首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Duong  B.  Blomberg  S. P.  Cribb  T. H.  Cowman  P. F.  Kuris  A. M.  McCormick  M. I.  Warner  R. R.  Sun  D.  Grutter  A. S. 《Coral reefs (Online)》2019,38(2):199-214

The pelagic larval stage is a critical component of the life cycle of most coral reef fishes, but the adaptive significance of this stage remains controversial. One hypothesis is that migrating through the pelagic environment reduces the risk a larval fish has of being parasitised. Most organisms interact with parasites, often with significant, detrimental consequences for the hosts. However, little is known about the parasites that larval fish have upon settlement, and the factors that affect the levels of parasitism. At settlement, coral reef fishes vary greatly in size and age (pelagic larval duration), which may influence the degree of parasitism. We identified and quantified the parasites of pre-settlement larvae from 44 species of coral reef fishes from the Great Barrier Reef and explored their relationship with host size and age at settlement, and phylogeny. Overall, less than 50% of the larval fishes were infected with parasites, and over 99% of these were endoparasites. A Bayesian phylogenetic regression was used to analyse host-parasite (presence and intensity) associations. The analysis showed parasite presence was not significantly related to fish size, and parasite intensity was not significantly related to fish age. A phylogenetic signal was detected for both parasite presence and intensity, indicating that, overall, closely related fish species were likely to have more similar susceptibility to parasites and similar levels of parasitism when compared to more distantly related species. The low prevalence of infection with any parasite type and the striking rarity of ectoparasites is consistent with the ‘parasite avoidance hypothesis’, which proposes that the pelagic phase of coral reef fishes results in reduced levels of parasitism.

  相似文献   

2.
Patterns and likely processes connected with evolution of host specificity in congeneric monogeneans parasitizing fish species of the Cyprinidae were investigated. A total of 51 Dactylogyrus species was included. We investigated (1) the link between host specificity and parasite phylogeny; (2) the morphometric correlates of host specificity, parasite body size, and variables of attachment organs important for host specificity; (3) the evolution of morphological adaptation, that is, attachment organ; (4) the determinants of host specificity following the hypothesis of specialization on more predictable resources considering maximal body size, maximal longevity, and abundance as measures of host predictability; and (5) the potential link between host specificity and parasite diversification. Host specificity, expressed as an index of host specificity including phylogenetic and taxonomic relatedness of hosts, was partially associated with parasite phylogeny, but no significant contribution of host phylogeny was found. The mapping of host specificity into the phylogenetic tree suggests that being specialist is not a derived condition for Dactylogyrus species. The different morphometric traits of the attachment apparatus seem to be selected in connection with specialization of specialist parasites and other traits favored as adaptations in generalist parasites. Parasites widespread on several host species reach higher abundance within hosts, which supports the hypothesis of ecological specialization. When separating specialists and generalists, we confirmed the hypothesis of specialization on a predictable resource; that is, specialists with larger anchors tend to live on fish species with larger body size and greater longevity, which could be also interpreted as a mechanism for optimizing morphological adaptation. We demonstrated that ecology of host species could also be recognized as an important determinant of host specificity. The mapping of morphological characters of the attachment organ onto the parasite phylogenetic tree reveals that morphological evolution of the attachment organ is connected with host specificity in the context of fish relatedness, especially at the level of host subfamilies. Finally, we did not find that host specificity leads to parasite diversification in congeneric monogeneans.  相似文献   

3.
Variation in susceptibility is ubiquitous in multi‐host, multi‐parasite assemblages, and can have profound implications for ecology and evolution in these systems. The extent to which susceptibility to parasites is phylogenetically conserved among hosts can be revealed by analysing diverse regional communities. We screened for haemosporidian parasites in 3983 birds representing 40 families and 523 species, spanning ~ 4500 m elevation in the tropical Andes. To quantify the influence of host phylogeny on infection status, we applied Bayesian phylogenetic multilevel models that included a suite of environmental, spatial, temporal, life history and ecological predictors. We found evidence of deeply conserved susceptibility across the avian tree; host phylogeny explained substantial variation in infection status, and results were robust to phylogenetic uncertainty. Our study suggests that susceptibility is governed, in part, by conserved, latent aspects of anti‐parasite defence. This demonstrates the importance of deep phylogeny for understanding present‐day ecological interactions.  相似文献   

4.
Parasite modification of host behavior is common, and the literature is dominated by demonstrations of enhanced predation on parasitized prey resulting in transmission of parasites to their next host. We present a case in which predation on parasitized prey is reduced. Despite theoretical modeling suggesting that this phenomenon should be common, it has been reported in only a few host–parasite–predator systems. Using a system of gregarine endosymbionts in host mosquitoes, we designed experiments to compare the vulnerability of parasitized and unparasitized mosquito larvae to predation by obligate predatory mosquito larvae and then compared behavioral features known to change in the presence of predatory cues. We exposed Aedes triseriatus larvae to the parasite Ascogregarina barretti and the predator Toxohrynchites rutilus and assessed larval mortality rate under each treatment condition. Further, we assessed behavioral differences in larvae due to infection and predation stimuli by recording larvae and scoring behaviors and positions within microcosms. Infection with gregarines reduced cohort mortality in the presence of the predator, but the parasite did not affect mortality alone. Further, infection by parasites altered behavior such that infected hosts thrashed less frequently than uninfected hosts and were found more frequently on or in a refuge within the microcosm. By reducing predation on their host, gregarines may be acting as mutualists in the presence of predation on their hosts. These results illustrate a higher‐order interaction, in which a relationship between a species pair (host–endosymbiont or predator–prey) is altered by the presence of a third species.  相似文献   

5.
Despite their ubiquity, in most cases little is known about the impact of eukaryotic parasites on their mammalian hosts. Comparative approaches provide a powerful method to investigate the impact of parasites on host ecology and evolution, though two issues are critical for such efforts: controlling for variation in methods of identifying parasites and incorporating heterogeneity in sampling effort across host species. To address these issues, there is a need for standardized methods to catalogue eukaryotic parasite diversity across broad phylogenetic host ranges. We demonstrate the feasibility of a metabarcoding approach for describing parasite communities by analysing faecal samples from 11 nonhuman primate species representing divergent lineages of the primate phylogeny and the full range of sampling effort (i.e. from no parasites reported in the literature to the best‐studied primates). We detected a number of parasite families and regardless of prior sampling effort, metabarcoding of only ten faecal samples identified parasite families previously undescribed in each host (x? = 8.5 new families per species). We found more overlap between parasite families detected with metabarcoding and published literature when more research effort—measured as the number of publications—had been conducted on the host species' parasites. More closely related primates and those from the same continent had more similar parasite communities, highlighting the biological relevance of sampling even a small number of hosts. Collectively, results demonstrate that metabarcoding methods are sensitive and powerful enough to standardize studies of eukaryotic parasite communities across host species, providing essential new tools for macroecological studies of parasitism.  相似文献   

6.
The degree to which parasites use hosts is fundamental to host-parasite coevolution studies, yet difficult to assess and interpret in an evolutionary manner. Previous assessments of parasitism in eugregarine-host systems suggest high degrees of host specificity to particular host stages and host species; however, rarely have the evolutionary constraints on host specificity been studied experimentally. A series of experimental infections were conducted to determine the extent of host stadium specificity (larval vs. adult stage) and host specificity among 6 tenebrionid host species and 5 eugregarine parasite species. Eugregarines from all host species infected both the larva and adult stages of the host, and each parasite taxa colonized several host species (Tribolium spp. and Palorus subdepressus). Parasite infection patterns were not congruent with host phylogeny, suggesting that host phylogeny is not a significant predictor of host-parasite interactions in this system. However, the 2 host stages produced significantly different numbers of parasite propagules, indicating that ecological factors may be important determinants of host specificity in this host-parasite system. While field infections reflect extant natural infection patterns of parasites, experimental infections can demonstrate potential host-parasite interactions, which aids in identifying factors that may be significant in shaping future host-parasite interactions.  相似文献   

7.
1. This article compares generalist (parasite species found on two or more host species) and specialist (found on only one host species) monogenean parasite species of fish. The reduction of the host range – that is an increase in host specificity – may correspond with a better adaptation of the parasite to a more predictable host environment. A more predictable environment may allow the parasite species to develop specific adaptations.
2. We assume that the more predictable host environment can be evaluated by host body size, since numerous life-traits, such as longevity, are positively correlated with size.
3. We found that specialist parasites parasitize larger hosts species than generalist parasites. We also found a good relationship between host body size and parasite body size for specialist parasite species.
4. An adaptation to the mechanical problems encountered in the host's gill chamber may lead to an increase in parasite body size. The infection of a larger part of the host population in order to decrease the chances of local extinction due to fluctuations of host abundance may be another adaptive mechanism.
5. We found a negative correlation between parasite body size and prevalence for generalist parasite species. This relationship disappeared when using the comparative method controlling for phylogeny, which proved that it was a phylogenetic effect.  相似文献   

8.
Summary Emerys rule predicts that social parasites and their hosts share common ancestry and are therefore likely to be close relatives. Within the leaf-cutting ant genus Acromyrmex, two taxa of social parasites have been found, which are thought to occupy opposite grades of permanent social parasitism, based on their contrasting morphologies: Acromyrmex insinuator differs little in morphology from its free-living congeneric host species and produces a worker caste, and is thus thought to represent an early grade of social parasitism. At the other extreme, Pseudoatta spp. exhibit a very specialised morphology and lack a worker caste, both of which are characteristics of an evolutionarily derived grade of social parasitism. Here we present a molecular phylogeny using partial sequences of cytochrome oxidase I and II of about half of the known Acromyrmex species including two social parasites, their hosts and all congeneric species occurring sympatrically. We show that the two inquiline parasites represent two separate origins of social parasitism in the genus Acromyrmex. The early-grade social parasite A. insinuator is highly likely to be the sister species of its host Acromyrmex echinator, but the derived social parasite Pseudoatta sp. is not the sister species of its extant host Acromyrmex rugosus.Received 18 November 2002; revised 16 July 2003; accepted 24 July 2003.  相似文献   

9.
We compared the length of time parasitic and nonparasitic female birds spent on nests while laying eggs (laying bouts) to evaluate the hypothesis that rapid laving by parasitic Brown-headed Cowbirds Molothrus ater and other parasitic birds is a specialization for brood parasitism. Brown-headed Cowbirds typically spent less than 1 min on host nests while laying (41.0 ± 4.58 [mean ± s.e.] s, n = 21). In contrast, mean laving bouts of six nonparasitic icterine species ranged from 21.5 min to 53.4 min, and laying bouts of 13 other passerine species ranged from 20.7 min to 103.7 min. By spending only a few seconds on the nest while laying, brood parasites probably increase their chances of parasitizing nests unnoticed by hosts or, if noticed, are harassed by hosts for less time. Rapid laying may be adaptive if aggression by hosts can thwart attempted parasitism by chasing away the parasite, preventing the parasite from entering the nest or injuring the parasite. Rapid laying may increase the likelihood that the parasitic egg will be accepted. We tested some of these hypotheses by recording the responses of three frequently parasitized species to a stuffed female cowbird placed on their nests for 1 min. All species attacked the model vigorously; however, the mean time for discovery of the model ranged from 3 min to 17 min, ample time for female cowbirds to parasitize the nests. We concluded that rapid laying by parasitic birds is an adaptation for parasitism and, in Brown-headed Cowbirds, reduces the chances that the parasite will be attacked by hosts.  相似文献   

10.
Host specificity of parasites is important for the understanding of evolutionary strategies of parasitism that would be a basis of predictions of the disease expansion when parasitized hosts invade new environments. The nematode order Oxyurida is an interesting parasite group for studying the evolution of parasitism as it includes parasites of both invertebrates and vertebrates. In our survey, we found that the smokybrown cockroach Periplaneta fuliginosa was primarily infected with only one nematode species Leidynema appendiculatum. In two cases, L. appendiculatum was isolated from two additional cockroach species Pycnoscelus surinamensis, sold in Japan as a reptile food, and Blatta lateralis, captured in the field and cultured in the laboratory. Inoculation of L. appendiculatum into three additional cockroach species P. japonica, Blattella nipponica, and P. surinamensis also resulted in parasitism. Infection prevalence was high, and timing of postembryonic development from hatched nematode larva to mature adult in these hosts was identical with that in P. fuliginosa. While ecological interactions strongly determine the host range, such broad infectivity is still possible in this parasitic nematode.  相似文献   

11.
Avian brood parasites lay their eggs in the nests of their hosts, which rear the parasite's progeny. The costs of parasitism have selected for the evolution of defence strategies in many host species. Most research has focused on resistance strategies, where hosts minimize the number of successful parasitism events using defences such as mobbing of adult brood parasites or rejection of parasite eggs. However, many hosts do not exhibit resistance. Here we explore why some hosts accept parasite eggs in their nests and how this is related to the virulence of the parasite. We also explore the extent to which acceptance of parasites can be explained by the evolution of tolerance; a strategy in which the host accepts the parasite but adjusts its life history or other traits to minimize the costs of parasitism. We review examples of tolerance in hosts of brood parasites (such as modifications to clutch size and multi‐broodedness), and utilize the literature on host–pathogen interactions and plant herbivory to analyse the prevalence of each type of defence (tolerance or resistance) and their evolution. We conclude that (i) the interactions between brood parasites and their hosts provide a highly tractable system for studying the evolution of tolerance, (ii) studies of host defences against brood parasites should investigate both resistance and tolerance, and (iii) tolerance and resistance can lead to contrasting evolutionary scenarios.  相似文献   

12.
Hosts either tolerate avian brood parasitism or reject it by ejecting parasitic eggs, as seen in most rejecter hosts of common cuckoos, Cuculus canorus, or by abandoning parasitized clutches, as seen in most rejecter hosts of brown‐headed cowbirds, Molothrus ater. What explains consistent variation between alternative rejection behaviours of hosts within the same species and across species when exposed to different types of parasites? Life history theory predicts that when parasites decrease the fitness of host offspring, but not the future reproductive success of host adults, optimal clutch size should decrease. Consistent with this prediction, evolutionarily old cowbird hosts, but not cuckoo hosts, have lower clutch sizes than related rarely‐ or newly parasitized species. We constructed a mathematical model to calculate the fitness payoffs of egg ejector vs. nest abandoner hosts to determine if various aspects of host life history traits and brood parasites’ virulence on adult and young host fitness differentially influence the payoffs of alternative host defences. These calculations showed that in general egg ejection was a superior anti‐parasite strategy to nest abandonment. Yet, increasing parasitism rates and increasing fitness values of hosts’ eggs in both currently parasitized and future replacement nests led to switch points in fitness payoffs in favour of nest abandonment. Nonetheless, nest abandonment became selectively more favourable only at lower clutch sizes and only when hosts faced parasitism by a cowbird‐ rather than a cuckoo‐type brood parasite. We suggest that, in addition to evolutionary lag and gape‐size limitation, our estimated fitness differences based on life history trait variation provide new insights for the consistent differences observed in the anti‐parasite rejection strategies between many cuckoo‐ and cowbird‐hosts.  相似文献   

13.
Surprisingly little is known about what determines a parasite's host range, which is essential in enabling us to predict the fate of novel infections. In this study, we evaluate the importance of both host and parasite phylogeny in determining the ability of parasites to infect novel host species. Using experimental lab assays, we infected 24 taxonomically diverse species of Drosophila flies (Diptera: Drosophilidae) with five different nematode species (Tylenchida: Allantonematidae: Howardula, Parasitylenchus), and measured parasite infection success, growth, and effects on female host fecundity (i.e., virulence). These nematodes are obligate parasites of mushroom-feeding Drosophila, particularly quinaria and testacca group species, often with severe fitness consequences on their hosts. We show that the potential host ranges of the nematodes are much larger than their actual ranges, even for parasites with only one known host species in nature. Novel hosts that are distantly related from the native host are much less likely to be infected, but among more closely related hosts, there is much variation in susceptibility. Potential host ranges differ greatly between the related parasite species. All nematode species that successfully infected novel hosts produced infective juveniles in these hosts. Most novel infections did not result in significant reductions in the fecundity of female hosts, with one exception: the host specialist Parasitylenchus nearcticus sterilized all quinaria group hosts, only one of which is a host in nature. The large potential host ranges of these parasites, in combination with the high potential for host colonization due to shared mushroom breeding sites, explain the widespread host switching observed in comparisons of nematode and Drosophila phylogenies.  相似文献   

14.
We found evidence that a nematode (Skrjabinoclava morrisoni) adaptivelymanipulates the behavior of its intermediate host (the amphipod Corophiumvolutator) to increase its likelihood of transmission to itsfinal host (the semipalmated sandpiper, Calidris pusilla). We foundthat male and female amphipods parasitized by nematodes increasedtheir surface activity in the field during daytime, but notduring nighttime hours. Increased surface activity is knownto increase susceptibility of amphipods to predation by sandpipersduring the day, but not at night, when sandpipers do not feedvisually. Also, as predicted by the manipulation hypothesis,only late-stage (infective) larvae of nematodes were associatedwith behavioral changes of amphipods. We found no evidence thatparasites were associated with other amphipod behaviors in thelaboratory, such as trail complexity, distance traveled, orburrow-probing activity of crawling males as would be expectedif parasitized hosts altered their own behavior. Survivorshipof amphipods was also unaffected by parasitism, which may favorparasite transmission. Thus, behavioral changes of parasitizedhosts were simple, and their expression was context-dependentand related to likelihood of predation. We argue that maturationtimes of nematodes in relation to migration schedules of sandpipers providea narrow window of opportunity and may explain why nematodes manipulateamphipod behavior.  相似文献   

15.
Coevolutionary arms races between brood parasites and hosts provide tractable systems for understanding antagonistic coevolution in nature; however, little is known about the fate of frontline antiparasite defenses when the host “wins” the coevolutionary arms race. By recreating bygone species interactions, using artificial parasitism experiments, lingering defensive behaviors that evolved in the context of parasitism can be understood and may even be used to identify the unknown agent of parasitism past. Here we present the first study of this type by evaluating lingering “frontline” nest defenses that have evolved to prevent egg laying in a former brood parasite host. The Australian reed warbler Acrocephalus australis is currently not parasitized but is known to exhibit fine-tuned egg discrimination—a defensive behavior indicative of a past brood parasite–host arms race and common in closely related parasitized species. Here, using 3D-printed models of adult brood parasites, we examined whether the Australian reed warbler also exhibits frontline defenses to adult brood parasites, and whether we could use these defenses to identify the warbler’s “ghost of parasitism past.” Our findings provide evidence that the Australian reed warbler readily engages in frontline defenses that are considered adaptive specifically in the context of brood parasitism. However, individuals were unable to discriminate between adults of different brood parasite species at their nest. Overall, our results demonstrate that despite a relaxation in selection, defenses against brood parasitism can be maintained across multiple stages of the host’s nesting cycle, and further suggest that, in accordance with previous findings, that learning may be important for fine-tuning frontline defense.  相似文献   

16.
Coevolutionary theory predicts that the most common long‐term outcome of the relationships between brood parasites and their hosts should be coevolutionary cycles based on a dynamic change selecting the currently least‐defended host species, given that when well‐defended hosts are abandoned, hosts will be selected to decrease their defences as these are usually assumed to be costly. This is assumed to be the case also in brood parasite‐host systems. Here I examine the frequency of the three potential long‐term outcomes of brood parasite–host coevolution (coevolutionary cycles, lack of rejection, and successful resistance) in 182 host species. The results of simple exploratory comparisons show that coevolutionary cycles are very scarce while the lack of rejection and successful resistance, which are considered evolutionary enigmas, are much more frequent. I discuss these results considering (i) the importance of different host defences at all stages of the breeding cycle, (ii) the role of phenotypic plasticity in long‐term coevolution, and (iii) the evolutionary history of host selection. I suggest that in purely antagonistic coevolutionary interactions, such as those involving brood parasites and their hosts, that although cycles will exist during an intermediate phase of the interactions, the arms race will end with the extinction of the host or with the host acquiring successful resistance. As evolutionary time passes, this resistance will force brood parasites to use previously less suitable host species. Furthermore, I present a model that represents the long‐term trajectories and outcomes of coevolutionary interactions between brood parasites and their hosts with respect to the evolution of egg‐rejection defence. This model suggests that as an increasing number of species acquire successful resistance, other unparasitized host species become more profitable and their parasitism rate and the costs imposed by brood parasitism at the population level will increase, selecting for the evolution of host defences. This means that although acceptance is adaptive when the parasitism rate and the costs of parasitism are very low, this cannot be considered to represent an evolutionary equilibrium, as conventional theory has done to date, because it is not stable.  相似文献   

17.
Social parasites exploit the brood care behavior of other species and can exert strong selection pressures on their hosts. As a consequence, hosts have developed defenses to circumvent or to lower the costs of parasitism. Recently, a novel, indirect defense trait, termed slave rebellion, has been described for hosts of a slave-making ant: Enslaved Temnothorax longispinosus workers reduce local parasite pressure by regularly killing pupae of their obligatory slavemaking parasite Protomognathus americanus. Subsequently, growth of social parasite nests is reduced, which leads to fewer raids and likely increases fitness of neighboring related host colonies. In this study, we investigate the presence and expression the slave rebellion trait in four communities. We report its presence in all parasitized communities, document strong variation in its expression between different geographic sites and discuss potential explanations for this observed variation.  相似文献   

18.
Evolutionarily distinctive host lineages might harbor fewer parasite species because they have fewer opportunities for parasite sharing than hosts having extant close relatives, or because diverse parasite assemblages promote host diversification. We evaluate these hypotheses using data from 930 species of parasites reported to infect free‐living carnivores. We applied nonparametric richness estimators to estimate parasite diversity among well‐sampled carnivore species and assessed how well host evolutionary distinctiveness, relative to other biological and environmental factors, explained variation in estimated parasite diversity. Species richness estimates indicate that the current published literature captures less than 50% of the true parasite diversity for most carnivores. Parasite species richness declined with evolutionary distinctiveness of carnivore hosts (i.e., length of terminal ranches of the phylogeny) and increased with host species body mass and geographic range area. We found no support for the hypothesis that hosts from more diverse lineages support a higher number of generalist parasites, but we did find evidence that parasite assemblages might have driven host lineage diversification through mechanisms linked to sexual selection. Collectively, this work provides strong support for host evolutionary history being an essential predictor of parasite diversity, and offers a simple model for predicting parasite diversity in understudied carnivore species.  相似文献   

19.
Trophically transmitted parasites often alter their intermediate host's phenotype, thereby predisposing the hosts to increased predation. This is generally considered a parasite strategy evolved to enhance transmission to the next hosts. However, the adaptive value of host manipulation is not clear as it may be associated with costs, such as increased susceptibility to predators that are unsuitable next hosts for the parasites. We examined the ratio between the benefits and costs of host manipulation for transmission success of Acanthocephalus lucii (Acanthocephala), a parasite that alters the hiding behaviour and pigmentation of its isopod hosts. We experimentally compared the susceptibility of infected and uninfected isopods to predation by perch (Perca fluvialis; definitive host of the parasite) and dragonfly larvae (dead end). We found that the parasite predisposed the isopods to predation by both predators. However, the increased predation vulnerability of the infected isopods was higher towards perch. This suggests that, despite the costs due to non-host predation, host manipulation may still be advantageous for the parasite.  相似文献   

20.
Brooks parsimony analysis (BPA) and reconciliation methods in studies of host–parasite associations differ fundamentally, despite using the same null hypothesis. Reconciliation methods may eliminate or modify input data to maximize fit of single parasite clades to a null hypothesis of cospeciation, by invoking different a priori assumptions, including a known host phylogeny. By examining the degree of phylogenetic congruence among multiple parasite clades, using hosts as analogs of taxa but not presuming a host phylogeny or any degree of cospeciation a priori, BPA modifies the null hypothesis of cospeciation if necessary to maintain the integrity of the input data. Two exemplars illustrate critical empirical differences between reconciliation methods and BPA: (1) reconciliation methods rather than BPA may select the incorrect general host cladogram for a set of data from different clades of parasites, (2) BPA rather than reconciliation methods provides the most parsimonious interpretation of all available data, and (3) secondary BPA, proposed in 1990, when applied to data sets in which host‐switching produces hosts with reticulate histories, provides the most parsimonious and biologically realistic interpretations of general host cladograms. The extent to which these general host cladograms, based on cospeciation among different parasite clades inhabiting the same hosts, correspond to host phylogeny can be tested, a posteriori, by comparison with a host phylogeny generated from nonparasite data. These observations lead to the conclusion that BPA and reconciliation methods are designed to implement different research programs based on different epistemologies. BPA is an a posteriori method that is designed to assess the host context of parasite speciation events, whereas reconciliation methods are a priori methods that are designed to fit parasite phylogenies to a host phylogeny. Host‐switching events are essential for explaining complex histories of host–parasite associations. BPA assumes coevolutionary complexity (historical contingency), relying on parsimony as an a posteriori explanatory tool to summarize complex results, whereas reconciliation methods, which embody formalized assumptions of maximum cospeciation, are based on a priori conceptual parsimony. Modifications of basic reconciliation methods, embodied in TreeMap 1.0 and TreeMap 2.02, represent the addition of weighting schemes in which the researcher specifies allowed departures from cospeciation a priori, with the result that TreeMap results more closely agree with BPA results than do reconciled tree analysis results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号