首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
To elucidate the importance of hybridization in evolution, it is necessary to understand the processes that affect hybridization frequency in nature. Here we focus on postpollination, prefertilization isolating mechanisms using two hybridizing species of Louisiana iris as a study system. We compared the effects of differential pollen-tube growth on the frequency of F1 hybrid formation in experimental crosses between Iris fulva and Iris hexagona. Analyses of seed production in fruits from pure conspecific and heterospecific pollinations revealed that more seeds were produced in the top half than the bottom half of fruits for all four crosses. Heterospecific pollen was applied to flowers of each species at zero to 24 h prior to conspecific pollen, thereby giving a head start to the foreign pollen. Using diagnostic isozyme markers, the frequency of hybrid progeny was examined at the level of the whole fruit and separately for the top and bottom halves of fruits. In both species, the proportion of hybrid seeds per fruit increased significantly with increasing head starts, suggesting that differences in pollen-tube growth rates affect the frequency of hybridization. In I. fulva fruits, the increase in hybrid seeds occurred in both halves of the fruits, but in I. hexagona an increase was only detected in the top half of fruits. These findings are consistent with a model that assumes attrition of pollen tubes due to the greater length of I. hexagona styles. While pollen-tube growth rate appears to be the most important factor affecting hybridization frequency in I. fulva, both pollen-tube growth rate and pollen-tube attrition appear to be important in I. hexagona.  相似文献   

2.
  总被引:3,自引:0,他引:3  
Forms of reproductive isolation that act after copulation but before fertilization are potentially important components of speciation, but are studied only infrequently. We examined postmating, prezygotic reproductive isolation in three hybridizations within the Drosophila simulans species complex. We allowed females to mate only once, observed and timed all copulations, dissected a subset of the females to track the storage and retention of sperm, examined the number and hatchability of eggs laid after insemination, counted all progeny produced, and measured the longevity of mated females. Each of the three hybridizations is characterized by a different set of cryptic barriers to heterospecific fertilization. When D. simulans females mate with D. sechellia males, few heterospecific sperm are transferred, even during long copulations. In contrast, copulations of D. simulans females with D. mauritiana males are often too short to allow sperm transfer. Those that are long enough to allow insemination, however, involve the transfer of many sperm, but only a fraction of these heterospecific sperm are stored by females, who also lay fewer eggs than do D. simulans females mated with conspecific males. Finally, when D. mauritiana females mate with D. simulans males, sperm are transferred and stored in abundance, but are lost rapidly from the reproductive tract and are therefore used inefficiently. These results add considerably to the list of reproductive isolating mechanisms in this well-studied clade and possibly to the list of evolutionary processes that could contribute to their reproductive isolation.  相似文献   

3.
    
Hybridization between divergent lineages has long been assumed to give rise to unfavorable interactions between the parental genomes. These deleterious genetic interactions are further assumed to result in the production of hybrid offspring with decreased levels of viability and/or fertility. To test this assumption, we investigated the role of both nuclear and cytonuclear epistatic interactions in determining the frequencies of F2 genotypes produced in crosses between two species of Louisiana iris, Iris fulva and I. brevicaulis. Overall, these crosses revealed a significant deficit of intermediate hybrid genotypes accompanied by an excess of parental-like genotypes, suggesting that genetic interactions may promote postmating reproductive isolation between these species. However, analyses of single and multilocus segregation patterns revealed a variety of negative and positive interactions between the genomes of the parental taxa at the nuclear and cytonuclear levels. Taken together, these results indicate that the traditional view that interactions between divergent genomes are always deleterious is an oversimplification. Rather, it seems likely that crosses between divergent lineages can lead to the production of both fit and unfit hybrid genotypes.  相似文献   

4.
    
While simultaneous hermaphroditism occurs in most animal phyla, theories for its adaptive significance remain untested. Sex allocation theory predicts that combined sexes are favored in sedentary and sessile organisms because localized gamete dispersal and local mate competition (LMC) among gametes promote decelerating fitness “gain curves” that relate male investment to reproductive success. Under this LMC model, males fertilize all locally available eggs at low sperm output, additional output leads to proportionally fewer fertilizations, and combined sexes with female-biased sex allocation are favored. Decelerating male gain curves have been found in hermaphroditic flowering plants, but the present paper reports the first analysis in an animal. The colonial hermaphroditic bryozoan Celleporella hyalina forms unisexual male and female zooids that can be counted to estimate absolute and relative gender allocations. I placed “sperm donor” colonies—each with different numbers of male zooids, and each homozygous for diagnostic allozyme alleles—among target maternal colonies on field mating arrays, and estimated donor fertilization success by scoring allozyme markers in target-colony progeny. Fertilization success increased with numbers of donor male zooids, but linear and not decelerating curves fit the data best. Mean sex allocation was not female biased, consistent with nondecelerating male gain. Sperm donors, moreover, did not monopolize matings as expected under high LMC, but rather shared paternity with rival colonies. Hence localized water-borne gamete dispersal alone may not yield decelerating male gain and favor the maintenance of hermaphroditism; relaxed sperm competition in low density populations might also be required. In free-spawning marine organisms, males cannot control access to fertilizations, intense sperm competition may be commonplace, and high male sex allocation may be selected to enhance siring success under competition.  相似文献   

5.
    
This study examined whether dominant migratory males (adopting fighter tactics) of the masu salmon Oncorhynchus masou would more aggressively attack large mature male parr (adopting sneaker tactics) as large mature male parr are expected to have the potential to cause a greater decrease in fertilization success. The frequency of aggressive behaviour was not related to the body size of males, and it increased with the frequency of interactions with mature male parr. The fertilization success of mature male parr was much lower than migratory males, and no relationship was observed between fertilization success and aggressive behaviour. The low fertilization success of mature male parr, despite infrequent aggressive behaviour by migratory males, indicates that there might be little benefit for migratory males to attack mature male parr more aggressively according to their body size.  相似文献   

6.
  总被引:2,自引:0,他引:2  
Evolutionists have long recognized the role of reproductive isolation in speciation, but the relative contributions of different reproductive barriers are poorly understood. We examined the nature of isolation between Mimulus lewisii and M. cardinalis, sister species of monkeyflowers. Studied reproductive barriers include: ecogeographic isolation; pollinator isolation (pollinator fidelity in a natural mixed population); pollen competition (seed set and hybrid production from experimental interspecific, intraspecific, and mixed pollinations in the greenhouse); and relative hybrid fitness (germination, survivorship, percent flowering, biomass, pollen viability, and seed mass in the greenhouse). Additionally, the rate of hybridization in nature was estimated from seed collections in a sympatric population. We found substantial reproductive barriers at multiple stages in the life history of M. lewisii and M. cardinalis. Using range maps constructed from herbarium collections, we estimated that the different ecogeographic distributions of the species result in 58.7% reproductive isolation. Mimulus lewisii and M. cardinalis are visited by different pollinators, and in a region of sympatry 97.6% of pollinator foraging bouts were specific to one species or the other. In the greenhouse, interspecific pollinations generated nearly 50% fewer seeds than intraspecific controls. Mixed pollinations of M. cardinalis flowers yielded >75% parentals even when only one-quarter of the pollen treatment consisted of M. cardinalis pollen. In contrast, both species had similar siring success on M. lewisii flowers. The observed 99.915% occurrence of parental M. lewisii and M. cardinalis in seeds collected from a sympatric population is nearly identical to that expected, based upon our field observations of pollinator behavior and our laboratory experiments of pollen competition. F1 hybrids exhibited reduced germination rates, high survivorship and reproduction, and low pollen and ovule fertility. In aggregate, the studied reproductive barriers prevent, on average, 99.87% of gene flow, with most reproductive isolation occurring prior to hybrid formation. Our results suggest that ecological factors resulting from adaptive divergence are the primary isolating barriers in this system. Additional studies of taxa at varying degrees of evolutionary divergence are needed to identify the relative importance of pre- and postzygotic isolating mechanisms in speciation.  相似文献   

7.
    
Crosses were performed to identify the sources of variation in zygote production (via cystocarp production) in Gracilaria gracilis, a red haploid-diploid seaweed. First, because male gametes are short-lived (<6?h), the rate of gamete encounters was evaluated in a time-course experiment. Second, the effect of water motion on gamete encounters was assessed by introducing turbulent eddies in the crossing tank and by comparing fertilization rates with and without this added turbulence. Third, variation due to individual performance was explored by performing multiple-donor crosses using 12 males and 12 females from three populations. Paternity of cystocarps produced in these crosses was determined using microsatellite markers. The results show that cystocarp yield increased with exposure time: fertilization occurred in as little as 15?min after the introduction of male branches into the crossing tank and maximum cystocarp production values were observed at 6?h. There were no significant differences in cystocarp production between the two turbulence levels. On the other hand, cystocarp production was highly influenced by male and female parental identities and to a lesser degree by an interaction between the male and female parents. The variation in cystocarp production according to male and female identity was not due to population origin as there was no difference between intra- and inter-population crosses. Thus nonrandom mating occurs in controlled conditions and arises from differential performance in G. gracilis. There was a strong deviation from equality of male performance, implicating post-adhesion events and/or male gamete production as important in generating non-random mating. Consequently, non-random mating may play a role in the evolution of mating patterns in G. gracilis.  相似文献   

8.
    
Assortative mating is of interest because of its role in speciation and the maintenance of species boundaries. However, we know little about how within‐species assortment is related to interspecific sexual isolation. Most previous studies of assortative mating have focused on a single trait in males and females, rather than utilizing multivariate trait information. Here, we investigate how intraspecific assortative mating relates to sexual isolation in two sympatric and congeneric damselfly species (genus Calopteryx). We connect intraspecific assortment to interspecific sexual isolation by combining field observations, mate preference experiments, and enforced copulation experiments. Using canonical correlation analysis, we demonstrate multivariate intraspecific assortment for body size and body shape. Males of the smaller species mate more frequently with heterospecific females than males of the larger species, which showed less attraction to small heterospecific females. Field experiments suggest that sexual isolation asymmetry is caused by male preferences for large heterospecific females, rather than by mechanical isolation due to interspecific size differences or female preferences for large males. Male preferences for large females and male–male competition for high quality females can therefore counteract sexual isolation. This sexual isolation asymmetry indicates that sexual selection currently opposes a species boundary.  相似文献   

9.
    
The evolutionary sequence of events in the evolution of reproductive barriers between species is at the core of speciation biology. Where premating barriers fail, post-mating barriers, such as conspecific sperm precedence (CSP), gamete incompatibility (GI) and hybrid inviability (HI) may evolve to prevent the production of (often) costly hybrid offspring with reduced fitness. We tested the role of post-mating mechanisms for the reproductive isolation between two sunfish species [bluegill (BG) Lepomis macrochirus and pumpkinseed (PS) Lepomis gibbosus] and their first-generation hybrids. Performing in vitro sperm competition experiments, we observed asymmetric CSP as main post-mating isolation mechanism when BG and PS sperm were competing for PS eggs, whereas when sperm from both species were competing for BG eggs it was HI. Furthermore, hybrid sperm--although fertile in the absence of competition--were outcompeted by sperm of either parental species. This result may at least partly explain previous observations that natural hybridization in the study system is unidirectional.  相似文献   

10.
Two taxa of Piriqueta (P. caroliniana and P. viridis) form a broad hybrid zone that extends over much of the central Florida peninsula. We used genetic markers to examine the strength of the isolation barriers between these taxa and the patterns of mating at the initial stages of hybridization. Regression models were employed to analyze the effects of pollen load size and the proportions of intra- and interspecific pollen on the frequency of first-generation (F1) hybrid formation. Overall, the postpollination mating barriers between these two taxa were relatively weak. However, there were significant effects of pollen load composition and size on the patterns of hybridization in both taxa with frequency-dependent responses to composition in both taxa. The frequency of F1 hybrid formation was generally lower than expected based on the frequency of each pollen type on the stigma for P. caroliniana recipients. The lower frequencies of F1 seeds in this taxon were apparently due to a greater competitive ability for intraspecific pollen, since hybrid seed formation decreased with increasing pollen load size. Pollen from P. caroliniana donors was also competitively superior on P. viridis recipients, leading to higher than expected frequencies of hybrid seed formation. Pollen from P. caroliniana did suffer higher rates of pollen-tube attrition than intraspecific pollen on P. viridis recipients, so the frequency of hybrid seed formation would be lower when pellen load sizes were small. In general, reproductive isolation mechanisms were stronger in P. caroliniana, suggesting that introgression should occur into P. viridis when these taxa come into close contact. Comparison of these expected patterns of mating to the distribution of hybrid genotypes in Florida provides insights into the relative roles of mating and selection in the evolution of hybrid populations of Piriqueta.  相似文献   

11.
Differences in pollen tube growth rates (certation) between heterospecific (foreign) and conspecific pollen may strongly influence whether hybrid offspring are produced after mixed pollen loads are delivered to a stigma. For both members of a sympatric species pair, Hibiscus moscheutos and H. laevis, pollination by pure loads of foreign pollen resulted in fruit set that was not significantly different from conspecific pollination, indicating that pure loads of foreign pollen could readily result in hybrid offspring. However, the number of seeds per fruit from pure foreign pollinations was significantly less than that of pure conspecific pollination. Simultaneous mixed pollination resulted in a proportion of hybrid seeds (detected by an electrophoretic marker enzyme) that was significantly lower than expected based upon the capacity of foreign pollen to effect fertilization when applied in pure pollinations. After these 50/50% pollen mixtures were applied to stigmas, 8.0 and 7.4% hybrids were produced when H. moscheutos and H. laevis were the ovule parents, respectively. For these Hibiscus species, pollen competition appears to function as a barrier to hybridization that is of moderate intensity compared with similar barriers occurring between other recently studied sympatric species pairs.  相似文献   

12.
    
When organisms release gametes into the sea, synchrony must be precise to increase fertilization and decrease hybridization. We tagged and genotyped over 400 spawning corals from the three species in the Montastraea annularis species complex. We report on the influence of species, individuals, and genotypes on timing of spawning from 2002 through 2009. During their annual spawning event M. franksi spawns on average 2 h after sunset, whereas M. annularis and M. faveolata spawn 3.5 h after sunset. Only M. franksi and M. annularis have compatible gametes. Individual colonies of the same genotype spawn at approximately the same time after sunset within and across years (within minutes), but different genotypes have significantly different spawning times. Neighboring colonies, regardless of genotype, spawn more synchronously than individuals spaced further apart. At a given distance, clone-mates spawn more synchronously than nonclone-mates. A transplant experiment indicates a genetic and environmental influence on spawn time. There is strong, but not absolute, concordance between spawn time, morphology, and genetics. Tight precision in spawning is achieved via a combination of external cues, genetic precision, and perhaps conspecific signaling. These mechanisms are likely to influence reproductive success and reproductive isolation in a density-dependent manner.  相似文献   

13.
Seasonal occurrence patterns of adults of both sexes, intensity of male-male interactions, and mating success in the spider,Nephila clavata, were examined in the field. Adult males began to attend female webs about 2 weeks before female maturation. Large adult males were abundant in the early breeding season, but small males increased later in the season. From the distribution of males among female webs and size relationship of males within a web, male-male interactions seemed to be more intense when most females were still subadult. This was verified by a field experiment in which males were artificially introduced to female webs that were attended by other males. It was found that the probability of introduced males remaining on subadult female webs was lower than that on adult webs. As mating occurred mostly in the period shortly after the female final molt and first male sperm precedence was known in all spiders reported so far, intense male-male competition on subadult female webs seemed to be reasonable. Male longevity had an important influence on the mating success of males with just-molted females. Mating success was also affected by the relative body size of males present in a given period. Since larger males occupied the position closest to females within a web and stayed there longer, relative body size appeared to influence mating success through male-male competition. Female body size at maturation declined with time; hence, males that attained sexual maturity earlier had the advantage of mating with larger and more fecund females. Therefore, early maturation as well as larger size seem to be two important trairs influencing the reproductive success of males.  相似文献   

14.
    
Genital divergence is thought to contribute to reproductive barriers by establishing a “lock‐and‐key\" mechanism for reproductive compatibility. One such example, Macaca arctoides, the bear macaque, has compensatory changes in both male and female genital morphology as compared to close relatives. M. arctoides also has a complex evolutionary history, having extensive introgression between the fascicularis and sinica macaque species groups. Here, phylogenetic relationships were analyzed via whole‐genome sequences from five species, including M. arctoides, and two species each from the putative parental species groups. This analysis revealed ~3x more genomic regions supported placement in the sinica species group as compared to the fascicularis species group. Additionally, introgression analysis of the M. arctoides genome revealed it is a mosaic of recent polymorphisms shared with both species groups. To examine the evolution of their unique genital morphology further, the prevalence of candidate genes involved in genital morphology was compared against genome‐wide outliers in various population genetic metrics of diversity, divergence, introgression, and selection, while accounting for background variation in recombination rate. This analysis identified 67 outlier genes, including several genes that influence baculum morphology in mice, which were of interest since the bear macaque has the longest primate baculum. The mean of four of the seven population genetic metrics was statistically different in the candidate genes as compared to the rest of the genome, suggesting that genes involved in genital morphology have increased divergence and decreased diversity beyond expectations. These results highlight specific genes that may have played a role in shaping the unique genital morphology in the bear macaque.  相似文献   

15.
    
Arnold ML 《Molecular ecology》2000,9(11):1687-1698
  相似文献   

16.
Yeast can be engineered to carry human chromosomes; highly diverged ducks can produce viable, fertile offspring; and mitochondrial genes can move between widely divergent groups of plants. Some sunflower or oak species have porous genomes; mice, crickets, birds, and butterflies form hybrid zones; and bacterial lineages have been exchanging genes for several billion years. Even so, nature is discrete and full of species. Here, we discuss some of the ingredients that make nature discrete and can lead to clustering even in the presence of gene flow. Many of these results have been recently published, in this issue and elsewhere, and were discussed at the Genetics of Speciation Symposium held at the annual meeting of the American Genetics Association, Vancouver, Canada, in 2006.  相似文献   

17.
    
Using low‐coverage whole‐genome sequencing, analysis of vocalizations, and inferences from natural history, we document a first‐generation hybrid between a rose‐breasted grosbeak (Pheucticus ludovicianus) and a scarlet tanager (Piranga olivacea). These two species occur sympatrically throughout much of eastern North America, although were not previously known to interbreed. Following the field identification of a putative hybrid, we use genetic and bioacoustic data to show that a rose‐breasted grosbeak was the maternal parent and a scarlet tanager was the paternal parent of the hybrid, whose song was similar to the latter species. These two species diverged >10 million years ago, and thus it is surprising to find a hybrid formed under natural conditions in the wild. Notably, the hybrid has an exceptionally heterozygous genome, with a conservative estimate of a heterozygous base every 100 bp. The observation that this hybrid of such highly divergent parental taxa has survived until adulthood serves as another example of the capacity for hybrid birds to survive with an exceptionally divergent genomic composition.  相似文献   

18.
    
Heliconius butterflies have become a model for the study of speciation with gene flow. For adaptive introgression to take place, there must be incomplete barriers to gene exchange that allow interspecific hybridization and multiple generations of backcrossing. The recent publication of estimates of individual components of reproductive isolation between several species of butterflies in the Heliconius melpomeneH. cydno clade allowed us to calculate total reproductive isolation estimates for these species. According to these estimates, the butterflies are not as promiscuous as has been implied. Differences between species are maintained by intrinsic mechanisms, while reproductive isolation of geographical races within species is mainly due to allopatry. We discuss the implications of this strong isolation for basic aspects of the hybrid speciation with introgression hypothesis.  相似文献   

19.
    
Early generations of hybrids can express both genetic incompatibilities and phenotypic novelty. Insights into whether these conflicting interactions between intrinsic and extrinsic selection persist after a few generations of recombination require experimental studies. To address this question, we use interpopulation crosses and recombinant inbred lines (RILs) of the copepod Tigriopus californicus, and focus on two traits that are relevant for the diversification of this species: survivorship during development and tolerance to thermal stress. Experimental crosses between two population pairs show that most RILs between two heat‐tolerant populations show enhanced tolerance to temperatures that are lethal to the respective parentals, whereas RILs between a heat‐tolerant and a heat‐sensitive population are intermediate. Although interpopulation crosses are affected by intrinsic selection at early generational hybrids, most of the sampled F9 RILs have recovered fitness to the level of their parentals. Together, these results suggest that a few generations of recombination allows for an independent segregation of the genes underlying thermal tolerance and cytonuclear incompatibilities, permitting certain recombinant lineages to survive in niches previously unused by parental taxa (i.e., warmer thermal environments) without incurring intrinsic selection.  相似文献   

20.
Sexual selection and sexual conflict are considered important drivers of speciation, based on both theoretical models and empirical correlations between sexually selected traits and diversification. However, whether reproductive isolation between species evolves directly as a consequence of intrapopulation sexual dynamics remains empirically unresolved, in part because knowledge of the genetic mechanisms (if any) connecting these processes is limited. Here, we provide evidence of a direct mechanistic link between intraspecies sexual selection and reproductive isolation. We examined genes with known roles in intraspecific sperm competition (ISC) in D. melanogaster and assayed their impact on conspecific sperm precedence (CSP). We found that two such genes (Acp36DE and CG9997) contribute to both offensive sperm competition and CSP; null/knockdown lines both had lower competitive ability against D. melanogaster conspecifics and were no longer able to displace heterospecific D. simulans sperm in competitive matings. In comparison, Sex Peptide (Acp70A)—another locus essential for ISC—does not contribute to CSP. These data indicate that two loci important for sperm competitive interactions have an additional role in similar interactions that enforce post-mating reproductive isolation between species, and show that sexual selection and sexual isolation can act on the same molecular targets in a gene-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号