首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PETER H. BECKER 《Ibis》2012,154(1):74-84
Mating between close relatives can have deleterious effects on reproductive success or offspring fitness, which should favour the evolution of active or passive inbreeding avoidance mechanisms. In birds, evidence for active inbreeding avoidance by kin‐discriminative mate choice is scarce; many studies describe random mating in relation to kinship and thus support passive inbreeding avoidance by natal dispersal. However, most studies were conducted in island populations of short‐lived passerines with fast alternation of generations. In this study, we present inbreeding estimates based on pedigree data from a 16‐year study in a coastal colony of Common Terns Sterna hirundo, a long‐lived seabird with delayed sexual maturation and low rates of extra‐pair paternity. Incestuous mating was rare (four of 2387 pairs), even if partially accounting for incomplete pedigrees. Although the average relatedness of observed pairs was lower than would be expected from random pairing, the inbreeding coefficient did not differ from random mating. Hence, we found no clear evidence for active inbreeding avoidance by kin‐discriminative mate choice, and the low level of inbreeding seems to be related to the high immigration rate in the colony and thus to be maintained passively by dispersal.  相似文献   

2.
Phenotype matching and inbreeding avoidance in African elephants   总被引:1,自引:1,他引:0  
Moore J 《Molecular ecology》2007,16(21):4421-4423
Perhaps the most important 'decision' made by any animal (or plant) is whether to disperse--leave kith and kin, or remain with the familiar and related. The benefits of staying at home are obvious, so dispersal requires an explanation--and the most popular is that dispersal functions to avoid inbreeding depression. Strong support comes from the observation that dispersal is so often sex biased. Simply put, all else being equal members of both sexes should prefer to remain philopatric, but this would lead to inbreeding depression so members of one sex have to disperse. In principle, this link between inbreeding depression and sex-biased dispersal could be broken if individuals recognize close kin and avoid mating with them. Archie et al. (2007) provide one of the most compelling analyses to date of the interaction among inbreeding avoidance, kin recognition and mating strategies in any mammal, clearly showing that elephants recognize even close paternal kin and avoid mating with them. Their important results illuminate the subtleties of elephant inbreeding avoidance as well as illustrate the difficulty of arriving at definitive answers to questions about the evolution of dispersal behaviour.  相似文献   

3.
Investigating whether mating patterns are biased in relation to kinship in isolated populations can provide a better understanding of the occurrence of inbreeding avoidance mechanisms in wild populations. Here, we report on the genetic relatedness (r) among breeding pairs in a relict population of Thorn‐tailed Rayadito (Aphrastura spinicauda) in north‐central Chile that has experienced a long‐term history of isolation. We used simulations based on 8 years of data to assess whether mating is random with respect to relatedness. We found that mean and median population values of pair relatedness tended to be lower than randomly generated values, suggesting that mating is not random with respect to kinship. We hypothesize that female‐biased dispersal is the main mechanism reducing the likelihood of mating among kin, and that the proportion of related pairs (i.e., r > 0.125) in the study population (25%) would presumably be higher in the absence of sex‐biased dispersal. The occurrence of other mechanisms such as extra‐pair copulations, delayed breeding, and active inbreeding avoidance through kin discrimination cannot be dismissed and require further study.  相似文献   

4.
Inbreeding and inbreeding avoidance are key factors in the evolution of animal societies, influencing dispersal and reproductive strategies which can affect relatedness structure and helping behaviours. In cooperative breeding systems, individuals typically avoid inbreeding through reproductive restraint and/or dispersing to breed outside their natal group. However, where groups contain multiple potential mates of varying relatedness, strategies of kin recognition and mate choice may be favoured. Here, we investigate male mate choice and female control of paternity in the banded mongoose (Mungos mungo), a cooperatively breeding mammal where both sexes are often philopatric and mating between relatives is known to occur. We find evidence suggestive of inbreeding depression in banded mongooses, indicating a benefit to avoiding breeding with relatives. Successfully breeding pairs were less related than expected under random mating, which appeared to be driven by both male choice and female control of paternity. Male banded mongooses actively guard females to gain access to mating opportunities, and this guarding behaviour is preferentially directed towards less closely related females. Guard–female relatedness did not affect the guard's probability of gaining reproductive success. However, where mate‐guards are unsuccessful, they lose paternity to males that are less related to the females than themselves. Together, our results suggest that both sexes of banded mongoose use kin discrimination to avoid inbreeding. Although this strategy appears to be rare among cooperative breeders, it may be more prominent in species where relatedness to potential mates is variable, and/or where opportunities for dispersal and mating outside of the group are limited.  相似文献   

5.
Although inbreeding depression and mechanisms for kin recognition have been described in natural bird populations, inbreeding avoidance through mate choice has rarely been reported suggesting that sex‐biased dispersal is the main mechanism reducing the risks of inbreeding. However, a full understanding of the effect of dispersal on the occurrence of inbred matings requires estimating the inbreeding risks prior to dispersal. Combining pairwise relatedness measures and kinship assignments, we investigated in black grouse whether the observed occurrence of inbred matings was explained by active kin discrimination or by female‐biased dispersal. In this large continuous population, copulations between close relatives were rare. As female mate choice was random for relatedness, females with more relatives in the local flock tended to mate with genetically more similar males. To quantify the initial risks of inbreeding, we measured the relatedness to the males of females captured in their parental flock and virtually translocated female hatchlings in their parental and to more distant flocks. These tests indicated that dispersal decreased the likelihood of mating with relatives and that philopatric females had higher inbreeding risks than the actual breeding females. As females do not discriminate against relatives, the few inbred matings were probably due to the variance in female dispersal propensity and dispersal distance. Our results support the view that kin discrimination mate choice is of little value if dispersal effectively reduces the risks of inbreeding.  相似文献   

6.
The social spiders are unusual among cooperatively breeding animals in being highly inbred. In contrast, most other social organisms are outbred owing to inbreeding avoidance mechanisms. The social spiders appear to originate from solitary subsocial ancestors, implying a transition from outbreeding to inbreeding mating systems. Such a transition may be constrained by inbreeding avoidance tactics or fitness loss due to inbreeding depression. We examined whether the mating system of a subsocial spider, in a genus with three social congeners, is likely to facilitate or hinder the transition to inbreeding social systems. Populations of subsocial Stegodyphus lineatus are substructured and spiders occur in patches, which may consist of kin groups. We investigated whether male mating dispersal prevents matings within kin groups in natural populations. Approximately half of the marked males that were recovered made short moves (< 5m) and mated within their natal patch. This potential for inbreeding was counterbalanced by a relatively high proportion of immigrant males. In mating experiments, we tested whether inbreeding actually results in lower offspring fitness. Two levels of inbreeding were tested: full sibling versus non-sib matings and matings of individuals within and between naturally occurring patches of spiders. Neither full siblings nor patch mates were discriminated against as mates. Sibling matings had no effect on direct fitness traits such as fecundity, hatching success, time to hatching and survival of the offspring, but negatively affected offspring growth rates and adult body size of both males and females. Neither direct nor indirect fitness measures differed significantly between within patch and between-patch pairs. We tested the relatedness between patch mates and nonpatch mates using DNA fingerprinting (TE-AFLP). Kinship explained 30% of the genetic variation among patches, confirming that patches are often composed of kin. Overall, we found limited male dispersal, lack of kin discrimination, and tolerance to low levels of inbreeding. These results suggest a history of inbreeding which may reduce the frequency of deleterious recessive alleles in the population and promote the evolution of inbreeding tolerance. It is likely that the lack of inbreeding avoidance in subsocial predecessors has facilitated the transition to regular inbreeding social systems.  相似文献   

7.
Inbreeding depression may be common in nature, reflecting either the failure of inbreeding avoidance strategies or inbreeding tolerance when avoidance is costly. The combined assessment of inbreeding risk, avoidance and depression is therefore fundamental to evaluate the inbreeding strategy of a population, that is how individuals respond to the risk of inbreeding. Here, we use the demographic and genetic monitoring of 10 generations of wild grey mouse lemurs (Microcebus murinus), small primates from Madagascar with overlapping generations, to examine their inbreeding strategy. Grey mouse lemurs have retained ancestral mammalian traits, including solitary lifestyle, polygynandry and male‐biased dispersal, and may therefore offer a representative example of the inbreeding strategy of solitary mammals. The occurrence of close kin among candidate mates was frequent in young females (~37%, most often the father) and uncommon in young males (~6%) due to male‐biased dispersal. However, close kin consistently represented a tiny fraction of candidate mates (< 1%) across age and sex categories. Mating biases favouring partners with intermediate relatedness were detectable in yearling females and adult males, possibly partly caused by avoidance of daughter–father matings. Finally, inbreeding depression, assessed as the effect of heterozygosity on survival, was undetectable using a capture–mark–recapture study. Overall, these results indicate that sex‐biased dispersal is a primary inbreeding avoidance mechanism at the population level, and mating biases represent an additional strategy that may mitigate residual inbreeding costs at the individual level. Combined, these mechanisms explain the rarity of inbreeding and the lack of detectable inbreeding depression in this large, genetically diverse population.  相似文献   

8.
Assortative mating is a deviation from random mating based on phenotypic similarity. As it is much better studied in animals than in plants, we investigate for trees whether kinship of realized mating pairs deviates from what is expected from the set of potential mates and use this information to infer mating biases that may result from kin recognition and/or assortative mating. Our analysis covers 20 species of trees for which microsatellite data is available for adult populations (potential mates) as well as seed arrays. We test whether mean relatedness of observed mating pairs deviates from null expectations that only take pollen dispersal distances into account (estimated from the same data set). This allows the identification of elevated as well as reduced kinship among realized mating pairs, indicative of positive and negative assortative mating, respectively. The test is also able to distinguish elevated biparental inbreeding that occurs solely as a result of related pairs growing closer to each other from further assortativeness. Assortative mating in trees appears potentially common but not ubiquitous: nine data sets show mating bias with elevated inbreeding, nine do not deviate significantly from the null expectation, and two show mating bias with reduced inbreeding. While our data sets lack direct information on phenology, our investigation of the phenological literature for each species identifies flowering phenology as a potential driver of positive assortative mating (leading to elevated inbreeding) in trees. Since active kin recognition provides an alternative hypothesis for these patterns, we encourage further investigations on the processes and traits that influence mating patterns in trees.  相似文献   

9.
In three captive groups of rhesus macaques (Macaca mulatto) the intensity of inbreeding avoidance was directly correlated with the closeness of kinship. The incidence of inbreeding between matrilineal relatives was lower than expected were mating to occur randomly with regard to matrilineal affiliation. The avoidance of mating between sons and their mothers and between matrilineal sibs contributed about squally to this outcome. The incidence of mating between more remote matrilineal relatives was lower than, but could not be shown to differ significantly from, that expected at the 0.05 level of probability. Familiarity fostered by interactions among matriline members probably provides a focus for avoidance of matrilineal inbreeding, and might influence male dispersal. Results of this study are consistent with reports of female rhesus macaques' avoidance of sexual activity with matrilineal male relatives as predicted by parental investment theory The observed incidence of inbreeding between patrilineal relatives was not different from that expected, but significantly fewer of the patrilineally inbred matings involved father/daughter matings than expected were mating random. Recognition of phenotypic similarities might provide a focus for avoidance of inbreeding between fathers and their daughters, but is loss reliable than strategies for avoiding matrilineal inbreeding. Adaptations for avoiding matrilineal inbreeding that are more effective than those for avoiding patrilineal inbreeding might have evolved because the risk of patrilineal inbreeding, and hence the resulting loss in fitness, is marginal compared to that for matrilineal inbreeding in free-ranging groups. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Effects of male‐biased dispersal on inbreeding avoidance were investigated in a semi‐natural population of Myodes (formerly Clethrionomys) rufocanus using a large outdoor enclosure (3 ha). Parentage of 918 voles weaned from 215 litters and relatedness of mates were analysed using microsatellite loci, and dispersal distances were obtained from mark–recapture live‐trapping data. Natal and breeding male‐biased dispersal was observed. There remained, however, chances that incestuous mating could occur, because not all males dispersed from their natal site, and 51 matings occurred between relatives (relatedness r > 0). The number of weaned juveniles from inbred litters was significantly smaller than that from non‐inbred litters. Fourteen incestuous matings occurred between close relatives (r ≥ 0.25), most of which were those between non‐littermate maternal half siblings (four cases) and those between paternal half siblings (seven cases). When comparing the observed frequencies to the expected ones generated by combining every oestrous female with a male randomly chosen from her surroundings, the observed values for inbreeding of r ≥ 0.25 were significantly smaller than the expectations, while no difference was observed for inbreeding of 0 < r < 0.25. These results suggest that male‐biased dispersal is partly effective to avoid incestuous mating, but it does not provide complete separation of male and female close relatives. Additional mechanisms such as kin discrimination based on familiarity may work in inbreeding avoidance of the vole.  相似文献   

11.
Dispersal is an important mechanism used to avoid inbreeding. However, dispersal may only be effective for part of an individual's lifespan since, post-dispersal individuals that breed over multiple reproductive events may risk mating with kin of the philopatric sex as they age. We tested this hypothesis in black grouse Tetrao tetrix, and show that yearling females never mated with close relatives whereas older females did. However, matings were not with direct kin suggesting that short-distance dispersal to sites containing kin and subsequent overlap of reproductive lifespans between males and females were causing this pattern. Chick mass was lower when kinship was high, suggesting important fitness costs associated with inbred matings. This study shows that increased inbreeding risk might be a widespread yet rarely considered cost of ageing.  相似文献   

12.
We tested the hypothesis that sex-biased natal dispersal reduces close inbreeding in American black bears, a solitary species that exhibits nearly complete male dispersal and female philopatry. Using microsatellite DNA and spatial data from reproductively mature bears (>or= 4 years old), we examined the spatial genetic structure of two distinct populations in New Mexico from 1993 to 2000. As predicted, relatedness (r) and the frequency of close relationships (parent-offspring or full siblings) decreased with distance among female dyads, but little change was observed among male or opposite-sex dyads. Neighbouring females were more closely related than neighbouring males. The potential for inbreeding was low. Most opposite-sex pairs that lived sufficiently close to facilitate mating were unrelated, and few were close relatives. We found no evidence that bears actively avoided inbreeding in their selection of mates from this nearby pool, as mean r and relationship frequencies did not differ between potential and actual mating pairs (determined by parentage analysis). These basic patterns were apparent in both study areas despite a nearly two-fold difference in density. However, the sex bias in dispersal was less pronounced in the lower-density area, based on proportions of bears with male and female relatives residing nearby. This result suggests that male bears may respond to reduced competition by decreasing their rate or distance of dispersal. Evidence supports the hypothesis that inbreeding avoidance is achieved by means of male-biased dispersal but also indicates that competition (for mates or resources) modifies dispersal patterns.  相似文献   

13.
There are several measures available to describe the genetic variability of populations. The average inbreeding coefficient of a population based on pedigree information is a frequently chosen option. Due to the developments in molecular genetics it is also possible to calculate inbreeding coefficients based on genetic marker information. A simulation study was carried out involving ten sires and 50 dams. The animals were mated over a period of 20 discrete generations. The population size was kept constant. Different situations with regard to the level of polymorphism and initial allele frequencies and mating scheme (random mating, avoidance of full sib mating, avoidance of full sib and half sib mating) were considered. Pedigree inbreeding coefficients of the last generation using full pedigree or 10, 5 and 2 generations of the pedigree were calculated. Marker inbreeding coefficients based on different sets of microsatellite loci were also investigated. Under random mating, pedigree-inbreeding coefficients are clearly more closely related to true autozygosity (i.e., the actual proportion of loci with alleles identical by descent) than marker-inbreeding coefficients. If mating is not random, the demands on the quality and quantity of pedigree records increase. Greater attention must be paid to the correct parentage of the animals.  相似文献   

14.
No evidence for inbreeding avoidance in a great reed warbler population   总被引:2,自引:0,他引:2  
Inbreeding depression may drive the evolution of inbreedingavoidance through dispersal and mate choice. In birds, manyspecies show female-biased dispersal, which is an effectiveinbreeding avoidance mechanism. In contrast, there is scarceevidence in birds for kin discriminative mate choice, whichmay, at least partly, reflect difficulties detecting it. First,kin discrimination may be realized as dispersal, and this isdifficult to distinguish from other causes of dispersal. Second,even within small, isolated populations, it is often difficultto determine the potential candidates available to a femalewhen choosing a mate. We sought evidence for inbreeding avoidancevia kin discrimination in a breeding population of great reedwarblers (Acrocephalus arundinaceus) studied over 17 years.Inbreeding depression is strong in the population, suggestingthat it would be adaptive to avoid relatives as mates. Detaileddata on timing of settlement and mate search movements madeit possible to identify candidate mates for each female, andlong-term pedigrees and resolved parentage enabled us to estimaterelatedness between females and their candidate mates. We foundno evidence for kin discrimination: mate choice was random withrespect to relatedness when all mate-choice events were considered,and, after correction for multiple tests, also in all breedingyears. We suggest that dispersal is a sufficient inbreedingavoidance mechanism in most situations, although the lack ofkin discriminative mate choice has negative consequences forsome females, because they end up mating with closely relatedmales that lowers their fitness.  相似文献   

15.
In this study, we test whether patterns of territory inheritance, social mate choice and female-biased natal dispersal act as inbreeding avoidance mechanisms in the cooperatively breeding Seychelles warbler. Our results show that Seychelles warblers do not reduce the likelihood of inbreeding by avoiding related individuals as mates. The occurrence of natural and experimentally induced territory inheritance did not depend on whether the remaining breeder was a parent of the potential inheritor or an unrelated breeder. Furthermore, dispersing individuals were no less related to their eventual mates than expected given the pool of candidates they could mate with. The female bias in natal dispersal distance observed in the Seychelles warbler does not facilitate inbreeding avoidance because, contrary to our prediction, there was no sex difference in the clustering of related opposite sex breeders around the natal territories of dispersers. As a result, the chance of females mating with relatives was not reduced by their greater dispersal distance compared with that of males.  相似文献   

16.
I investigated the effect of male mate competition and inbreeding avoidance on natal dispersal of chipmunks by longitudinally monitoring known individuals from 1986 to 1990. Natal males exhibited greater absolute and effective dispersal distances but dispersed at the same proportion as natal females. Recruitment of juvenile males was negatively affected by density of resident males, but there was no evidence of local mate competition among male kin. Analysis of the spatial distribution of neighbors showed that natal males settled farther from their mothers than did their female siblings and farther than unrelated juvenile males. In addition, mothers apparently tolerated daughters as close neighbors and occasionally shared den sites with grandprogeny. Sexually mature males were never neighbors of their mothers and were never observed at maternal mating bouts. Males may disperse to improve reproductive opportunities by avoiding competition with resident males, and by increasing access to unrelated females. Maternal tolerance of daughters but not sons may result in the close affiliation between mothers and daughters, and indirectly contribute to dispersal of natal males. Hence male-biased dispersal could be a consequence of mate competition and maternal avoidance of incestuous matings. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The long-term study of animal populations facilitates detailed analysis of processes otherwise difficult to measure, and whose significance may appear only when a large sample size from many years is available for analysis. For example, inbreeding is a rare event in most natural populations, and therefore many years of data are needed to estimate its effect on fitness. A key behaviour hypothesized to play an important role in avoiding inbreeding is natal dispersal. However, the functional significance of natal dispersal with respect to inbreeding has been much debated but subject to very few empirical tests. We analysed 44 years of data from a wild great tit Parus major population involving over 5000 natal dispersal events within Wytham Woods, UK. Individuals breeding with a relative dispersed over several-fold shorter distances than those outbreeding; within the class of inbreeding birds, increased inbreeding was associated with reduced dispersal distance, for both males and females. This led to a 3.4-fold increase (2.3-5, 95% CI) in the likelihood of close (f=0.25) inbreeding relative to the population average when individuals dispersed less than 200m. In the light of our results, and published evidence showing little support for active inbreeding avoidance in vertebrates, we suggest that dispersal should be considered as a mechanism of prime importance for inbreeding avoidance in wild populations.  相似文献   

18.
Natal sex‐biased dispersal has long been thought to reduce the risk of inbreeding by spatially separating opposite‐sexed kin. Yet, comprehensive and quantitative evaluations of this hypothesis are lacking. In this study, we quantified the effectiveness of sex‐biased dispersal as an inbreeding avoidance strategy by combining spatially explicit simulations and empirical data. We quantified the extent of kin clustering by measuring the degree of spatial autocorrelation among opposite‐sexed individuals (FM structure). This allowed us to systematically explore how the extent of sex‐biased dispersal, generational overlap, and mate searching distance, influenced both kin clustering, and the resulting inbreeding in the absence of complementary inbreeding avoidance strategies. Simulations revealed that when sex‐biased dispersal was limited, positive FM genetic structure developed quickly and increased as the mate searching distance decreased or as generational overlap increased. Interestingly, complete long‐range sex‐biased dispersal did not prevent the development of FM genetic structure when generations overlapped. We found a very strong correlation between FM genetic structure and both FIS under random mating, and pedigree‐based measures of inbreeding. Thus, we show that the detection of FM genetic structure can be a strong indicator of inbreeding risk. Empirical data for two species with different life history strategies yielded patterns congruent with our simulations. Our study illustrates a new application of spatial genetic autocorrelation analysis that offers a framework for quantifying the risk of inbreeding that is easily extendable to other species. Furthermore, our findings provide other researchers with a context for interpreting observed patterns of opposite‐sexed spatial genetic structure.  相似文献   

19.
Sib‐mating avoidance is a pervasive behaviour that is expected to evolve in species subject to inbreeding depression. Although laboratory studies provide elegant demonstrations, small‐scaled bioassays minimize the costs of mate finding and choice, and thus may produce spurious findings. We therefore combined laboratory experiments with field observations to examine the existence of inbreeding avoidance using the parasitoid wasp Venturia canescens. In the laboratory, our approach consisted of mate‐choice experiments to assess kin discrimination in population cages with competitive interactions. A higher mating probability after sib rejections suggested that females could discriminate their sibs; however, in contrast to previous findings, sib‐mating avoidance was not observed. To compare our laboratory results to field data, we captured 241 individuals from two populations. Females laid eggs in the lab, and 226 daughters were obtained. All individuals were genotyped at 18 microsatellite loci, which allowed inference of the genotype of each female's mate and subsequently the relatedness within each mating pair. We found that the observed rate of sib‐mating did not differ from the probability that sibs encountered one another at random in the field, which is consistent with an absence of sib‐mating avoidance. In addition, we detected a weak but significant male‐biased dispersal, which could reduce encounters between sibs. We also found weak fitness costs associated with sib‐mating. As such, the sex‐biased dispersal that we found is probably sufficient to mitigate these costs. These results imply that kin discrimination has probably evolved for purposes other than mate choice, such as superparasitism avoidance.  相似文献   

20.
Inbreeding in the greater white-toothed shrew, Crocidura russula   总被引:1,自引:0,他引:1  
We combined mark-and-recapture studies with genetic techniques of parentage assignment to evaluate the interactions between mating, dispersal, and inbreeding, in a free-ranging population of Crocidura russula. We found a pattern of limited and female-biased dispersal, followed by random mating within individual neighborhoods. This results in significant inbreeding at the population level: mating among relatives occurs more often than random, and F(IT) analyses reveal significant deficits in heterozygotes. However, related mating partners were not less fecund, and inbred offspring had no lower lifetime reproductive output. Power analyses show these negative results to be quite robust. Absence of phenotypic evidence of inbreeding depression might result from a history of purging: local populations are small and undergo disequilibrium gene dynamics. Dispersal is likely caused by local saturation and (re)colonization of empty breeding sites, rather than inbreeding avoidance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号