首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mating positions and the evolution of asymmetric insect genitalia   总被引:1,自引:0,他引:1  
Genital asymmetry is a recurring phenomenon in insect morphology and current data suggest that it has arisen multiple times independently in several neopteran orders. Various explanations have been proposed, including space constraints, ecological constraints, sexual selection via antagonistic coevolution, and sexual selection via changed mating positions. Each of these hypotheses may best explain individual cases, but only the last seems to account for the large majority of insect genital asymmetries. Here I summarize the basic assumptions and evolutionary steps implied in this model and review the evidence for each of them. Several components of this scenario can be easily tested, for example by including genital asymmetries and mating positions in phylogenetic analyses. Others require in-depth analyses of the function of asymmetric genital structures, targeted comparative analyses (e.g., of taxa with sex-role reversal, taxa with reversal to symmetry, etc.), and of female genital neuroanatomy.  相似文献   

2.
Sexual selection is thought to counteract natural selection on the grounds that secondary sexual traits are inherently costly and evolve at the expense of naturally selected traits. It is therefore commonly predicted that increased sexual selection is associated with decreased physiological tolerance or ecological plasticity. Using phylogenetic comparative methods, we test this prediction by exploring relationships between traits assumed to be sexually selected (plumage dichromatism and song structure) and traits assumed to be naturally selected (altitudinal range and habitat range) in a diverse family of tropical birds. Contrary to expectations, we find that taxa with higher levels of dichromatism, and lower song pitch, occupy a wider variety of habitats and elevations. In other words, indices of sexual selection are positively related to two standard measures of ecological generalism. One interpretation of this pattern is that sexual selection combines synergistically with natural selection, thereby increasing physiological tolerance or the propensity to adapt to novel environments. An alternative possibility is that ecological generalism increases population density, which in turn promotes sexual selection in the form of greater competition for mates. Overall, our results suggest that a synergism between natural selection and sexual selection may be widespread, but the processes underlying this pattern remain to be investigated.  相似文献   

3.
Extreme morphologies of many insular taxa suggest that islands have unusual properties that influence the tempo and mode of evolution. Yet whether insularity per se promotes rapid phenotypic evolution remains largely untested. We extend a phylogenetic comparative approach to test the influence of novel environments versus insularity on rates of body size and sexual size dimorphism diversification in Anolis . Rates of body size diversification among small-island and mainland species were similar to those of anole species on the Greater Antilles. However, the Greater Antilles taxa that colonized small islands and the mainland are ecologically nonrandom: rates of body size diversification among small-island and mainland species are high compared to their large-island sister taxa. Furthermore, rates of diversification in sexual size dimorphism on small islands are high compared to all large-island and mainland lineages. We suggest that elevated diversifying selection, particularly as a result of ecological release, may drive high rates of body size diversification in both small-island and mainland novel environments. In contrast, high abundance (prevalent among small-island lizard communities) mediating intraspecific resource competition and male–male competition may explain why sexual size dimorphism diversifies faster among small-island lineages than among their mainland and large-island relatives.  相似文献   

4.
Morphological divergence among species may be constrained by the pattern of genetic variances and covariances among traits within species. Assessing the existence of such a relationship in nature requires information on the stability of intraspecific correlation and covariance structure and the correspondence of this structure to the pattern of evolutionary divergence within a lineage. Here, we investigate these issues for nine morphological traits and 15 species of stalk-eyed flies in the genus Diasemopsis. Within-species matrices for these traits were generated from phenotypic data for all the Diasemopsis species and from genetic data for a single Diasemopsis species, D. dubia. The among-species pattern of divergence was assessed by calculating the evolutionary correlations for all pairwise combinations of the morphological traits along the phylogeny of these species. Comparisons of intraspecific matrices reveal significant similarity among all species in the phenotypic correlations matrices but not the covariance matrices. In addition, the differences in correlation structure that do exist among species are not related to their phylogenetic placement or change in the means of the traits. Comparisons of the phenotypic and phylogenetic matrices suggest a strong relationship between the pattern of evolutionary change among species and both the intraspecific correlation structure and the stability of this structure among species. The phenotypic and the phylogenetic matrices are significantly similar, and pairs of traits whose intraspecific correlations are more stable across taxa exhibit stronger coevolution on the phylogeny. These results suggest either the existence of strong constraints on the pattern of evolutionary change or a consistent pattern of correlated selection shaping both the phenotypic and phylogenetic matrices. The genetic correlation structure for D. dubia, however, does not correspond with patterns found in the phenotypic and phylogenetic data. Possible reasons for this disagreement are discussed.  相似文献   

5.
In a population whose members' genomes are subject to degradation by random mutations, the heritable vigour of the most common phenotypes is unquestionable (though not necessarily optimal), and that of fringe individuals is always suspect. Natural selection will therefore support the evolution of an affinity for modal mates (i.e. koinophilia). The population's genetic make-up can then not readily be invaded by non-cryptic mutations. This imposes considerable phenotypic conservatism on sexually reproducing creatures, and inexorably canalizes them into sexually isolated, phenotypically distinct species. The model predicts, and the empiric data confirms, that the phenotypic gaps between largely monomorphic sexual species do not characterize the taxonomy of longstanding apomicts, where variation below the genus level is often continuous. The bias against the propagation of all forms of phenotypic novelty and non-conformity stabilizes social animals against selfish mutants, thus removing the barriers to the evolution of "group adaptations".  相似文献   

6.
Recent research on diverse animal taxa has revealed that male adaptations to sperm competition often lead to a conflict with female interests. That is, male attempts to increase their own fertilization success can result in a reduction of female fitness. This sexual conflict has led to selection for a variety of female adaptations that apparently reduce male-imposed costs. Understanding the causes and consequences of sexual conflict arising from adaptations to sperm competition offers much potential for new insight into the coevolution of male and female sexual strategies.  相似文献   

7.
Sexual dimorphism, or differences between the sexes, is pervasive in both plants and animals despite genetic and developmental constraints on its evolution. This special issue of the American Naturalist, which is based on the annual Vice Presidential Symposium, documents how the underlying processes responsible for the presence and extent of sexual dimorphism can be qualified and quantified by a variety of approaches. These include estimates of the G matrix and phenotypic selection, artificial selection, phenotypic manipulation of hormones, estimates of sex-differential sensitivity to maternal effects, among-population and phenotypic plasticity studies, and the mapping of sexual dimorphism onto a phylogeny. The questions addressed in the articles in this issue vary depending on the motivation for the studies and the taxa being investigated, but taken together, they show how the integration of genetic, developmental, physiological, ecological, and phylogenetic approaches can illuminate the processes underlying the evolution of sexual dimorphism.  相似文献   

8.
The signalling function of melanin‐based colouration is debated. Sexual selection theory states that ornaments should be costly to produce, maintain, wear or display to signal quality honestly to potential mates or competitors. An increasing number of studies supports the hypothesis that the degree of melanism covaries with aspects of body condition (e.g. body mass or immunity), which has contributed to change the initial perception that melanin‐based colour ornaments entail no costs. Indeed, the expression of many (but not all) melanin‐based colour traits is weakly sensitive to the environment but strongly heritable suggesting that these colour traits are relatively cheap to produce and maintain, thus raising the question of how such colour traits could signal quality honestly. Here I review the production, maintenance and wearing/displaying costs that can generate a correlation between melanin‐based colouration and body condition, and consider other evolutionary mechanisms that can also lead to covariation between colour and body condition. Because genes controlling melanic traits can affect numerous phenotypic traits, pleiotropy could also explain a linkage between body condition and colouration. Pleiotropy may result in differently coloured individuals signalling different aspects of quality that are maintained by frequency‐dependent selection or local adaptation. Colouration may therefore not signal absolute quality to potential mates or competitors (e.g. dark males may not achieve a higher fitness than pale males); otherwise genetic variation would be rapidly depleted by directional selection. As a consequence, selection on heritable melanin‐based colouration may not always be directional, but mate choice may be conditional to environmental conditions (i.e. context‐dependent sexual selection). Despite the interest of evolutionary biologists in the adaptive value of melanin‐based colouration, its actual role in sexual selection is still poorly understood.  相似文献   

9.
Abstract. Charadrii (shorebirds, gulls, and alcids) have an unusual diversity in their sexual size dimorphism, ranging from monomorphism to either male-biased or female-biased dimorphism. We use comparative analyses to investigate whether this variation relates to sexual selection through competition for mates or natural selection through different use of resources by males and females. As predicted by sexual selection theory, we found that in taxa with socially polygynous mating systems, males were relatively larger than females compared with less polygynous species. Furthermore, evolution toward socially polyandrous mating systems was correlated with decreases in relative male size. These patterns depend on the kinds of courtship displays performed by males. In taxa with acrobatic flight displays, males are relatively smaller than in taxa in which courtship involves simple flights or displays from the ground. This result remains significant when the relationship with mating system is controlled statistically, thereby explaining the enigma of why males are often smaller than females in socially monogamous species. We did not find evidence that evolutionary changes in sexual dimorphism relate to niche division on the breeding grounds. In particular, biparental species did not have greater dimorphism in bill lengths than uniparental species, contrary to the hypothesis that selection for ecological divergence on the breeding grounds has been important as a general explanation for patterns of bill dimorphism. Taken together, these results strongly suggest that sexual selection has had a major influence on sexual size dimorphism in Charadrii, whereas divergence in the use of feeding resources while breeding was not supported by our analyses.  相似文献   

10.
Developmental instability results from small, random perturbations to developmental processes of individual traits. Phenotypic outcomes of developmental instability include fluctuating asymmetry (FA, subtle deviations from perfect bilateral symmetry) and phenodeviance (minor morphological abnormalities). A great deal of research over the past 18 years has focused on the role of developmental instability in sexual selection. A driving force behind this research has been the developmental instability-sexual selection hypothesis, which posits that symmetry and lack of phenodeviance in secondary sexual traits are assessed by mates and rivals because they provide a reliable cue of individual genetic quality. The present article tests this hypothesis by evaluating its five main predictions using published results: expressions of developmental instability in secondary sexual traits should be (1) negatively correlated with mating success; (2) directly assessed by mates and sexual rivals; (3) heritable; (4) condition-dependent; and (5) negatively correlated with ornament size. The first two predictions receive considerable, though not ubiquitous, support from a range of animal species. However, FA in secondary sexual traits is generally not significantly heritable, indicating that FA is unlikely to reveal genetic quality that can be transmitted to offspring. Similarly, there is little evidence to support the predictions that FA is condition dependent, and that it is negatively phenotypically or genetically correlated with sexual trait size. Based on an evaluation of the evidence overall, it is concluded that this hypothesis is unlikely to be viable; it appears unlikely that mate choice for symmetry evolves by “good genes” sexual selection. Hypotheses that do not require asymmetry and phenodeviance to reveal heritable genetic quality may explain observed links between FA/phenodeviance and mating success. Results of a case study of Drosophila bipectinata are summarized, which reinforce this general conclusion. It is suggested that nonadditive genetic variation arising from an interaction between trait-specific developmental genes and genetic background may drive sexual selection for reducing developmental instability in some cases. Levels of developmental instability variation in a population may need to surpass a critical threshold for sexual selection to operate, possibly explaining some of the pronounced heterogeneity in the effect of developmental instability on sexual selection reported in the literature.  相似文献   

11.
Rosvall KA 《Behavioral ecology》2011,22(6):1131-1140
In spite of recent interest in sexual selection in females, debate exists over whether traits that influence female-female competition are sexually selected. This review uses female-female aggressive behavior as a model behavioral trait for understanding the evolutionary mechanisms promoting intrasexual competition, focusing especially on sexual selection. I employ a broad definition of sexual selection, whereby traits that influence competition for mates are sexually selected, whereas those that directly influence fecundity or offspring survival are naturally selected. Drawing examples from across animal taxa, including humans, I examine 4 predictions about female intrasexual competition based on the abundance of resources, the availability of males, and the direct or indirect benefits those males provide. These patterns reveal a key sex difference in sexual selection: Although females may compete for the number of mates, they appear to compete more so for access to high-quality mates that provide direct and indirect (genetic) benefits. As is the case in males, intrasexual selection in females also includes competition for essential resources required for access to mates. If mate quality affects the magnitude of mating success, then restricting sexual selection to competition for quantity of mates may ignore important components of fitness in females and underestimate the role of sexual selection in shaping female phenotype. In the future, understanding sex differences in sexual selection will require further exploration of the extent of mutual intrasexual competition and the incorporation of quality of mating success into the study of sexual selection in both sexes.  相似文献   

12.
Sexual coevolution in morphological and behavioral traits has rarely been studied. Using phylogenetic analyses, we explore relationships between sexual characters based on a new molecular phylogeny of 33 opisthobranch taxa (Aglajidae and Gastropteridae). Our measurements of these simultaneous hermaphrodites include male and female reproductive anatomy, mating behavior, and spatial gregariousness. After phylogenetic correction, we found evidence for correlated evolution between male and female reproductive organs such as the size of the seminal fluid producing prostate gland and that of the sperm digesting bursa copulatrix. Our findings suggest that reproductive trait variation is mediated by sexual coevolution, where putatively manipulative male organs evolved in association with female organs involved in sperm selection. Furthermore, low gregariousness was associated with long, reciprocal copulations. We interpret this result as an adaptation to infrequent mate encounters, where it pays to mate longer with and presumably transfer more sperm to a rare partner. Several complex reproductive traits were repeatedly gained or lost across our phylogeny. This pattern is consistent with a scenario in which sexual selection generates dynamic coevolutionary cycles similar to those expected under sexual antagonism. We finally outline approaches for experimentally assessing the proposed functional links that underlie the evolutionary correlations revealed by our study.  相似文献   

13.
Evolution of dimorphic breeding systems may involve changes in ecophysiological traits as well as floral morphology because of greater resource demands on females. Differences between related species suggest that ecophysiological traits should be heritable, and species with higher female frequencies should show greater sexual differentiation. We used modified partial diallel crossing designs to estimate narrow-sense heritabilities and genetic correlations of sex-specific ecophysiological and morphological traits in closely related gynodioecious Schiedea salicaria (13% females) and Schiedea adamantis (39% females). In S. salicaria, hermaphrodites and females differed in photosynthetic rate and specific leaf area (SLA). Narrow-sense heritabilities were significant for stomatal conductance, SLA and inflorescence number in hermaphrodites, and for SLA and inflorescence number in females. Schiedea adamantis had no sexual dimorphism in measured traits; stomatal conductance, stem number and inflorescence number were heritable in females, and stem number was heritable in hermaphrodites. In both species, significant genetic correlations of traits between sexes were rare, indicating that traits can evolve independently in response to sex-differential selection. Significant genetic correlations were detected between certain traits within sexes of both species. Low heritability of some ecophysiological traits may reflect low additive genetic variability or high phenotypic plasticity in these traits.  相似文献   

14.
Psychological evidence suggests that sex differences in morphology have been modified by sexual selection so as to attract mates (intersexual selection) or intimidate rivals (intrasexual selection). Women compete with each other for high quality husbands by advertising reproductive value in terms of the distribution of fat reserves and by exaggerating morphological indicators of youthfulness such as a small nose and small feet and pale, hairless skin. Men's physical appearance tends to communicate social dominance, which has the combined effects of intimidating reproductive rivals and attracting mates. In addition to their attractiveness and intimidatory effects, human secondary sexual characters also provide cues to hormonal status and phenotypic quality consistent with the good genes model of sexual selection (which includes parasite resistance). Low waist-hip ratio is sexually attractive in women and indicates a high estrogen/testosterone ratio (which favors reproductive function). Facial attractiveness provides honest cues to health and mate value. The permanently enlarged female breast appears to have evolved under the influence of both the good genes and the runaway selection mechanisms. The male beard is not obviously related to phenotypic quality and may have evolved through a process of runaway intersexual selection.  相似文献   

15.
The operational sex ratio (OSR) has long been assumed to be a key ecological factor determining the opportunity and direction of sexual selection. However, recent theoretical work has challenged this view, arguing that a biased OSR does not necessarily result in greater monopolisation of mates and therefore stronger sexual selection in the mate‐limited sex. Hence, the role of the OSR for shaping animal mating systems remains a conundrum in sexual selection research. Here we took a meta‐analytic approach to test whether OSR explains interspecific variation in sexual selection metrics across a broad range of animal taxa. Our results demonstrate that the OSR predicts the opportunity for sexual selection in males and the direction of sexual selection in terms of sex differences in both the opportunity for sexual selection and the Bateman gradient (i.e. the selection differential of mating success), as predicted by classic theory.  相似文献   

16.
The relatively small number of ova produced by a female can be fertilized by a single ejaculate in most species. Why females of many species mate with multiple males is therefore enigmatic, especially given that costs associated with remating have been well documented. Recently, it has been argued that females may remate at a maladaptive rate as an outcome of sexually antagonistic coevolution: the evolutionary tug-of-war between manipulation by one sex and resistance to being manipulated by the other sex. We tested this hypothesis experimentally for the evolution of the female remating interval in a naturally promiscuous species, Drosophila melanogaster. In two replicate populations, sexual selection was removed through enforced monogamous mating with random mate assignment, or retained in polyandrous controls. Monogamy constrains the reproductive success of mates to be identical, thereby converting prior conflicts between mates into opportunities for mutualism. Under these experimental conditions, the sexually antagonistic coevolution hypothesis generates explicit predictions regarding the direction of evolutionary change in female remating behaviour. These predictions are contingent upon the mechanism of male manipulation, which may be mediated biochemically by seminal fluids or behaviourally by courtship. Levels of divergence in female remating interval across lines, and in male ejaculatory and courtship effects on female remating, were quantified after 84 generations of selection. Data refute the hypothesis that the evolutionary change in female remating behaviour was due to sexually antagonistic coevolution of courtship signal and receiver traits. The data were, however, consistent with a hypothesis of sexual conflict mediated through ejaculate manipulation. Monogamy-line males evolved ejaculates that were less effective in inducing female non-receptivity and monogamy-line females evolved to remate less frequently, symptomatic of lowered resistance to ejaculate manipulation. The consistency of the results with alternative hypotheses to explain female promiscuity are discussed.  相似文献   

17.
In monogamous systems the fitness difference between males due to competition for mates is limited to one female. This constraint presumably impedes the action of sexual selection relative to polygynous systems. In this paper, we use formal selection theory to show how population size and the adult sex ratio constrain the force of sexual selection and phenotypic evolution under monogamy and polygyny. The force of sexual selection is ultimately constrained by the number of males in a population and the theoretical limit to the rate of male phenotypic evolution is realized if a single male mates with one or many females. These results imply that the force of sexual selection is not strictly constrained by monogamy. The constraint on female phenotypic evolution is typically higher than the constraint on males under polygyny and similar to selection on males in monogamous systems. The sexual asymmetry in the force of selection under polygyny--not necessarily weak sexual selection on males of monogamous systems--may explain the prominence of sexual dimorphism in polygynous systems.  相似文献   

18.
In species where females mate promiscuously, the reproductive success of males depends both on their ability to acquire mates (pre-copulatory sexual selection) and ability of their ejaculates to outcompete those of other males (post-copulatory sexual selection). Sperm competition theory predicts a negative relationship between investment in body traits favouring mate acquisition (secondary sexual characters, SSCs) and investment in ejaculate size or quality, due to the inherent costs of sperm production. In contrast, the phenotype-linked fertility hypothesis posits that male fertilizing efficiency is reliably reflected by the phenotypic expression of male SSCs, allowing females to obtain direct benefits by selecting more ornamented males as copulation partners. In this study, we investigated the relationships between male SSCs and size and quality (viability and longevity) of ejaculates allocated to females in mating trials of the freshwater crayfish Austropotamobius italicus. We showed that the relative size of male weapons, the chelae, was negatively related to ejaculate size, and that chelae asymmetry, resulting from regeneration of lost chelipeds, negatively covaried with sperm longevity. Moreover, males allocated more viable sperm to mates from their own rather than different stream of origin. Our findings thus suggest that, according to sperm competition theory, pre-copulatory sexual selection for large weapons used in male fighting may counteract post-copulatory sperm competition in this crayfish species, and that investment in cheliped regeneration may impair ejaculate quality.  相似文献   

19.
Phenotypic plasticity, the ability to adjust phenotype to the exposed environment, is often advantageous for organisms living in heterogeneous environments. Although the degree of plasticity appears limited in nature, many studies have reported low costs of plasticity in various species. Existing studies argue for ecological, genetic, or physiological costs or selection eliminating plasticity with high costs, but have not considered costs arising from sexual selection. Here, we show that sexual selection caused by mate choice can impede the evolution of phenotypic plasticity in a trait used for mate choice. Plasticity can remain low to moderate even in the absence of physiological or genetic costs, when individuals phenotypically adapted to contrasting environments through plasticity can mate with each other and choose mates based on phenotypic similarity. Because the non-choosy sex (i.e., males) with lower degrees of plasticity are more favored in matings by the choosy sex (i.e., females) adapted to different environments, directional selection toward higher degrees of plasticity is constrained by sexual selection. This occurs at intermediate strengths of female choosiness in the range of the parameter value we examined. Our results demonstrate that mate choice is a potential source of an indirect cost to phenotypic plasticity in a sexually selected plastic trait.  相似文献   

20.
Internal fertilization and anisogamy are thought to impede the evolution of exclusive paternal care by reducing paternity assurance and increasing male promiscuity. The potential role of sexual selection in easing these constraints is currently being examined in vertebrates but has not been seriously studied in most arthropods. To distinguish the effects of sexual from natural selection on the evolution of arthropod paternal care, I tested predictions of the state of several life history and behavioural traits under both forms of selection across all known taxa with exclusive paternal care. The results suggest parallels between prezygotic nuptial gifts and exclusive postzygotic paternal care and support the hypothesis that, in arthropods, male behaviours that enhance female reproductive success either directly by releasing females from the fecundity constraints of maternal care (enhanced fecundity hypothesis) or indirectly by identifying mates with superior genes (handicap principle) are traits on which sexual selection has acted. Under such conditions males willing to guard young become preferred mates for gravid females and enjoy greater promiscuity than males unable or unwilling to guard. Females use nest construction or the act of guarding another female's eggs as honest signals of paternal intent and quality. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号