylase small subunit gene (MdRbcS), which is known for its high expression and used gus reporter gene expression to test the regulatory activity of the isolated promoter and terminator sequences in transgenic tobacco. The MdRbcS promoter itself seemed to be less strong than the CaMV35S promoter when both used in combination with the nos terminator. However, the combination of the promoter and terminator of MdRbcS was able to drive gus to similar expression levels as the reference construct with CaMV35S promoter and nos terminator. This observation indicates the importance of the terminator sequence for gene expression. It is concluded that the combination of the MdRbcS promoter and terminator is a suitable regulatory sequence set for the expression of transgenes to a high level in plants and for intragenesis in apple specifically.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
Globulins are the most abundant seed storage proteins in cotton and, therefore, their regulatory sequences could potentially provide a good source of seed-specific promoters. We isolated the putative promoter region of cotton -globulin B gene by gene walking using the primers designed from a cotton staged embryo cDNA clone. PCR amplified fragment of 1108 bp upstream sequences was fused to gusA gene in the binary vector pBI101.3 to create the test construct. This was used to study the expression pattern of the putative promoter region in transgenic cotton, Arabidopsis, and tobacco. Histochemical GUS analysis revealed that the promoter began to express during the torpedo stage of seed development in tobacco and Arabidopsis, and during cotyledon expansion stage in cotton. The activity quickly increased until embryo maturation in all three species. Fluorometric GUS analysis showed that the promoter expression started at 12 and 15 dpa in tobacco and cotton, respectively, and increased through seed maturation. The strength of the promoter expression, as reflected by average GUS activity in the seeds from primary transgenic plants, was vastly different amongst the three species tested. In Arabidopsis, the activity was 16.7% and in tobacco it was less than 1% of the levels detected in cotton seeds. In germinating seedlings of tobacco and Arabidopsis, GUS activity diminished until it was completely absent 10 days post imbibition. In addition, absence of detectable level of GUS expression in stem, leaf, root, pollen, and floral bud of transgenic cotton confirmed that the promoter is highly seed-specific. Analysis of GUS activity at individual seed level in cotton showed a gene dose effect reflecting their homozygous or hemizygous status. Our results show that this promoter is highly tissue-specific and it can be used to control transgene expression in dicot seeds.  相似文献   

15.
Wound-response regulation of the sweet potato sporamin gene promoter region   总被引:9,自引:0,他引:9  
Sporamin, a tuberous storage protein of sweet potato, was systemically expressed in leaves and stems by wound stimulation. In an effort to demonstrate the regulatory mechanism of wound response on the sporamin gene, a 1.25 kb sporamin promoter was isolated for studying the wound-induced signal transduction. Two wound response-like elements, a G box-like element and a GCC core-like sequence were found in this promoter. A construct containing the sporamin promoter fused to a -glucuronidase (GUS) gene was transferred into tobacco plants by Agrobacterium-mediated transformation. The wound-induced high level of GUS activity was observed in stems and leaves of transgenic tobacco, but not in roots. This expression pattern was similar to that of the sporamin gene in sweet potatoes. Exogenous application of methyl jasmonate (MeJA) activated the sporamin promoter in leaves and stems of sweet potato and transgenic tobacco plants. A competitive inhibitor of ethylene (2,5-norbornadiene; NBD) down-regulated the effect of MeJA on sporamin gene expression. In contrast, salicylic acid (SA), an inhibitor of the octadecanoid pathway, strongly suppressed the sporamin promoter function that was stimulated by wound and MeJA treatments. In conclusion, wound-response expression of the sporamin gene in aerial parts of plants is regulated by the octadecanoid signal pathway.  相似文献   

16.
17.
A series of 5′ deletions of the pea plastocyanin gene (petE) promoter fused to the β-glucuronidase (GUS) reporter gene has been examined for expression in transgenic tobacco plants. Strong positive and negative cis-elements which modulate quantitative expression of the transgene in the light and the dark have been detected within the petE promoter. Disruption of a negative regulatory element at ?784 bp produced the strongest photosynthesis-gene promoter so far described. Histochemical analysis demonstrated that all petE-GUS constructs directed expression in chloroplast-containing cells, and that a region from ?176 bp to +4 bp from the translation start site was sufficient for such cell-specific expression. The petE-promoter fusions were expressed at high levels in etiolated transgenic tobacco seedlings but there was no marked induction of GUS activity in the light. The endogenous tobacco plastocyanin genes and the complete pea plastocyanin gene in transgenic tobacco plants were also expressed in the dark, but showed a three- to sevenfold increase in the light. This indicates a requirement for sequences 3′ to the promoter for the full light response of the petE gene.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号