首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Summary Comparative ecological, physiological and genetic data from two hybridizable predacious species (Chrysopa quadripunctata andC. slossonae) illustrate that host (prey) specificity is based on a broad variety of genetically controlled traits. The array of traits parallels that found in host specific herbivores, and it includes: (i) female choice of oviposition site, (ii) adult dietary requirements for mating, (iii) large egg size, (iv) specialized larval behavior, (v) enhanced larval development, and (vi) univoltinism.Considerable genetic variation, in both quantitative, polygenically controlled characters, as well as qualitative traits, underlies the differences between the general predator,C. quadripunctata, and the monophagousC. slossonae. The interaction between the predators and their prey is more consistent with the sympatric than the allopatric model of speciation, and theC. quadripunctata/C. slossonae case provides an excellent opportunity for testing various assumptions underlying the sympatric model of speciation.  相似文献   

2.
The regulation of post-mating decline of sex-pheromone in the gypsy moth, Lymantria dispar, was studied. An initial, transient suppression of pheromone production was found to be caused by the introduction of male genitalia into the bursa copulatrix, which results in mechanical pressure being transmitted via innervation of the bursa. However, if sperm was not transferred during mating, pheromone production resumed and females returned to calling behavior. Permanent suppression of pheromone production resulted from an adequate supply of sperm in the spermatheca and could be prevented in females from which spermatheca was removed. During the initial period of suppression of pheromone production females were sexually receptive and could remate. They became nonreceptive only when pheromone production was terminated and oviposition begun.  相似文献   

3.
We studied changes in the number of sperm within two kinds of female sperm-storage organ in the damselfly Ischnura senegalensis (Odonata: Coenagrionidae): the bursa copulatrix and the spermatheca. We counted the number of sperm within each storage organ and tested their viability after a single copulation in female damselflies kept for seven days with and without oviposition. We also counted sperm and tested their viability in females that underwent an interrupted second copulation after the sperm-removal stage, and after subsequent oviposition. Our results showed that the bursa copulatrix and spermatheca have different sperm storage roles. Immediately after copulation, most eggs appear to have been fertilized with bursal sperm, which were positioned near the fertilization point. By seven days after copulation, a greater proportion of spermathecal sperm were used for fertilization, as the number of bursal sperm had decreased. We hypothesize that female damselflies use the spermatheca for long-term storage and the bursa copulatrix for short-term storage: bursal sperm are more likely to be used for fertilization but may have a higher risk of mortality due to sperm removal by a competing male and/or sperm expelling by the female, whereas spermathecal sperm are safer but will be used for fertilization only after their release from the spermatheca.  相似文献   

4.
In the fly Dryomyza anilis females have two kinds of sperm storage organs: one bursa copulatrix and three spermathecae (two spermathecae with a common duct form the doublet, and the third is a singlet spermathecal unit). At the beginning of a mating the male deposits his sperm in the bursa copulatrix. After sperm transfer the male taps the female''s abdomen with his claspers. This behaviour has been shown to increase the male''s fertilization success. After mating, the female discharges large quantities of sperm before oviposition. To find out where the sperm remaining in the female are stored, I counted the number of sperm in the droplet and in the female''s sperm storage organs after different types of mating. I carried out three mating experiments. In experiment 1, virgin females were mated with one male and the matings were interrupted either immediately after sperm transfer or after several tapping sequences. The results show that during male tapping more sperm moved into the singlet spermatheca. In addition, the total number of sperm correlated with sperm numbers in all sperm storage organs, and male size was positively related to the number of sperm remaining in the bursa. In experiment 2, females mated with several males. The number of sperm increased with increasing number of matings only in the doublet spermatheca. No increase in the number of sperm in the singlet spermatheca during consecutive matings suggests that sperm were replaced or did not reach this sperm storage organ. In experiment 3, virgin females were mated with a single male and half of them were allowed to lay eggs. The experiment showed that during egglaying, females primarily used sperm from their singlet spermatheca. The results from the three experiments suggest that sperm stored in the singlet spermatheca is central for male fertilization success and male tapping is related to sperm storage in the singlet spermatheca. The different female''s sperm storage organs in D. anilis may have separate functions during sperm storage as well as during sperm usage.  相似文献   

5.
In the silkmoth, Bombyx mori, mating accelerates egg laying. Sterilized males did not induce females to oviposit, whereas artificial insemination was enough to accelerate oviposition. These findings showed that mechanical stimulation of the outer reproductive organs and the bursa copulatrix (BC) had no effect on oviposition. Factors included in seminal fluids also did not stimulate oviposition because neither implantation of female internal reproductive organs nor injection of the spermatophore extract into virgin females activated oviposition. Preventing sperm precedence by experimental removal of the BC or spermatheca inhibited activation of egg laying. More precise surgeries on the spermatheca showed that the main factor for eliciting oviposition was the presence of matured and fertile eupyrene spermatozoa in the vestibulum. Sperm were not effective unless they reached the vestibulum. Nerve transection and electrophysiological studies revealed that nerve 4 of the terminal abdominal ganglion was the pathway by which the mating signal was transmitted toward the higher central nervous system.  相似文献   

6.
When swallowtail butterflies, Papilio xuthus, are mated by the hand-pairing method, both types of sperm, eupyrene and apyrene sperm, are transferred from the male to the spermatheca via the spermatophore in the bursa copulatrix. This mechanism is demonstrated by two different kinds of experiments. The first set of experiments employed interrupted copulation, and the second set was examination of the sperm in the spermatophore and spermatheca after the termination of copulation. The sperm was transferred 30 min after the start of copulation. The eupyrene sperm was still in the bundle; the number of the bundles ranged from 9 to 108 (mean, 42.7; n = 27). The bundles were gradually released after the completion of copulation, and the free eupyrene spermatozoa then remained in the spermatophore at least 2 h before migrating to the spermatheca. On the other hand, about 160 000 apyrene spermatozoa were transferred to the spermatophore and remained there for more than 1 h. We observed 11 000 apyrene spermatozoa in the spermatheca 12 h after the completion of copulation, but most of this type of sperm disappeared shortly thereafter. In contrast, the eupyrene sperm arrived in the spermatheca more than 1 day after the completion of copulation and remained there at least 1 week. Therefore, these findings suggest that apyrene sperm migrate from the spermatophore to the spermatheca earlier than eupyrene sperm. Accordingly, if females mated multiply, the time difference might avoid the mixing of sperm. In addition, the predominance of sperm from the last mating session may occur not in the bursa copulatrix but in the spermatheca. Received: January 7, 2000 / Accepted: May 24, 2000  相似文献   

7.
Females of the swallowtail butterfly Papilio xuthus L. (Lepidoptera: Papilionidae) mate multiply during their life span and use the spermatophores transferred to increase their longevity as well as fecundity. Sperm from different males may be stored in the sperm storage organs (bursa copulatrix and spermatheca). To clarify the pattern of sperm storage and migration in the reproductive tract, mated females are dissected after various intervals subsequent to the first mating, and the type and activity of sperm in the spermatheca are observed. When virgin females are mated with virgin males, the females store sperm in the spermatheca for more than 10 days. Sperm displacement is found in females that are remated 7 days after the first mating. Immediately after remating, these females flush out the sperm of the first male from the spermatheca before sperm migration of the second male has started. However, females receiving a small spermatophore at the second mating show little sperm displacement, and the sperm derived from the small spermatophore might not be able to enter the spermatheca. Females appear to use spermatophore size to monitor male quality.  相似文献   

8.
Comparative studies on the structure of genitalia in Pseudoxychila tarsalis Bates and the copulating behavior in 5 species of Cicindela respectively complement similar findings by Freitag [1] on Cicindela spp. and Palmer [4] on P. tarsalis. These strengthen the hypothesis that in tiger beetles the flagellum fits into the spermatheca duct during copulation; that the main function of the flagellum, which is closed at the apex and not connected to the ejaculatory duct, is to open and prepare the lumen of the spermatheca duct for sperm movement from the bursa copulatrix to the spermatheca; and that copulation proceeds in 3 phases: phase 1 in which the lumen of the spermatheca duct is cleared by the flagellum, phase 2 in which the flagellum is withdrawn from the spermatheca duct, and phase 3 in which semen is transferred from the gonopore of the ejaculatory duct to the bursa copulatrix, usually with a spermatophore.  相似文献   

9.
A male swallowtail butterfly, Papilio xuthus, transfers both eupyrene and apyrene sperm during copulation, both of which migrate to the spermatheca via the spermatophore in the bursa copulatrix of the female. Because the spermatheca seems to remain constant in size during the female lifespan, the excess sperm migration may cause the spermatheca to overflow. Approximately 9000 eupyrene and 265 000 apyrene spermatozoa were transferred during a single copulation, and approximately 1000 eupyrene and 1100 apyrene spermatozoa successfully arrived in the spermatheca. The number of both types of spermatozoon decreased in the spermatheca after the onset of oviposition, and no eupyrene spermatozoa were found by 7 days after copulation, partly due to insemination. The spermathecal gland leading from the distal end of the spermatheca was gradually filled by eupyrene spermatozoa. Although the function of the gland remains unclear, the final destination of the sperm is likely to be the gland.  相似文献   

10.
Abstract. Mating behaviour, sperm transfer and sperm precedence were studied in the moth Spodoptera litura (Fabr.) (Lepidoptera: Noctuidae). There existed a rhythmic, diel pattern of mating behaviour of this moth during the scotophase, presumably set with respect to an endogenous activity rhythm. Approximately 30 min after copulation had started, the formation of the corpus of the spermatophore began in the bursa copulatrix of the female moth, but full inflation of the corpus was not completed until 45–60 min after mating had started. The mature spermatophore contained about 350 eupyrene sperm bundles and a large number of individual (loose) apyrene spermatozoa. The mating status and the age of the male insect influenced the number of sperm transferred to the female within the spermatophore, and also affected the consequent fertility. There was no evidence of sperm reflux within the male tract. Within the female, dissociation of eupyrene sperm bundles was evident within the spermatophore less than 15 min after the completion of mating. Spermatozoa began to move from the bursa (in which the spermatophore is lodged) into the spermatheca 30–45 min after the end of the copulation, and the quantity of sperm in the spermatheca reached a plateau at 90 min after mating. Apyrene sperm reached the spermatheca first, followed by eupyrene sperm. Examination of total (apyrene plus eupyrene) sperm in the female tract showed that 86% of mated females received an apparently normal amount of total sperm from the male. Examination of eupyrene sperm alone showed that 81% of matings resulted in an apparently normal transfer of eupyrene sperm. A small proportion (approximately 8%) of the matings, however, were identified as transferring a clearly subnormal quantity of eupyrene sperm to the spermatheca. The eggs produced as a result of such pairings displayed much reduced fertility (about 43%) compared to those from matings confirmed to have transferred normal quantities of sperm, which showed about 92% fertility. This shows that the availability of eupyrene sperm in the spermatheca may be an important constraint on fertility in normal populations of insects. In the laboratory, S. litura females exhibited multiple matings. Of the females, 93% mated, and the mean frequency of mating was 1.69. Mating with a fertile male led to the oviposition of an increased number of eggs. This effect continued even when the female subsequently mated with an infertile male. Displacement of sperm from previous matings is known to be an important factor in the evolution of multiple mating strategies. Our results on sperm utilization by S. litura indicated that after a second mating, the sperm utilized for subsequent fertilization were almost exclusively from the last mating with little mixing. The proportion of eggs fertilized by sperm from the second mating (P2) was calculated as 0.95, indicating almost complete sperm precedence from the last mating.  相似文献   

11.
Female damselflies in the family Calopterygidae have two sperm storage organs: a spherical bursa copulatrix and a tubular spermatheca. Male flies have a peculiar aedeagus with a recurved head with which to remove bursal sperm, and lateral spiny processes to remove spermathecal sperm. The lateral processes differ among species and populations in terms of their width relative to the spermathecal duct: the narrower processes are physically able to access spermathecal sperm, while the wider ones are not. In the present study, sperm storage patterns and aedeagal structures were compared between two calopterygid species with different spermathecal structures –Calopteryx cornelia and Mnais pruinosa– with respect to not only sperm quantity (number) but also sperm quality (viability), by using a recently developed method based on live/dead dual fluorescence. Calopteryx cornelia is a typical spermathecal sperm remover. In this species, viability was similar between bursal and spermathecal sperm. In contrast, in M. pruinosa, the spermatheca was much smaller than the bursa and often contained no sperm. Even when the spermatheca of this species did contain sperm, a high percentage of it was dead. Although the spermatheca of M. pruinosa has such atrophic tendencies, males have nevertheless developed long and spiny lateral processes similar to those of C. cornelia, suggesting the processes have functions other than spermathecal sperm removal. They possibly function as stoppers or guides for manipulating the aedeagal head to remove the sperm mass from the bursa.  相似文献   

12.
Conspecific sperm precedence (CSP) has been identified as an important post-copulatory, pre-zygotic mechanism that can act to reduce gene flow between populations. The evolution of CSP is thought to have arisen as a by-product of male and female coevolution in response to intraspecific post-copulatory sexual selection. However, little is known about the mechanisms that generate CSP. When Callosobruchus subinnotatus females copulate with both C. subinnotatus and Callosobruchus maculatus males, regardless of mating order, the majority of eggs are fertilized by conspecific sperm. The low number of heterospecific fertilizations does not result from general differences in the viability of sperm in the female reproductive tract, as heterospecific sperm fertilized equivalent numbers of eggs as conspecific sperm in the absence of sperm competition. Instead, CSP results from disadvantages to heterospecific sperm that are manifest only when in competition with conspecific sperm. CSP in C. subinnotatus appears to result from two, not mutually exclusive, mechanisms. First, conspecific sperm are better able to displace heterospecific sperm from female storage. Second, conspecific sperm achieve disproportionately higher numbers of fertilizations relative to their proportional representation in the fertilization set. Thus, we provide evidence of differential sperm use from the female spermatheca.  相似文献   

13.
When hybridization is maladaptive, species‐specific mate preferences are selectively favored, but low mate availability may constrain species‐assortative pairing. Females paired to heterospecifics may then benefit by copulating with multiple males and subsequently favoring sperm of conspecifics. Whether such mechanisms for biasing paternity toward conspecifics act as important reproductive barriers in socially monogamous vertebrate species remains to be determined. We use a combination of long‐term breeding records from a natural hybrid zone between collared and pied flycatchers (Ficedula albicollis and F. hypoleuca), and an in vitro experiment comparing conspecific and heterospecific sperm performance in female reproductive tract fluid, to evaluate the potential significance of female cryptic choice. We show that the females most at risk of hybridizing (pied flycatchers) frequently copulate with multiple males and are able to inhibit heterospecific sperm performance. The negative effect on heterospecific sperm performance was strongest in pied flycatcher females that were most likely to have been previously exposed to collared flycatcher sperm. We thus demonstrate that a reproductive barrier acts after copulation but before fertilization in a socially monogamous vertebrate. While the evolutionary history of this barrier is unknown, our results imply that there is opportunity for it to be accentuated via a reinforcement‐like process.  相似文献   

14.
Co‐occurrence of closely related species can cause behavioral interference in mating and increase hybridization risk. Theoretically, this could lead to the evolution of more species‐specific mate preferences and sexual signaling traits. Alternatively, females can learn to reject heterospecific males, to avoid male sexual interference from closely related species. Such learned mate discrimination could also affect conspecific mate preferences if females generalize from between species differences to prefer more species‐specific mating signals. Female damselflies of the banded demoiselle (Calopteryx splendens) learn to reject heterospecific males of the beautiful demoiselle (C. virgo) through direct premating interactions. These two species co‐occur in a geographic mosaic of sympatric and microallopatric populations. Whereas C. virgo males have fully melanized wings, male C. splendens wings are partly melanized. We show that C. splendens females in sympatry with C. virgo prefer smaller male wing patches in conspecific males after learning to reject heterospecific males. In contrast, allopatric C. splendens females with experimentally induced experience with C. virgo males did not discriminate against larger male wing patches. Wing patch size might indicate conspecific male quality in allopatry. Co‐occurrence with C. virgo therefore causes females to prefer conspecific male traits that are more species specific, contributing to population divergence and geographic variation in female mate preferences.  相似文献   

15.
In queenless ants, gamergates (mated egg‐laying workers) fulfil the reproductive task normally reserved for the queen. Every worker is a potential gamergate, thus we expect pronounced conflicts over sexual reproduction within their colonies. In the queenless ant genus Diacamma, gamergates inhibit nest mates from mating by aggressively removing (‘mutilating’) a pair of small appendages on the thorax, termed gemmae, shortly after eclosion. Dissection and serial sectioning of the reproductive tracts of both mutilated and unmutilated individuals of Diacamma sp. from Japan at different ages revealed that mutilation inhibits the development of the bursa copulatrix and the spermatheca, two structures fundamental for sexual reproduction. The precursor of the bursa copulatrix develops into a fully functional structure in unmutilated individuals, whereas it degenerates irreversibly in mutilated callows. Experimental manipulations showed that the removal of the gemmae is not the sole factor regulating this development. The spermathecal epithelium and accessory spermathecal gland of unmutilated individuals are thicker than that of mutilated individuals, indicating a higher degree of activity in the former. Mutilated females are therefore left incapable of copulating and less competent for long‐time sperm storage.  相似文献   

16.
ABSTRACT Females of gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae), mated to males kept in constant light (LL) as pharate adults fail to oviposit. In males, a rhythm of sperm release from the testis that occurs in light-dark (LD) cycles is abolished in LL, and the total amount of sperm released from the testis is approximately half of that of LD males. Moreover, any sperm that may be released from the testis of LL males tend to remain in the vasa deferentia instead of moving into the duplex as in LD males. Consequently, in LL very few sperm bundles are transferred to the bursa copulatrix during mating; furthermore, these bundles fail to disperse into spermatozoa and sperm do not reach the spermatheca. The presence of a spermatheca filled with sperm must play an important role in controlling oviposition because their removal from mated females prevents egg-laying. Our results indicate that the rhythm of sperm release from the testis is essential for the ability of sperm to migrate in male and female reproductive tracts. The rhythms may help to synchronize final stages of sperm development with the activity of phagocytic and secretory cells lining the reproductive tract.  相似文献   

17.
Males of the coenagrionid damselflies Argia moesta, A. sedula and hchnura ramburii use similar penis morphology to remove and/or reposition sperm of previous males from the storage organs of females prior to inseminating them. Although the species vary in the degree to which sperm is removed from or packed into the spermatheca, in all three species, sperm is removed from the bursa copulatrix. Since sperm in the bursa probably has priority in fertilizing eggs in at least the first oviposition after mating, sperm precedence can be estimated as the percentage of sperm (by volume) in the bursa belonging to the last male to mate. Estimated sperm precedence for these species is approximately 71% for Argia sedula, 82% for I. ramburii and 93% for A. moesta. These results, combined with similar ones for other damselflies clearly indicate that the ability to displace sperm may be widespread among temperate-zone Zygoptera. Species with each of the four major variations in damselfly penis structure have now been shown to displace sperm using this morphology. The systematic distribution of these major variants suggests several origins of sperm displacement ability within the Zygoptera. Whether or not all damselflies are capable of sperm displacement depends on both the presence of micro-structures used in sperm removal or repositioning and on the presence of sperm of previous males in mating females. It is possible, therefore, to predict that sperm displacement occurs in a damselfly if (1) females mate more than once, (2) mating females store sperm in organs accessible to penis morphology, (3) the distal segment of the male penis has structures similar to those known to be involved in sperm removal or repositioning, and (4) oviposition occurs in tandem or with the male non-contact guarding his mate.  相似文献   

18.
In Plodia interpunctella, Ephestia cautella, Anagasta kuehniella, and Sitotroga cerealella the bulla seminalis is the site where ova are degenerated after females are 24–28 hr old. When ova are shunted into the bulla seminalis and massaged by muscular contractions the chorions gradually weaken and rupture. Empty chorions are compressed into a pellet and remain in the bulla. The number of ruptured eggs varies between species. Mated females in P. interpunctella and E. cautella, degenerate more ova than virgin females. Degeneration of ova in the bulla seminalis may be a means of extra-ovariolar resorption that leaves the oviducts unobstructed so oviposition can occur. The process may be a faster means of freeing yolk from the ova than the digestion of the chorion that is characteristic of oösorption in other insects. In the four species studied, the bulla seminalis which also acts as a pump in the transfer of sperm from the bursa copulatrix to the spermatheca, thus has a dual function.  相似文献   

19.
In many species females mate with and store sperm from multiple males, and some female insects have evolved multiple compartments for sperm storage. Sperm storage and sperm viability were investigated in two firefly species, Photinus greeni and P. ignitus, which differ in the morphology of the female reproductive tract. Although the primary spermatheca is similar in both species, P. greeni females have an additional, conspicuous outpocketing within the bursa copulatrix whose potential role in sperm storage was investigated in this study. An assay that distinguishes between live and dead sperm was used to examine sperm viability in male seminal vesicles and sperm storage sites within the female reproductive tract. For both Photinus species, sperm from male seminal vesicles showed significantly higher viability compared to sperm from the primary spermatheca of single mated females. In single mated P. greeni females, sperm taken from the channel outpocketing (secondary spermatheca) showed significantly higher viability compared to sperm from the primary spermatheca. This sperm viability difference was not evident in double mated females. There were no significant differences between P. greeni and P. ignitus females in the viability of sperm from the primary spermatheca. These studies contribute to our understanding of post-mating processes that may influence paternity success, and suggest that sexual conflict over control of fertilizations may occur in multiply mated firefly females.  相似文献   

20.
Reproductive isolation restricts genetic exchange between species. Various pre- and post-mating barriers, such as behavior, physiology and gametic incompatibility, have been shown to evolve in sympatry. In certain scenarios, isolation can be asymmetrical, where species differentially prefer conspecifics. We examined sexual isolation via conspecific mate preference between Gambusia affinis and G. geiseri in both sexes. To investigate male contribution to sexual isolation, we compared the number of mating attempts (gonopodial thrusts) directed at either a conspecific or a heterospecific female, in both species. We also examined sperm priming and expenditure in males in the presence of conspecific or heterospecific females. We then measured female preference for either a conspecific or heterospecific male, in both species. We found that males of both species preferred to mate with conspecific females, but showed no difference in sperm production or expenditure between conspecific and heterospecific females. Females of both species did not prefer conspecific over heterospecific males. Our results suggest that sexual isolation might be mediated by male mate choice in this system and not female choice, suggesting that there is asymmetrical reproductive isolation between the sexes in G. affinis and G. geiseri, but symmetrical species isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号