首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For investigation of the genes of proteins associated in vivo with botulinum neurotoxin (BoNT), polymerase chain reaction (PCR) experiments were carried out with oligonucleotide primers designed to regions of the nontoxic-nonhemagglutinin (NTNH) gene ofClostridium botulinum type C. The primers were used to amplify a DNA fragment from genomic DNA ofC. botulinum types A, B, E, F, G and toxigenic strains ofClostridium barati andClostridium butyricum. The amplified product from all of these strains hybridized with an internal oligonucleotide probe, whereas all nontoxigenic clostridia tested gave no PCR product and showed no reaction with the probe. TheNTNH gene was shown to be located upstream of the gene encoding BoNT, thereby revealing a conserved structure for genes encoding the proteins of the M complex of the progenitor botulinum toxin in these organisms. The sequence of theNTNH gene of nonproteolyticC. botulinum type F was determined by PCR amplification and sequencing of overlapping cloned fragments. NTNH/F showed 71% and 61% identity with NTNH ofC. botulinum type E and type C respectively.  相似文献   

2.
A specific and sensitive combined selection and enrichment PCR procedure was developed for the detection of Clostridium botulinum types B, E, and F in fecal samples from slaughtered pigs. Two enrichment PCR assays, using the DNA polymerase rTth, were constructed. One assay was specific for the type B neurotoxin gene, and the other assay was specific for the type E and F neurotoxin genes. Based on examination of 29 strains of C. botulinum, 16 strains of other Clostridium spp., and 48 non-Clostridium strains, it was concluded that the two PCR assays detect C. botulinum types B, E, and F specifically. Sample preparation prior to the PCR was based on heat treatment of feces homogenate at 70°C for 10 min, enrichment in tryptone-peptone-glucose-yeast extract broth at 30°C for 18 h, and DNA extraction. The detection limits after sample preparation were established as being 10 spores per g of fecal sample for nonproteolytic type B, and 3.0 × 103 spores per g of fecal sample for type E and nonproteolytic type F with a detection probability of 95%. Seventy-eight pig fecal samples collected from slaughter houses were analyzed according to the combined selection and enrichment PCR procedure, and 62% were found to be PCR positive with respect to the type B neurotoxin gene. No samples were positive regarding the type E and F neurotoxin genes, indicating a prevalence of less than 1.3%. Thirty-four (71%) of the positive fecal samples had a spore load of less than 4 spores per g. Statistical analysis showed that both rearing conditions (outdoors and indoors) and seasonal variation (summer and winter) had significant effects on the prevalence of C. botulinum type B, whereas the effects of geographical location (southern and central Sweden) were less significant.  相似文献   

3.
Comparison of genes encoding type F botulinum neurotoxin progenitor complex in strains of proteolytic Clostridium botulinum strain Langeland, nonproteolytic Clostridium botulinum strain 202F, and Clostridium barati strain ATCC 43256 reveals an identical organization of genes encoding a protein of molecular mass of approx. 47 kDa (P-47), nontoxic-nonhemagglutinin (NTNH) and botulinum toxin (BoNT). Although homology between the protein components of the complexes encoded by these different species all producing botulinum neurotoxin type F is considerable (approx. 69–88% identity), exceptionally high homology is observed between the C-termini of the P-47s (approx. 96% identity) and the NTNHs (approx. 94% identity) encoded by Clostridium botulinum type F strain Langeland and Clostridium botulinum type A strain Kyoto. Such a region of extremely high sequence identity is strongly indicative of recombination in these strains synthesizing botulinum neurotoxins of different antigenic types. Received: 13 April 1998 / Accepted: 9 May 1998  相似文献   

4.
Denaturing high-performance liquid chromatography (DHPLC) is a recently developed technique for rapid screening of nucleotide polymorphisms in PCR products. We used this technique for the identification of type A, B, E, and F botulinum neurotoxin genes. PCR products amplified from a conserved region of the type A, B, E, and F botulinum toxin genes from Clostridium botulinum, neurotoxigenic C. butyricum type E, and C. baratii type F strains were subjected to both DHPLC analysis and sequencing. Unique DHPLC peak profiles were obtained with each different type of botulinum toxin gene fragment, consistent with nucleotide differences observed in the related sequences. We then evaluated the ability of this technique to identify botulinal neurotoxigenic organisms at the genus and species level. A specific short region of the 16S rRNA gene which contains genus-specific and in some cases species-specific heterogeneity was amplified from botulinum neurotoxigenic clostridia and from different food-borne pathogens and subjected to DHPLC analysis. Different peak profiles were obtained for each genus and species, demonstrating that the technique could be a reliable alternative to sequencing for the rapid identification of food-borne pathogens, specifically of botulinal neurotoxigenic clostridia most frequently implicated in human botulism.  相似文献   

5.
The gene organization and nucleotide sequence of the type A and B BoNT-gene clusters in Clostridium botulinum strain NCTC 2916 were studied. The aim was to clarify the organization of genes within C. botulinum type A strains possessing an unexpressed BoNT/B gene. The BoNT/A-gene cluster includes genes encoding BoNT, NTNH and a part of P-47 (the gene for this protein was reported in strains of C. botulinum types E and F). Clustered with the silent BoNT/B gene were genes encoding NTNH, P-21 and HA-33. Sequencing analysis of the NTNHs revealed the presence of 471 amino acids identical in the type B and A gene clusters. This gene organization contrasts markedly with the purported organization in strain NCTC 2916 described by Henderson et al. (FEMS Microbiol. Lett. 140, 151–158). In type A(B) strain NCTC 2916, the neurotoxin gene is of type BoNT/A1 within a gene cluster that has identical organization to that found in BoNT/A2 type strains; these observations may be significant in establishing the origin of the BoNT-gene cluster. Received: 28 July 1997 / Accepted: 15 October 1997  相似文献   

6.
Botulism is diagnosed by detecting botulinum neurotoxin and Clostridium botulinum cells in the patient and in suspected food samples. In this study, a multiplex PCR assay for the detection of Clostridium botulinum types A, B, E, and F in food and fecal material was developed. The method employs four new primer pairs with equal melting temperatures, each being specific to botulinum neurotoxin gene type A, B, E, or F, and enables a simultaneous detection of the four serotypes. A total of 43 C. botulinum strains and 18 strains of other bacterial species were tested. DNA amplification fragments of 782 bp for C. botulinum type A alone, 205 bp for type B alone, 389 bp for type E alone, and 543 bp for type F alone were obtained. Other bacterial species, including C. sporogenes and the nontoxigenic nonproteolytic C. botulinum-like organisms, did not yield a PCR product. Sensitivity of the PCR for types A, E, and F was 102 cells and for type B was 10 cells per reaction mixture. With a two-step enrichment, the detection limit in food and fecal samples varied from 10−2 spore/g for types A, B, and F to 10−1 spore/g of sample material for type E. Of 72 natural food samples investigated, two were shown to contain C. botulinum type A, two contained type B, and one contained type E. The assay is sensitive and specific and provides a marked improvement in the PCR diagnostics of C. botulinum.  相似文献   

7.

Background

Proteolytic Clostridium botulinum is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of C. botulinum. The recent determination of the genome sequence of C. botulinum has allowed comparative genomic indexing using a DNA microarray.

Results

Whole genome microarray analysis revealed that 63% of the coding sequences (CDSs) present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic C. botulinum and the closely related C. sporogenes tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to C. sporogenes), and the flagellar glycosylation island (FGI). These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5) has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI.

Conclusion

Proteolytic C. botulinum has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic C. botulinum, and is suitable for clinical and forensic investigations of botulism outbreaks.  相似文献   

8.
Botulism due to type F botulinum neurotoxin (BoNT/F) is rare (<1% of cases), and only a limited number of clostridial strains producing this toxin type have been isolated. As a result, analysis of the diversity of genes encoding BoNT/F has been challenging. In this study, the entire bont/F nucleotide sequences were determined from 33 type F botulinum toxin-producing clostridial strains isolated from environmental sources and botulism outbreak investigations. We examined proteolytic and nonproteolytic Clostridium botulinum type F strains, bivalent strains, including Bf and Af, and Clostridium baratii type F strains. Phylogenetic analysis revealed that the bont/F genes examined formed 7 subtypes (F1 to F7) and that the nucleotide sequence identities of these subtypes differed by up to 25%. The genes from proteolytic (group I) C. botulinum strains formed subtypes F1 through F5, while the genes from nonproteolytic (group II) C. botulinum strains formed subtype F6. Subtype F7 was composed exclusively of bont/F genes from C. baratii strains. The region of the bont/F5 gene encoding the neurotoxin light chain was found to be highly divergent compared to the other subtypes. Although the bont/F5 nucleotide sequences were found to be identical in strains harboring this gene, the gene located directly upstream (ntnh/F) demonstrated sequence variation among representative strains of this subtype. These results demonstrate that extensive nucleotide diversity exists among genes encoding type F neurotoxins from strains with different phylogenetic backgrounds and from various geographical sources.Botulism is a potentially fatal disease caused solely by the action of serologically distinct neurotoxins (BoNT/A, -B, -C, -D, -E, -F, or -G) which prevent acetylcholine release at neuromuscular junctions, resulting in paralysis. Food-borne botulism may result from the ingestion of a preformed toxin that is produced in inadequately preserved food. Under certain conditions, botulinum neurotoxin-producing Clostridium sp. may colonize and produce toxin in wounds (wound botulism) or in the intestine (infant botulism or adult colonization). Globally, human botulism cases are associated with botulinum neurotoxin serotypes A, B, E, and rarely F. The Centers for Disease Control and Prevention (CDC) maintains active surveillance for botulism cases in the United States. Of 1,269 U.S. cases of botulism reported to the CDC between 1981 and 2002, approximately 1% were due to type F toxin (13). An additional 10 cases of type F botulism were reported to the CDC from 2003 to 2007 (http://www.cdc.gov/nationalsurveillance/botulism_surveillance.html).Type F botulism was first described in 1960 following an outbreak occurring in Denmark involving liver paste (30). The organism isolated in this outbreak metabolically resembled proteolytic Clostridium botulinum strains of types A and B. In a subsequent outbreak, type F toxin was found to be produced by a nonproteolytic C. botulinum strain isolated from venison jerky (29). Bivalent toxin-producing strains have been described, including Bf strains isolated from infants in the United States and England (1, 16, 17, 35) and an Af strain isolated from individuals in Argentina with food-borne botulism (11). Bivalent strains may produce higher titers of one toxin type, which are denoted with a capital letter. The only reported organism isolated from infants with botulism due to type F toxin alone (i.e., not associated with additional serotypes as in bivalent strains) is Clostridium baratii (2, 14, 24). In addition, C. baratii type F has been isolated from adults with botulism (28) as well as suspect foods associated with botulism cases (15; CDC, unpublished data).Botulinum neurotoxin genes (bont) are typically found within toxin gene clusters that include other genes encoding components of the toxin complex (ha70, ha17, ha33, ntnh), regulatory proteins (botR), or proteins with unknown functions (p47, orfX1, orfX2, orfX3). Two general toxin gene cluster arrangements have been described, including the orfX cluster (orfX3-orfX2-orfX1-botR-p47-ntnh-bont) and the ha cluster (ha70-ha17-ha33-botR-ntnh-bont) (21, 22). The bont/F genes of type F and type Bf strains examined by Hill et al. (21) were found in an orfX cluster.The amino acid sequence identities of the BoNT serotypes A to G range from approximately 35 to 70% (36). In addition, within nearly all toxin serotypes, various levels of amino acid sequence variation have been observed, resulting in the identification of toxin subtypes (20, 36, 37).Although a limited number of genes encoding type F botulinum neurotoxin have been sequenced, a comparison of sequences available in public databases indicates that significant diversity exists within this serotype. The nucleotide sequence identity of the type F neurotoxin gene from the proteolytic strain Langeland differs from that of the gene in the nonproteolytic strain 202F by 7%. The type F gene from C. baratii strain ATCC 43756 differs from those of Langeland and 202F by 18% and 20%, respectively. Although the bivalent (Bf) strain CDC3281 is phenotypically proteolytic, the toxin gene shows greater similarity to those from nonproteolytic strains (34). In addition to metabolic differences observed between proteolytic and nonproteolytic C. botulinum strains as well as C. baratii, these organisms are phylogenetically distinct based on differences among their 16S rRNA sequences (5, 20).In order to define the degree of genetic diversity among strains encoding botulinum neurotoxin type F, we sequenced the bont/F gene and partially characterized the toxin gene cluster by using a panel of 33 strains with diverse origins. These strains were selected from those available in the CDC culture collection as well as several isolated in Argentina. The only reported Af strains have been isolated in Argentina. Among 68 outbreaks of serotype-confirmed food-borne botulism in Argentina between 1922 and 2007, type F was isolated in two outbreaks, and type Af was isolated in one outbreak. In addition, Lúquez et al. (26) reported isolation of type F and Af strains from Argentine soils.Here, we report that analysis of the bont/F genes from the strains examined in this study revealed a high degree of nucleotide sequence heterogeneity and the identification of seven type F subtypes (F1 to F7). In addition, the nucleotide sequence of one subtype (F5) has not been previously reported and contains evidence of recombination compared to the other subtypes.  相似文献   

9.
A rapid, quantitative PCR assay (TaqMan assay) which quantifies Clostridium botulinum type E by amplifying a 280-bp sequence from the botulinum neurotoxin type E (BoNT/E) gene is described. With this method, which uses the hydrolysis of an internal fluoregenic probe and monitors in real time the increase in the intensity of fluorescence during PCR by using the ABI Prism 7700 sequence detection system, it was possible to perform accurate and reproducible quantification of the C. botulinum type E toxin gene. The sensitivity and specificity of the assay were verified by using 6 strains of C. botulinum type E and 18 genera of 42 non-C. botulinum type E strains, including strains of C. botulinum types A, B, C, D, F, and G. In both pure cultures and modified-atmosphere-packaged fish samples (jack mackerel), the increase in amounts of C. botulinum DNA could be monitored (the quantifiable range was 102 to 108 CFU/ml or g) much earlier than toxin could be detected by mouse assay. The method was applied to a variety of seafood samples with a DNA extraction protocol using guanidine isothiocyanate. Overall, an efficient recovery of C. botulinum cells was obtained from all of the samples tested. These results suggested that quantification of BoNT/E DNA by the rapid, quantitative PCR method was a good method for the sensitive assessment of botulinal risk in the seafood samples tested.  相似文献   

10.

Background

Thailand has had several foodborne outbreaks of botulism, one of the biggest being in 2006 when laboratory investigations identified the etiologic agent as Clostridium botulinum type A. Identification of the etiologic agent from outbreak samples is laborious using conventional microbiological methods and the neurotoxin mouse bioassay. Advances in molecular techniques have added enormous information regarding the etiology of outbreaks and characterization of isolates. We applied these methods in three outbreaks of botulism in Thailand in 2010.

Methodology/Principal Findings

A total of 19 cases were involved (seven each in Lampang and Saraburi and five in Maehongson provinces). The first outbreak in Lampang province in April 2010 was associated with C. botulinum type F, which was detected by conventional methods. Outbreaks in Saraburi and Maehongson provinces occurred in May and December were due to C. botulinum type A1(B) and B that were identified by conventional methods and molecular techniques, respectively. The result of phylogenetic sequence analysis showed that C. botulinum type A1(B) strain Saraburi 2010 was close to strain Iwate 2007. Molecular analysis of the third outbreak in Maehongson province showed C. botulinum type B8, which was different from B1–B7 subtype. The nontoxic component genes of strain Maehongson 2010 revealed that ha33, ha17 and botR genes were close to strain Okra (B1) while ha70 and ntnh genes were close to strain 111 (B2).

Conclusion/Significance

This study demonstrates the utility of molecular genotyping of C. botulinum and how it contributes to our understanding the epidemiology and variation of boNT gene. Thus, the recent botulism outbreaks in Thailand were induced by various C. botulinum types.  相似文献   

11.
The cluster of genes encoding the botulinum progenitor toxin and the upstream region including p21 and p47 were divided into three different gene arrangements (class I–III). To determine the gene similarity of the type E neurotoxin (BoNT/E) complex to other types, the gene organization in the upstream region of the nontoxic-nonhemagglutinin gene (ntnh) was investigated in chromosomal DNA from Clostridium botulinum type E strain Iwanai and C. butyricum strain BL6340. The gene cluster of type E progenitor toxin (Iwanai and BL6340) was similar to those of type F and type A (from infant botulism in Japan), but not to those of types A, B, and C. Though genes for the hemagglutinin component and P21 were not discovered, genes encoding P47, NTNH, and BoNT were found in type E strain Iwanai and C. butyricum strain BL6340. However, the genes of ORF-X1 (435 bp) and ORF-X2 (partially sequenced) were present just upstream of that of P47. The orientation of these genes was in inverted direction to that of p47. The gene cluster of type E progenitor toxin (Iwanai and BL6340) is, therefore, a specific arrangement (class IV) among the genes encoding components of the BoNT complex.  相似文献   

12.
Botulinum neurotoxins (BoNTs) are produced by phenotypically and genetically different Clostridium species, including Clostridium botulinum and some strains of Clostridium baratii (serotype F) and Clostridium butyricum (serotype E). BoNT-producing clostridia responsible for human botulism encompass strains of group I (secreting proteases, producing toxin serotype A, B, or F, and growing optimally at 37°C) and group II (nonproteolytic, producing toxin serotype E, B, or F, and growing optimally at 30°C). Here we report the development of real-time PCR assays for genotyping C. botulinum strains of groups I and II based on flaVR (variable region sequence of flaA) sequences and the flaB gene. Real-time PCR typing of regions flaVR1 to flaVR10 and flaB was optimized and validated with 62 historical and Canadian C. botulinum strains that had been previously typed. Analysis of 210 isolates of European origin allowed the identification of four new C. botulinum flaVR types (flaVR11 to flaVR14) and one new flaVR type specific to C. butyricum type E (flaVR15). The genetic diversity of the flaVR among C. botulinum strains investigated in the present study reveals the clustering of flaVR types into 5 major subgroups. Subgroups 1, 3, and 4 contain proteolytic Clostridium botulinum, subgroup 2 is made up of nonproteolytic C. botulinum only, and subgroup 5 is specific to C. butyricum type E. The genetic variability of the flagellin genes carried by C. botulinum and the possible association of flaVR types with certain geographical areas make gene profiling of flaVR and flaB promising in molecular surveillance and epidemiology of C. botulinum.  相似文献   

13.
The organization of the clusters of genes encoding proteins of the botulinum neurotoxin (BoNT) progenitor complex was elucidated in a strain of Clostridium botulinum producing type B and F neurotoxins. With PCR and sequencing strategies, the type B BoNT-gene cluster was found to be composed of genes encoding BoNT/B, nontoxic nonhemagglutinin component (NTNH), P-21, and the hemagglutinins HA-33, HA-17, and HA-70, whereas the type F BoNT-gene cluster has genes encoding BoNT/F, NTNH, P-47, and P-21. Comparative sequence analysis showed that BoNT/F in type BF strain 3281 shares highest homology with BoNT/F of non-proteolytic (group II) C. botulinum whereas NTNH and P-21 in the type F cluster of strain 3281 are more similar to the corresponding proteins in proteolytic (group I) type F C. botulinum. These findings indicate diverse evolutionary origins for genes encoding BoNT/F and its associated non-toxic proteins, although the genes are contiguous. By contrast, sequence comparisons indicate that genes encoding BoNT/B and associated non-toxic proteins in strain 3281 possess a similar evolutionary origin. It was demonstrated that the genes present in the BoNT/B gene cluster of this type BF strain show exceptionally high homology with the equivalent genes in the silent BoNT/B gene cluster of C. botulinum type A(B), possibly indicating their common ancestry. Received: 30 March 1998 / Accepted: 21 May 1998  相似文献   

14.
Botulinum neurotoxins are produced as a toxin complex (TC) which consists of neurotoxin (NT) and neurotoxin associated proteins. The characterization of NT in its native state is an essential step for developing diagnostics and therapeutic countermeasures against botulism. The presence of NT genes was validated by PCR amplification of toxin specific fragments from genomic DNA of Clostridium botulinum strain PS-5 which indicated the presence of both serotype A and B genes on PS-5 genome. Further, TC was purified and characterized by Western blotting, Digoxin-enzyme linked immunosorbent assay, endopeptidase activity assay, and Liquid chromatography–Mass spectrometry. The data showed the presence of serotype A specific neurotoxin. Based on the analysis of neurotoxin genes and characterization of TC, PS-5 strain appears as a serotype A (B) strain of C. botulinum which produces only serotype A specific TC in the cell culture medium.  相似文献   

15.
Botulinum neurotoxin (BoNT) producing clostridia contain genes encoding a specific neurotoxin serotype (A–G) and nontoxic associated proteins that form the toxin complex. The nontoxic nonhemagglutinin (NTNH) is a conserved component of the toxin complex in all seven toxin types. A real-time PCR assay that utilizes a locked nucleic acid hydrolysis probe to target the NTNH gene was developed to detect bacterial strains harboring the botulinum neurotoxin gene cluster. The specificity of the assay for Clostridium botulinum types A–G, Clostridium butyricum type E and Clostridium baratii type F was demonstrated using a panel of 73 BoNT producing clostridia representing all seven toxin serotypes. In addition, exclusivity of the assay was demonstrated using non-botulinum toxin producing clostridia (7 strains) and various enteric bacterial strains (n = 27). Using purified DNA, the assay had a sensitivity of 4–95 genome equivalents. C. botulinum type A was detected directly in spiked stool samples at 102–103 CFU/ml. Stool spiked with 1 CFU/ml was detected when the sample was inoculated into enrichment broth and incubated for 24 h. These results indicate that the NTNH real-time PCR assay can be used to screen enrichment cultures of primary specimens at earlier time points (24 h) than by toxin detection of unknown culture supernatants (up to 5 days).  相似文献   

16.
Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.  相似文献   

17.
The germination of spores of a neurotoxigenic Clostridium butyricum strain (BL 6340), which was isolated from infant botulism in Italy, and that of a non-toxigenic C. butyricum type strain (NCIB 7423) were studied. The spores of BL 6340 strain were killed at 80 C for 10 min, and required the mixture of L-alanine, L-lactate, glucose and bicarbonate for their optimal germination. These characteristics are the same as those of Clostridium botulinum type E strain, but different from those of NCIB 7423 strain. In a hybridization test, however, the labeled DNAs extracted from NCIB 7423 strain highly (98%) hybridized to the DNAs of the BL 6340 strain, but little (45%) to the DNAs of C. botulinum type E strain. The biochemical properties of the BL 6340 and NCIB 7423 strains were identical, but different from those of C. botulinum type E. These data confirmed that the BL 6340 strain belongs to C. butyricum species, but that only its characteristics of toxin production, its minimum requirements for germination, and the behavior of its spores to heat treatment are the same as those of C. botulinum type E. When conventionally raised suckling mice were injected with 5 × 107 spores of BL 6340 strain intra- or orogastrically, botulism was not observed. However, 8- to 13-day-old mice had type E botulinum toxin in the large intestine 3 days after introduction of its spores.  相似文献   

18.
Type E botulinum toxin (BoNT/E)-producing Clostridium butyricum strains isolated from botulism cases or soil specimens in Italy and China were analyzed by using nucleotide sequencing of the bont/E gene, random amplified polymorphic DNA (RAPD) assay, pulsed-field gel electrophoresis (PFGE), and Southern blot hybridization for the bont/E gene. Nucleotide sequences of the bont/E genes of 11 Chinese isolates and of the Italian strain BL 6340 were determined. The nucleotide sequences of the bont/E genes of 11 C. butyricum isolates from China were identical. The deduced amino acid sequence of BoNT/E from the Chinese isolates showed 95.0 and 96.9% identity with those of BoNT/E from C. butyricum BL 6340 and Clostridium botulinum type E, respectively. The BoNT/E-producing C. butyricum strains were divided into the following three clusters based on the results of RAPD assay, PFGE profiles of genomic DNA digested with SmaI or XhoI, and Southern blot hybridization: strains associated with infant botulism in Italy, strains associated with food-borne botulism in China, and isolates from soil specimens of the Weishan lake area in China. A DNA probe for the bont/E gene hybridized with the nondigested chromosomal DNA of all toxigenic strains tested, indicating chromosomal localization of the bont/E gene in C. butyricum. The present results suggest that BoNT/E-producing C. butyricum is clonally distributed over a vast area.  相似文献   

19.
Since deaths of waterfowls have frequently been observed in Lake Kahoku near Kanazawa city, Japan, we attempted an ecological study on Clostridium botulinum type C in four other lakes as well as Lake Kahoku. One hundred and twenty-nine (56%) of 230 soil samples collected gave rise to lethal toxicity in mice with the characteristic “wasp-waist” symptom. All of the 51 samples arbitrarily selected were neutralized by C. botulinum type C antitoxic serum. A further seasonal study throughout the year at a given shore area of Lake Kahoku disclosed that nearly all samples gave rise to toxicity due to C. botulinum type C during the autumn season when the most waterfowls congregate. Toxigenic strains of C. botulinum type C were isolated together with nontoxigenic strains that were culturally and biochemically similar to the toxigenic strains. Both the toxigenic and nontoxigenic strains were equally agglutinable by an antiserum prepared against one of the nontoxigenic strains. Further extensive studies on the specificity of the agglutination method for identification were performed with 112 strains of 46 clostridial species. None of the strains used except some strains of C. novyi type A and a strain of C. botulinum type D was agglutinable. Based on the findings for cultural, biochemical, and agglutinable properties, the nontoxigenic strains were identified as C. botulinum type C. Also, C. novyi type A isolates showing colonies covered with a small pearly layer zone but surrounded by an aberrantly wide lecithinase zone are discussed.  相似文献   

20.
Avian and fish botulism outbreaks have been recorded since 1999 in eastern Lake Erie. These outbreaks are caused by Clostridium botulinum type E, a toxin-producing bacteria that is found in anoxic substrates rich in organic material. We studied the environmental conditions present in eastern Lake Erie during 2002, a year when several botulism outbreaks were observed. We also tested for the presence of C. botulinum type E in lake sediments. Samples were taken at six stations from two sites of different depths in the Dunkirk (New York, USA) area. The depth of the sampling sites influenced physico-chemical and biological processes in the sediments. We used the quantitative polymerase chain reaction (Q-PCR) to quantify the levels of C. botulinum type E in the samples. Sediment samples contained a patchy distribution of type E spore concentrations (from not detectable to 5520 DNA copies/mg). Samples of benthic invertebrates tested positive for C. botulinum type E spores in tissues (Gammarus 2028 DNA copies/mg, oligochaetes 428 DNA copies/mg, chironomids 148 DNA copies/mg and dreissenid mussels 715 DNA copies/mg). Principal components analysis (PCA) from inshore stations indicated that a decrease in dissolved oxygen, pH and redox potential near the sediment was associated to an increase in specific conductance and the type E toxin gene in sediments. We also found that C. botulinum type E spores are present in sediments at different depths and at different times through the ice-free season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号