首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The silk decorations that adorn the webs of many orb-web spiders are thought to have a signal function, but the evolution of the decorating behaviour remains unresolved. The decoration signal is maintained apparently because it improves foraging efficiency, through either increased encounter rates with prey or reduced damage to the web. Recent investigations suggest that the decorations may originate in a regulation of the activity of the aciniform silk glands, which produce silk for both decorating the web and wrapping prey. This view predicts a link between decorating behaviour and a preference for restraining prey by wrapping with silk, which is evident among species of Argiope spiders. Here I compare the frequency of the wrap attack behaviour in four species of orb-web spiders that occupy the same habitat, but differ in their silk decorating behaviour: two species, Plebs bradleyi and Gea theridioides, build silk decorations, while the other two, Araneus hamiltoni and Backobourkia brounii do not. Spiders were presented with prey items that varied in the ease with which they could be captured, with houseflies being more easily subdued than house crickets. As predicted, the silk decorating species used wrap attacks significantly more often than non-decorating spiders, irrespective of the prey species. These data support the view that both behaviours are evolutionary linked. I propose that silk decorating originated from the evolution of wrap attacking, and that silken web decorations have later evolved into a signal and are now maintained for that function.  相似文献   

2.
Abstract Environmental conditions such as light level, background contrast and temperature might influence a spider's prey capture success and risk of predation. Thus it may often be advantageous for spiders to adjust web‐building behaviour in response to variation in these environmental conditions. This hypothesis was examined in a study of the construction of webs and web decorations (conspicuous strands of silk at the hub of the web) of the orb‐web spider Argiope keyserlingi. Web decorations are thought to have one or more separate functions. They may attract prey, deter predators or advertise the web to oncoming birds, thus preventing web damage. In this series of experiments, relationships between weather parameters and the construction of webs and web decorations were considered. In complementary laboratory experiments, A. keyserlingi spiders were exposed to two different light levels (700 and 90 lx), background contrasts (black and white) and temperature conditions (20 and 26°C). Of the available weather parameters, only temperature was significantly related to web decorating behaviour but not to web size. In the laboratory, temperature also influenced web‐decorating behaviour, and spiders in dim light (700 lx) constructed larger webs and longer decorations. Background contrast did not significantly alter web size or web decorations. These data suggest that when prey availability is reduced at low temperatures, spiders may use web decorations to attract prey to the web. Similarly, in dim light, spiders may build more and larger decorations to increase the visual signal to approaching prey or to advertise the web to oncoming birds.  相似文献   

3.
Abstract The potential costs and benefits of foraging in aggregations are examined for the orb-spinning spider Gasteracantha minax. Web-site tenacity is low in this species; individuals frequently move among sites, thereby joining aggregations of different sizes. Female spiders in aggregations suffered lower predation rates and attracted more males than their solitary counterparts. However, aggregated eggsacs, probably produced by females in aggregations, experienced higher rates of parasitism than solitary eggsacs. We found no evidence of higher prey capture success rates among spiders in aggregations. However, we demonstrate a novel way in which spiders can increase their foraging efficiency by decreasing silk investment. A spider spinning a web within an existing aggregation can attach the support threads of its web to those of other webs, thereby exploiting the silk produced by other spiders.  相似文献   

4.
We are becoming increasingly aware of animal communication outside the range of human sensitivity. Web decorations are silk structures used by orb-web spiders to deceive prey and predators. However, despite the level of interest in these structures, their visibility to prey and predators has never, to our knowledge, been objectively assessed. Here, we use spectrophotometric analyses to show that the decorations of all five tested spider species are visible to honey bees and birds over short and long distances. Furthermore, the discoid decorations of one species may provide some protection against arthropod predators. However, these decorations are inefficient at camouflaging the spider against birds, despite the overlap between the spider's body and web decoration.  相似文献   

5.
Orb-web spiders are an important group of trap-building animals that feed upon an array of insect prey and are themselves the prey of wasps and parasitoid flies. The purpose of this study was to examine whether spiders use airborne vibration cues to respond to these flying insect predators by changing their web-building behavior. While on its web waiting for prey, the orb-web spider Eriophora sagana was exposed to a vibrating tuning fork that emitted an airborne vibration signal. The signal mimicked the approach of flying insect predators and its effect on the subsequent web building was examined. No stimulus was provided during web building. A significant treatment effect was observed with respect to the total thread length (TTL) and area of the silk decoration (conspicuous white structure attached to the orb-webs of diurnal spiders) of their webs. While control spiders increased the TTL in their second web, the stimulus group spiders did not, providing the first evidence that orb-web spiders use airborne vibration cues to assess the predation risk and change their foraging activity. It also indicates that spiders remember an encounter with a predator on their webs and use this information later to adjust their web building. My findings imply that spiders devote less effort to foraging (i.e. web building) in response to the presence of their predators, which is considered to reduce their foraging efficiency. In contrast, the stimulus group spiders increased the area of their silk decoration significantly more in their second webs than did the control spiders. This is considered an experimental support for the hypothesis that silk decorations have an anti-predator function.  相似文献   

6.
Predators may utilize signals to exploit the sensory biases of their prey or their predators. The inclusion of conspicuous silk structures called decorations or stabilimenta in the webs of some orb‐web spiders (Araneae: Araneidae, Tetragnathidae, Uloboridae) appears to be an example of a sensory exploitation system. The function of these structures is controversial but they may signal to attract prey and/or deter predators. Here, we test these predictions, using a combination of field manipulations and laboratory experiments. In the field, decorations influenced the foraging success of adult female St. Andrew’s Cross spiders, Argiope keyserlingi: inclusion of decorations increased prey capture rates as the available prey also increased. In contrast, when decorations were removed, prey capture rates were low and unrelated to the amount of available prey. Laboratory choice experiments showed that significantly more flies (Chrysomya varipes; Diptera: Calliphoridae) were attracted to decorated webs. However, decorations also attracted predators (adult and juvenile praying mantids, Archimantis latistylus; Mantodea: Mantidae) to the web. St. Andrew’s Cross spiders apparently resolve the conflicting nature of a prey‐ and predator‐attracting signal by varying their decorating behaviour according to the risk of predation: spiders spun fewer decorations if their webs were located in dense vegetation where predators had greater access, than if the webs were located in sparse vegetation.  相似文献   

7.
A number of taxonomically diverse species of araneoid spiders adorn their orb-webs with conspicuous silk structures, called decorations or stabilimenta. The function of these decorations remains controversial and several explanations have been suggested. These include: (1) stabilising and strengthening the web; (2) hiding and concealing the spider from predators; (3) preventing web damage by larger animals, such as birds; (4) increasing foraging success; or (5) providing a sunshield. Additionally, they may have no specific function and are a consequence of stress or silk regulation. This review evaluates the strength of these explanations based on the evidence. The foraging function has received most supporting evidence, derived from both correlative field studies and experimental manipulations. This contrasts with the evidence provided for other functional explanations, which have not been tested as extensively. A phylogenetic analysis of the different decoration patterns suggests that the different types of decorations are as evolutionary labile as the decorations themselves: the analysis shows little homology and numerous convergences and independent gains. Therefore, it is possible that different types of decorations have different functions, and this can only be resolved by improved species phylogenies, and a combination of experimental and ultimately comparative analyses.  相似文献   

8.
Cyclosa spiders attach prey carcasses as decorations to their webs, but the functions of the carcasses are unclear and controversial. We investigated distinctive features of these webs in the field and conducted prey-capture experiments in the lab using the orb-web spider Cyclosa mulmeinensis. Webs with attached decoration had a significantly narrower mesh width than those without decoration and a higher degree of vertical asymmetry in the web’s shape. In the laboratory, webs without decorations trapped significantly more prey, even though other features of the webs were nearly identical. These results suggest that web decorations do not attract prey in this species, but might play other roles such as blinding predators to the spider’s presence.  相似文献   

9.
As stationary predators, araneid spiders that lack protective retreats are especially vulnerable to abiotic influences. Species of the genus Argiope permanently remain at the hub of their orb webs and are thereby exposed to desiccating circumstances. Like other land arthropods, spiders must balance their hygric status. Beside desiccation avoidance behaviours, they can manage this balance by water gain through either liquefied prey items or direct ingestions of free water. Drinking-like behaviours are sparely documented for Araneids. We observed Argiope bruennichi ingesting accumulated water droplets from the silk-overstitched web hub, a part of the web decoration, and subsequently tested whether this behaviour is a regular feature of this species. In 50% of our observations, spiders that had been sprayed with water actively searched the hub decoration for water droplets and ingested them. The behavioural elements were very stereotypic among the tested individuals. Significantly, A. bruennichi females only searched the covered web hubs for water, even though the entire web was moistened. These data suggest that hub decorations of A. bruennichi might have an adaptive significance by helping to maintain a balance of water metabolism, adding yet another element to the spirited debate about the functional significance of web decorations.  相似文献   

10.

To capture prey, orb-web spiders create complex traps whose efficiency is contingent on a variety of factors that are not yet completely understood, including web size, competition for food, sun exposure, presence of web decorations and web orientation. Here we evaluate such factors in the field and ask which of them are the most influential variables affecting the quantity of prey captured in Argiope argentata webs. Webs were observed during the morning and the number of prey attached to each web was counted. Using the approach of information criteria based on the Akaike information criterion (AIC) values of each candidate model, we averaged the parameters of a global model, finding that the only predictor which 95% confidence interval did not include zero, was exposure to sunlight (whether the web is continuously shaded or continuously exposed to sunlight). All other variables did not explain variation in prey capture. We conclude that only sun exposure has an important effect on orb-web spiders’ prey capture efficiency in A. argentata. We additionally argue that silk decorations have different functions depending on the habitat and the species.

  相似文献   

11.
Silk decorations: controversy and consensus   总被引:4,自引:0,他引:4  
Although the occurrence of silk decorations has been noted in scientific literature for over 100 years, there is still little consensus as to their function. This is despite the proliferation of studies examining the five major hypotheses: (1) protection against predators, (2) increasing foraging success, (3) prevention of damage to the web, (4) providing shade and (5) mechanical support for the web. The first three of these hypotheses have received the most attention, and thus generated the most evidence (for and against) suggesting that web decorations are a type of visual signal. However, the effect of this signal on prey and predator receivers is unclear as the evidence is contradictory. Thus, the function of silk decorations may be context specific, depending on factors such as predators, prey, background colour and ambient light. A better understanding of how predators and prey see and process visual information from silk decorations, coupled with experiments examining the mechanisms behind the various hypotheses, are crucial in illuminating their function and resolving the controversy.  相似文献   

12.
Diverse functions have been assigned to the visual appearance of webs, spiders and web decorations, including prey attraction, predator deterrence and camouflage. Here, we review the pertinent literature, focusing on potential camouflage and mimicry. Webs are often difficult to detect in a heterogeneous visual environment. Static and dynamic web distortions are used to escape visual detection by prey, although particular silk may also attract prey. Recent work using physiological models of vision taking into account visual environments rarely supports the hypothesis of spider camouflage by decorations, but most often the prey attraction and predator confusion hypotheses. Similarly, visual modelling shows that spider coloration is effective in attracting prey but not in conveying camouflage. Camouflage through colour change might be used by particular crab spiders to hide from predator or prey on flowers of different coloration. However, results obtained on a non-cryptic crab spider suggest that an alternative function of pigmentation may be to avoid UV photodamage through the transparent cuticle. Numerous species are clearly efficient locomotory mimics of ants, particularly in the eyes of their predators. We close our paper by highlighting gaps in our knowledge.  相似文献   

13.
Many spiders use silk to construct webs that must function for days at a time, whereas many other species renew their webs daily. The mechanical properties of spider silk can change after spinning under environmental stress, which could influence web function. We hypothesize that spiders spinning longer‐lasting webs produce silks composed of proteins that are more resistant to environmental stresses. The major ampullate (MA) silks of orb web spiders are principally composed of a combination of two proteins (spidroins) called MaSp1 and MaSp2. We expected spider MA silks dominated by MaSp1 to have the greatest resistance to post‐spin property change because they have high concentrations of stable crystalline β‐sheets. Some orb web spiders that spin three‐dimensional orb webs, such as Cyrtophora, have MA silks that are predominantly composed of MaSp1. Hence, we expected that the construction of three‐dimensional orb webs might also coincide with MA silk resistance to post‐spin property change. Alternatively, the degree of post‐spin mechanical property changes in different spider silks may be explained by factors within the spider's ecosystem, such as exposure to solar radiation. We exposed the MA silks of ten spider species from five genera (Nephila, Cyclosa, Leucauge, Cyrtophora, and Argiope) to ecologically high temperatures and low humidity for 4 weeks, and compared the mechanical properties of these silks with unexposed silks. Using species pairs enabled us to assess the influence of web dimensionality and MaSp composition both with and without phylogenetic influences being accounted for. We found neither the MaSp composition nor the three‐dimensionality of the orb web to be associated with the degree of post‐spin mechanical property changes in MA silk. The MA silks in Leucauge spp. are dominated by MaSp2, which we found to have the least resistance to post‐spin property change. The MA silk in Argiope spp. is also dominated by MaSp2, but has high resistance to post‐spin property change. The ancestry of Argiope is unresolved, but it is largely a tropical genus inhabiting hot, open regions that present similar stressors to silk as those of our experiment. Ecological factors thus appear to influence the vulnerability of orb web spider MA silks to post‐spin property change. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 580–588.  相似文献   

14.
Both laboratory experiments and field observations were usedto examine the prey-attraction hypothesis for the function ofthe silk decoration on the orb web of Octonoba sybotides. Thereflectance spectrum of the decorative silk showed that thedecorations reflect relatively more ultraviolet (UV) light.Choice experiments were conducted using Drosophila melanogaster,a common prey species of the spider, to determine whether webswith silk decoration attract more flies than undecorated webs.The choice experiment showed that webs with silk decorationattract more flies in light that includes UV rays. However,flies choose their flight direction randomly in light withoutUV rays. This suggests that the silk decoration might attract preyinsects that tend to fly toward UV-reflecting objects. Fieldobservations comparing the prey capture rate between webs withand without a silk decoration showed that more prey are caughtin decorated webs. In this study, no difference between thetwo forms of silk decoration, linear and spiral, was detectedeither in prey attraction in the choice experiment or in theprey capture rate in the field observations.  相似文献   

15.
The existence of aggregations in taxa that are normally solitary poses questions regarding the costs and benefits of group living. Most orb-web spiders are solitary and are aggressive to conspecifics, but a few species aggregate in large numbers. These spiders benefit by enhancing the prey interception potential, but also suffer costs of increased predation and parasitism. In this study, we report on the natural history characteristics of the orb-web spider, Argiope radon, which not only lives in aggregations but also builds silk decorations. Our results show that A. radon aggregates facultatively and that the main benefit of aggregation that we could identify is enhanced mating potential. We also show that decorations built by A. radon are highly visible to both model prey and predator, and suggest that solitary individuals with longer and more frequent decorations may offset the foraging advantage of being in aggregations.  相似文献   

16.
Abstract. 1. Protein is important for a foraging animal to consume, as it promotes growth and enhances survival, particularly in web‐building spiders, which need to invest considerable protein into web building and may trade‐off growth for web investment. 2. The influence of dietary protein uptake on growth and web investment was tested in the orb web spider Argiope keyserlingi, by feeding them flies reared on three different media: (1) high protein, (2) low protein, and (3) standard (control) media. There was a negative correlation between protein and energy content of the flies across treatments; flies reared on the high protein media had the highest protein, but lowest energy, while flies reared on the low protein media had the lowest protein but highest energy. 3. It was found that silk investment and web architecture in A. keyserlingi was not affected by diet. Growth and decoration building were both enhanced when spiders were fed a high protein diet. 4. It was concluded that protein intake, rather than energy, influenced both growth and decoration building because: (1) protein intake enhances growth in other animals, (2) protein is essential for silk synthesis, especially aciniform silk, and (3) protein is a limiting factor actively sought by foraging animals in natural environments.  相似文献   

17.
Animals make decisions based on subjective assessments of their environment. To determine their future foraging activities, animals probably assess food availability from past foraging experiences. Thus, foraging also functions as a way for animals to collect information, with the uncertainty of an assessment decreasing as foraging activity increases. This suggests that different needs for a correct assessment may affect the investment made in foraging activities. Orb‐web spiders sometimes relocate their webs and relocation rate differs among species. After web relocation, several spider species have been reported to construct the first webs at newly occupied web sites using less silk than usual, possibly to avoid the risk of an overinvestment at sites where food availability has not been determined. Nevertheless, they may pay a cost, because of inadequate decision‐making, if webs constructed with less silk convey less information and increase the uncertainty of an assessment. We expect that stronger site tenacity necessitates a greater requirement for correct assessment of web site and the degree to which spiders reduce the amount of web silk in the first web after web relocation is smaller in species that use the same site longer. To test this hypothesis, we examined web construction in two orb‐web spiders, Cyclosa octotuberculata and C. argenteoalba. At the same time we found that these two species exhibit different web‐site tenacity, as C. octotuberculata does not relocate its webs as frequently as does C. argenteoalba. After artificially induced web relocation, C. argenteoalba constructed webs that were initially smaller and contained only about 2/3 of the silk in control webs that were constructed at the original site. In contrast, C. octotuberculata did not exhibit such decreases in web size or in the amount of web silk used. This result is consistent with our hypothesis.  相似文献   

18.
An effective visual signal elicits a strong receiver response. The visual receptors of most insects are sensitive to ultraviolet (UV), blue and green light. The decorations of certain orb web spiders may be described as a type of visual signal, a sensory trap, as they exploit visual biases in insects. We filtered UV and blue light from the decorations of Argiope keyserlingi , under field conditions, using plastic sheets to test if the UV and blue light reflected affects the type of prey caught. We found that houseflies, blowflies, stingless bees, honeybees and vespid wasps were caught more frequently in webs with decorations than webs without, while ichneumonid wasps were caught less frequently. Blowflies, stingless bees, honeybees and vespid wasps were caught more often in unfiltered decorated webs. These insects also have receptor sensitivities in the blue and UV. We showed that exploiting visual sensory biases plays an integral role in attracting insects to orb web decorations. Whether UV light, blue light, or both, are the most important cue, however, requires further study.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 221–229.  相似文献   

19.
The snare web is used as a medium for communication betweenindividuals within colonies of social spiders and has thereforebeen suggested as necessary for the evolution of sociality inthe Araneae. The social spider Diaea socialis (Thomisidae) isan exception because it does not build a snare web. Experimentsdemonstrate that silk attracts all spiders and that a chemicaldeposited onto the silk attracts adult female spiders, suggestingthat the group living of this species is mediated by a pheromone.The pheromone attracts spiders differentially: females are notattracted to juvenile silk, and it repels gravid females. Thepheromone appears to be stable but volatile, is ether-soluble,and retains its viability after dissolution. Molecular-ionicmasses for 7-8 different compounds were found in the range 220–281atomic units; the pheromone may be one or a combination of severalof these.  相似文献   

20.
Spiders of the genus Cyclosa often add prey remains and other debris to their orb‐webs. The function of silk decorations is generally associated with defense against predators or with the attraction of prey, but few studies have focused on stabilimenta containing detritus. In this study, we used artificial webs with and without the detritus stabilimenta of two species of Cyclosa to investigate whether these structures increase the number of insects intercepted. Artificial models of spiders and stabilimenta were used to compare the frequency of attacks against different shapes. We also conducted choice experiments in laboratory to determine whether detritus columns attracted Drosophila melanogaster (Diptera: Drosophilidae) and Trigona angustula (Hymenoptera: Apidae, Meliponinae) to the webs. The frequency of interception in artificial webs with a stabilimentum was similar to that of webs without such structure. The taxonomic composition and biomass of insects were also similar in both types of artificial webs. The choice experiments showed no significant tendency in attraction to webs with a stabilimentum. However, models of spiders were attacked at a higher frequency than those simulating detritus columns and silk decorations. These findings argue against the prey attraction hypothesis and suggest that the addition of stabilimenta to webs of Cyclosa could reduce the intensity of predation, possibly by disrupting the image of the spider's outline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号