首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly sensitive coculture methods were developed both for isolation of human T-lymphotropic virus types I and II (HTLV-1 and HTLV-II) from infected individuals and for productive infection of lymphoid cells. Mitogen-activated peripheral blood mononuclear cells (PBMC) from 13 HTLV-I- and 20 HTLV-II-positive specimens were cocultured with an equal number of mitogen-activated PBMC from HTLV-seronegative individuals, and culture supernatants were tested for the presence of soluble p24gag antigens at weekly intervals for 4 weeks. Eleven of 13 (85%) HTLV-I and 14 of 20 (70%) HTLV-II cultures were positive for p24 antigens. None of the 17 HTLV-seroindeterminate or six HTLV-seronegative specimens were positive for the presence of p24 antigen. The isolation rates for HTLV-I and HTLV-II by an alternative whole-blood lysis procedure were comparable to those obtained by standard PBMC cultures. Furthermore, cocultivation of PHA-stimulated PBMC from healthy donors with lethally irradiated HTLV-I- and HTLV-II-infected cell lines (SP and Mo-T, respectively) resulted in productive viral infection, as reflected by the appearance of p24gag antigens concomitant with specific genomic amplification of HTLV proviral DNA after 3 weeks of cocultivation. Thus, the cocultivation technique provides a highly sensitive and specific procedure both for HTLV isolation and for infection of target cells.  相似文献   

2.
The presence of a high number of activated T cells in the bloodstream and spontaneous proliferation of peripheral blood mononuclear cells in vitro are striking characteristics of human T-cell leukemia virus type I (HTLV-I) infection. The HTLV-I regulatory protein Tax and the envelope protein gp46 have been implicated in mediating the activation process. In this study, HTLV-I-producing cell lines and purified virus from the cell lines were examined for the ability to activate peripheral blood lymphocytes (PBLs) and Jurkat cells. Antisera and monoclonal antibodies against several cellular adhesion proteins involved in T-cell activation and against viral proteins were used to identify which molecules may be participating in the activation process. First, neither virus from a T-cell line, MT2, nor virus produced from the human osteosarcoma cell line HOS/PL was able to induce PBLs to proliferate. In contrast, both fixed and irradiated HTLV-I-producing T-cell lines induced proliferation of PBLs; HOS/PL cells did not activate PBLs. Second, HTLV-I-positive T-cell lines were capable of activating interleukin-2 mRNA expression in Jurkat cells. Induction of interleukin-2 expression was inhibited by anti-CD2 and anti-lymphocyte function-associated antigen 3 (LFA-3) monoclonal antibodies but not anti-human leukocyte antigen-DR, anti-CD4, anti-LFA-1, or anti-intercellular adhesion molecule 1. Similar results were obtained with PBLs as the responder cells. Furthermore, monoclonal antibodies and antisera against various regions of the HTLV-I envelope proteins gp46 and gp21 as well as p40tax did not block activation. These data indicate that HTLV-I viral particles are not intrinsically mitogenic and that infection of target T cells is not necessary for activation. Instead, the mitogenic activity is restricted to virus-producing T cells, requires cell-to-cell contact, and may be mediated through the LFA-3/CD2 activation pathway.  相似文献   

3.
4.
5.
6.
An unusual serological profile against human T-cell leukemia/lymphotropic virus type I and II (HTLV-I and -II) proteins was reported in several human Pygmy tribes in Zaire and Cameroon with serum antibodies reactive with gp21 and p24. Here we describe a similar pattern of serum antibodies in a colony of captive pygmy chimpanzees and the isolation of a novel retrovirus, simian T-cell lymphotropic virus from Pan paniscus (STLVpan-p), from the peripheral blood mononuclear cells of several seropositive animals. Cocultures of peripheral blood mononuclear cells from three seropositive pygmy chimpanzees with human cord blood mononuclear cells led to the expression of an HTLV-I- and HTLV-II-related virus initially demonstrated by electron microscopy. Furthermore, several of these cocultures became immortalized T-cell lines expressing the CD4+ CD8+ DR+ phenotype of mature activated T cells. Southern blotting and DNA sequencing of a PCR fragment of viral DNA from these cell cultures demonstrated a distant evolutionary relationship of these viruses to HTLV-I and -II and distinct from the known STLV isolates. We designated this virus STLVpan-p. A genealogical analysis of the captive pygmy chimpanzees colony, originated from wild-caught animals, revealed a prevalence of seropositive offspring from infected mothers, as also observed with HTLVs. The presence in this old African Great Ape species of a virus which is genetically quite distinct from HTLV-I and -II could provide new insights in the phylogenesis of STLVs and HTLVs and be instrumental in the discovery of related human viruses.  相似文献   

7.
The ability of molecular clones of human T-cell leukemia virus type I (HTLV-I) to direct the synthesis of infectious virions has not previously been demonstrated. An HTLV-I provirus originating from an adult T-cell leukemia patient was cloned into a plasmid vector and is designated pCS-HTLV. This molecular clone was shown to direct the synthesis of viral mRNA and proteins in transiently transfected cells; in addition, virus structural proteins were released into the culture medium. Viral proteins were assembled into virions that sedimented at a buoyant density characteristic of retrovirus particles and whose morphology was verified by electron microscopy. Virions concentrated from transiently transfected cell supernatants were incubated with primary cord blood lymphocytes or with transformed T-cell lines to establish that these particles were infectious. Expression of spliced, viral mRNAs in the T-cell cultures after both primary and secondary infections with cell-free virus revealed that pCS-HTLV encodes an infectious provirus.  相似文献   

8.
9.
To study the possible involvement of human T lymphotrophic virus type I (HTLV-I) or a related retrovirus in Japanese cases of multiple sclerosis (MS), we first performed a Western blot analysis with purified Ag of HTLV-I. Ten out of 31 MS patients (32.2%), 19 of 66 patients (28.8%) with other neurologic diseases, and 2 of 64 healthy blood donors (3.1%) had antibodies reactive with Ag corresponding to the group-specific Ag (gag) proteins (p15, p19, p24) on their sera. There were no significant differences between MS and other neurologic diseases concerning the patterns and the frequency. Second, we tried to establish T cell lines from PBMC of 22 MS patients with crude IL-2 without accessory cells, because HTLV-I-infected T cells can be immortalized in a high ratio under those conditions. Only one T cell line (MS-14C), however, could be maintained in long term culture. MS-14C and cultured T cells for 3 to 5 wk derived from MS patients were examined by Southern blot analysis under both stringent and low stringent conditions with HTLV-I as a probe. No HTLV-I related bands could be detected. By polymerase chain reaction examination, we also could not detect HTLV-I provirus genome in the fresh PBMC from 20 MS patients, although some of them had gag-reactive antibodies. Our data do not favor the hypothesis of HTLV-I or an HTLV-I-related human retrovirus in the etiology of MS.  相似文献   

10.
11.
P L Green  Y M Xie    I S Chen 《Journal of virology》1991,65(1):546-550
The Rex proteins of human T-cell leukemia virus types I and II (HTLV-I and HTLV-II) induce cytoplasmic expression of unspliced gag-pol mRNA and singly spliced env mRNA and are critical for virus replication. Two rex gene products, p27rex and p21rex of HTLV-I and p26rex and p24rex of HTLV-II, have been detected in HTLV-infected cells; however, the structural and biological relationship of the proteins has not been clearly elucidated. Endoproteinase digestion and phosphoamino acid analysis of HTLV-II Rex indicated that p24rex has the same amino acid backbone as p26rex and that the larger apparent molecular size of p26rex is attributable to serine phosphorylation.  相似文献   

12.
The human T-cell leukemia virus type I Tax protein (HTLV-I Tax) is known as a trans-activating factor for a variety of genes, including those of cytokines. Here, we show that Tax is capable of activating the herpes simplex virus thymidine kinase (HSV-TK) promoter in certain mammalian cell lines. In murine NIH 3T3 fibroblasts and human HeLa cells, trans-activation by Tax was remarkably strong, whereas in human chondrocytic HCS-2/8 and monkey kidney Cos-7 cells, the responsiveness of the TK promoter to Tax was poor. Deletion analysis revealed that one of the two previously described Sp1 sites is required for the Tax responsiveness, whereas the CTF binding site is not. The results suggest possible interactions between the oncogenic Tax protein and the viral TK in coinfected cells in vivo. Care should be taken in the context of HTLV-I research, as the HSV-TK promoter has been widely used in molecular biology and gene therapeutics.  相似文献   

13.
14.
15.
Using two sets of nucleotide sequences of the human and simian T-cell leukemia/lymphoma virus type I (HTLV-I/STLV-I), one consisting of 522 bp of the env gene from 70 viral strains and the other a 140-bp segment from the pol gene of 52 viral strains, I estimated cladograms based on a statistical parsimony procedure that was developed specifically to estimate within-species gene trees. An extension of a nesting procedure is offered for sequence data that forms nested clades used in hypothesis testing. The nested clades were used to test three hypotheses relating to transmission of HTLV/STLV sequences: (1) Have cross-species transmissions occurred and, if so, how many? (2) In what direction have they occurred? (3) What are the geographic relationships of these transmission events? The analyses support a range of 11-16 cross-species transmissions throughout the history of these sequences. Additionally, outgroup weights were assigned to haplotypes using arguments from coalescence theory to infer directionality of transmission events. Conclusions on geographic origins of transmission events and particular viral strains are inconclusive due to small samples and inadequate sampling design. Finally, this approach is compared directly to results obtained from a traditional maximum parsimony approach and found to be superior at establishing relationships and identifying instances of transmission.   相似文献   

16.
17.
This study aimed at implementing a Nested-polymerase chain reaction (Nested-PCR) for the molecular diagnosis of human T-cell lymphotropic virus type I/II (HTLV-I and HTLV-II) infections in peripheral blood mononuclear cells of infected subjects in Argentina. The sensitivity and specificity of the assay for the detection of regional strains were assessed by comparing them with the molecular assay of reference PCR-hybridization. The Nested-PCR detected 1 MT-2 cell (> or = 8 proviral copies)/1x10(6) non-infected cells showing high sensitivity for provirus detection. While both molecular assays showed high specificity (100%) for HTLV-I and HTLV-II detection, the sensitivity values differed: 100% for Nested-PCR and 67% for PCR-hybridization assay. Moreover, this technique showed less sensitivity for the detection of DNA sequences of HTLV-II (33%) than for the detection of DNA sequences of HTLV-I (75%). The high sensitivity and specificity of the Nested-PCR for regional strains and its low costs indicate that this assay could replace the PCR-hybridization assay for the molecular diagnosis of HTLV-I/II infections. It will be interesting to assess the usefulness of this assay as a tool for the molecular diagnosis of HTLV-I/II infections in other developing countries. Other studies that include a greater number of samples should be conducted.  相似文献   

18.
Homologous env sequences from 17 human T-leukemia/lymphotropic virus type I (HTLV-I) strains from throughout the world and from 25 simian T-leukemia/lymphotropic virus type I (STLV-I) strains from 12 simian species in Asia and Africa were analyzed in a phylogenetic context as an approach to resolving the natural history of these related retroviruses. STLV-I exhibited greater overall sequence variation between strains (1 to 18% compared with 0 to 9% for HTLV-I), supporting the simian origin of the modern viruses in all species. Three HTLV-I phylogenetic clusters or clades (cosmopolitan, Zaire, and Melanesia) were resolved with phenetic, parsimony, and likelihood analytical procedures. Seven phylogenetic clusters of STLV-I were resolved with the most primitive (deeply rooted) divergence involving several STLV-I strains from Asian primate species. Combined analysis of HTLV-I and STLV-I revealed that neither STLV-I clusters nor HTLV-I clusters recapitulated host species specificity; rather, multiple clades from the same species were closer to clades from other species than to each other. We interpret these evolutionary associations as support for the occurrence of multiple discrete interspecies transmissions of ancestral viruses between primate species (including human) that led to recognizable phylogenetic clades that persist in modern species. Geographic concordance of divergent host species that harbor closely related viruses reinforces that physical feasibility for hypothesized interspecies virus transmission in the past and in the present.  相似文献   

19.
P L Green  M T Yip  Y Xie    I S Chen 《Journal of virology》1992,66(7):4325-4330
The Rex protein of human T-cell leukemia virus types I (HTLV-I) and II (HTLV-II) regulates the expression of the viral structural genes and is critical for viral replication. Rex acts by specifically binding to RNAs containing sequences of the R region of the 5' long terminal repeat. Two forms of Rex detected in HTLV-II-infected cells, p26rex and p24rex, differ in the extent of serine phosphorylation. Two-dimensional phosphopeptide analysis indicates that p26rex is extensively phosphorylated at multiple sites. Using a sensitive immunobinding assay, we show that the phosphorylation state of Rex determines the efficiency of binding of Rex to HTLV-II target RNAs. Thus, the phosphorylation state of Rex in the infected cell may be a switch that determines whether virus exists in a latent or productive state. These studies also suggest that phosphorylation of RNA-binding regulatory proteins is a more general mechanism of gene regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号