首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper examines to what extent an assembly rule designed by Fox for small terrestrial mammal communities is also applicable to communities of arboreal lemurs in Madagascar. This approach extends the testing of Fox's assembly rule to a new biogeographic region and a different phylogenetic radiation. The rule operates on a functional rather than on the taxonomic level. It specifies that: "There is a much higher probability that each species entering a community will be drawn from a different functional group, until each group is represented before the cycle repeats" (Fox, 1987: 201). This rule was tested with lemur communities from 14 sites in evergreen rain forests and nine sites in dry deciduous forests of Madagascar. Lemur species were assigned to one of three different functional groups based on dietary preferences: omnivores, frugivores, folivores. The rule applies almost perfectly to extant lemur communities in evergreen rain forest. Present communities in dry deciduous forests are not ordered as perfectly as communities of the rain forest sites, but they also deviate from random assembly as generated by the null model. Including extinct species of the dry forest ecosystem indicates that the at present unfavoured composition of the lemur community has been derived from a favoured state through extinction of the large folivorous and frugivorous lemur species. In the lemur communities of the eastern Malagasy rain forest, the assembly went through at least four, and in the Holocene dry forest ecosystem through even five, cycles without failing. This assigns considerable significance to the underlying mechanisms (most likely interspecific competition) and indicates that they are still effective in the forests of Madagascar. The dry deciduous forests might have been subject to recent natural and anthropogenic changes which interfere with the operation of these deterministic processes.  相似文献   

2.

Objectives

Identify patterns of change in species distributions, diversity, concentrations of evolutionary history, and assembly of Australian rainforests.

Methods

We used the distribution records of all known rainforest woody species in Australia across their full continental extent. These were analysed using measures of species richness, phylogenetic diversity (PD), phylogenetic endemism (PE) and phylogenetic structure (net relatedness index; NRI). Phylogenetic structure was assessed using both continental and regional species pools. To test the influence of growth-form, freestanding and climbing plants were analysed independently, and in combination.

Results

Species richness decreased along two generally orthogonal continental axes, corresponding with wet to seasonally dry and tropical to temperate habitats. The PE analyses identified four main areas of substantially restricted phylogenetic diversity, including parts of Cape York, Wet Tropics, Border Ranges, and Tasmania. The continental pool NRI results showed evenness (species less related than expected by chance) in groups of grid cells in coastally aligned areas of species rich tropical and sub-tropical rainforest, and in low diversity moist forest areas in the south-east of the Great Dividing Range and in Tasmania. Monsoon and drier vine forests, and moist forests inland from upland refugia showed phylogenetic clustering, reflecting lower diversity and more relatedness. Signals for evenness in Tasmania and clustering in northern monsoon forests weakened in analyses using regional species pools. For climbing plants, values for NRI by grid cell showed strong spatial structuring, with high diversity and PE concentrated in moist tropical and subtropical regions.

Conclusions/Significance

Concentrations of rainforest evolutionary history (phylo-diversity) were patchily distributed within a continuum of species distributions. Contrasting with previous concepts of rainforest community distribution, our findings of continuous distributions and continental connectivity have significant implications for interpreting rainforest evolutionary history and current day ecological processes, and for managing rainforest diversity in changing circumstances.  相似文献   

3.
Ant communities in tropical forests may be governed by varying assembly mechanisms, depending on the particular habitat investigated. We compared phylogenetic diversity and structure across two forest biomes (dry and humid) and two vertical layers (arboreal and terricolous) in ant communities in Madagascar, and assessed the influence of invasive species on this community structure. We estimated phylogenetic signal and correlated evolution for habitat and several functional traits and tested for conservatism in relevant functional and habitat traits. Ancestral states were reconstructed to illuminate the evolution of habitat traits. All analyses utilized phylogenies estimated from newly generated data from three nuclear markers for 290 Malagasy ant taxa. Dry forests, although lower in species richness, were found to support equally high lineage diversity as humid forests. In contrast, phylogenetic diversity was much lower in arboreal than in terricolous communities. We observed significant phylogenetic clustering in the combined humid forest and in the arboreal–humid, arboreal–dry and terricolous–humid communities, whereas the combined dry forest community was overdispersed. Among ant communities in Madagascar, overdispersion and competition therefore may be more prevalent in dry forest, and habitat filtering may be more dominant in humid forest. Excluding invasive ant species had little overall effect on community structure. All investigated traits showed low to intermediate conservatism; strong support for correlated evolution was found for increased eye size and an arboreal lifestyle. Habitat transitions from humid to dry and from terricolous to arboreal occurred more frequently, and ancestors of most lineages were predicted to be terricolous or humid‐forest adapted. We conclude that most Malagasy ant clades first colonized humid forests and subsequently transitioned into dry forests, indicating that previous hypotheses on the evolution of Madagascar's hyperdiverse biota may not apply to ants and other arthropods.  相似文献   

4.
Transects across the margins of rainforests with eucalypt forests at two sites in New South Wales are described. At Girard State Forest along ten transects it was consistently found that pure rainforest occurs where there is no evidence of past burning; and that rainforest tree species appear to be invading and replacing eucalypt forest through a formerly burned ecotone area. A similar pattern was found at Barrington Tops. It is suggested that adaptations shown by species of tall open forests which enable them to regenerate rapidly after burning may have evolved initially in a fire free, prehuman rainforest environment in response to other types of disturbance.  相似文献   

5.
In the first comprehensive floristic classification of Australian rainforests and monsoon forests, fresh insights made possible by the use of floristic as distinct from structural data are outlined. A set of 561 individual communities, on sites ranging from North Queensland westwards to the Kimberley region and southwards to Tasmania, is defined by the presence or absence of 1316 tree species, or 406 genera. The data have been subjected to numerical classification, first with respect to species, then to genera. The species classification first divides into three ‘ecofloristic regions’: A, temperate (microtherm) and subtropical (mesotherm) humid evergreen rainforests; B, tropical (megatherm) humid evergreen grading into highly seasonal raingreen (monsoon) forests; and C, subtropical (mesotherm) moderately seasonal humid/subhumid raingreen forests. The sites are further divided into eight ‘ecofloristic provinces’, for each of which a core area is identified and the ten most common diagnostic tree species listed for selected floristic elements, whose ecological relationships are briefly described. Gradients of quantitative thermal-moisture indices are added to standard climatic typology to provide a more flexible identification of local climates that characterize community-types of each province across a wide latitudinal/altitudinal range. Community disjuncts and outliers of a particular province are interpreted as the results of past environmental sifting (in which ecological factors are not entirely determinate), of previously more continuous rainforest vegetation. The genera classification first divides into humid eastern coastal and subhumid western and subcoastal sites, then four thermal types, and finally nine groups of floristic ‘paleo-provinces’. Where the species and genera classifications are not in substantial agreement, a wide-ranging generic element across the provinces in northern and northeastern Australia is interpreted in paleogeographic terms. The relict distribution of existing community types, as the result of climatic sifting of ancient floral stocks, is discussed in support of emerging ideas about the autochthony of Australian rainforests, especially those tropical types that are not intrusive. It is argued that the unique ecological relationships of Australian rainforests justify the most conservative uses of the relatively small remaining areas.  相似文献   

6.
Ecological restoration is increasingly applied in tropical forests to mitigate biodiversity loss and recover ecosystem functions. In restoration ecology, functional richness, rather than species richness, often determines community assembly, and measures of functional diversity provide a mechanistic link between diversity and ecological functioning of restored habitat. Vertebrate animals are important for ecosystem functioning. Here, we examine the functional diversity of small‐to‐medium sized mammals to evaluate the diversity and functional recovery of tropical rainforest. We assess how mammal species diversity and composition and functional diversity and composition, vary along a restoration chronosequence from degraded pasture to “old‐growth” tropical rainforest in the Wet Tropics of Australia. Species richness, diversity, evenness, and abundance did not vary, but total mammal biomass and mean species body mass increased with restoration age. Species composition in restoration forests converged on the composition of old‐growth rainforest and diverged from pasture with increasing restoration age. Functional metrics provided a clearer pattern of recovery than traditional species metrics, with most functional metrics significantly increasing with restoration age when taxonomic‐based metrics did not. Functional evenness and dispersion increased significantly with restoration age, suggesting that niche complementarity enhances species' abundances in restored sites. The change in community composition represented a functional shift from invasive, herbivorous, terrestrial habitat generalists and open environment specialists in pasture and young restoration sites, to predominantly endemic, folivorous, arboreal, and fossorial forest species in older restoration sites. This shift has positive implications for conservation and demonstrates the potential of tropical forest restoration to recover rainforest‐like, diverse faunal communities.  相似文献   

7.
We used a mosaic of infrequently burnt temperate rainforest and adjacent, frequently burnt eucalypt forests in temperate eastern Australia to test whether: (1) there were differences in flammability of fresh and dried foliage amongst congeners from contrasting habitats, (2) habitat flammability was related to regeneration strategy, (3) litter fuels were more flammable in frequently burnt forests, (4) the severity of a recent fire influenced the flammability of litter (as this would suggest fire feedbacks), and (5) microclimate contributed to differences in fire hazard amongst habitats. Leaf-level comparisons were made among 11 congeneric pairs from rainforest and eucalypt forests. Leaf-level ignitability, combustibility and sustainability were not consistently higher for taxa from frequently burnt eucalypt forests, nor were they higher for species with fire-driven recruitment. The bulk density of litter-bed fuels strongly influenced flammability, but eucalypt forest litter was not less dense than rainforest litter. Ignitability, combustibility and flame sustainability of community surface fuels (litter) were compared using fuel arrays with standardized fuel mass and moisture content. Forests previously burned at high fire severity did not have consistently higher litter flammability than those burned at lower severity or long unburned. Thus, contrary to the Mutch hypothesis, there was no evidence of higher flammability of litter fuels or leaves from frequently burnt eucalypt forests compared with infrequently burnt rainforests. We suggest the manifest pyrogenicity of eucalypt forests is not due to natural selection for more flammable foliage, but better explained by differences in crown openness and associated microclimatic differences.  相似文献   

8.
Large-bodied mammals are a rich and diversified faunal group in tropical rainforests. However, knowledge on community size and composition, and on species’ distribution and ecology remains often scant and inadequate against their chronic status of threats. We used camera trapping to detect mammals in the forests of the Eastern Arc Mountains (EAM) of Tanzania, a world renowned region for biodiversity comprised by a series of distinct and ancient mountain ranges partially covered in moist montane forest. We conducted surveys from 2003 to 2011 in eight of the 12 mountain blocks in Tanzania, and, through an overall sampling effort of 11,500 camera days, we detected 43 species. We normalized species richness and species’ detection events by effort, and used these metrics to assess the effect of habitat and human disturbance variables. We found that rarefied richness is positively affected by forest area at the block level, and that richness at forest patch level is also affected by forest area as well as surrounding human density (negative effect). For a subset of 17 species, we found consistent patterns of avoidance or tolerance of human disturbance and forest edges, and increased occurrence in areas at higher elevation, matching the historical forest loss that in most mountains occurred at lower elevation. Our study provides ecological insights that are novel for most species and sites, and reveals a general trend of negative impact of human disturbance on both community size and species’ relative abundance. Increased protection of the EAM forests in Tanzania is of urgent importance for the persistence of diversified mammal communities.  相似文献   

9.
Aim Our goals are: (1) to examine the relative degree of phylogenetic overdispersion or clustering of species in communities relative to the entire species pool, (2) to test for across‐continent differences in community phylogenetic structure, and (3) to examine the relationship between species richness and community phylogenetic structure. Location Africa, Madagascar, Asia, and the Neotropics. Methods We collected species composition and phylogenetic data for over 100 primate communities. For each community, we calculated two measures of phylogenetic structure: (1) the net relatedness index (NRI), which provides a measure of the mean pairwise phylogenetic distance among all species in the community; and (2) the nearest taxon index (NTI), which measures the relative phylogenetic distance among the closest related species in a community. Both measures are relative to the phylogeny of the species in the entire species pool. The phylocom package uses a randomization procedure to test whether the NRI and NTI values are higher or lower than expected by chance alone. In addition, we used a Kruskal–Wallis test to examine differences in NRI and NTI across continents, and linear regressions to examine the relationship between species richness and NRI/NTI. Results We found that the majority of individual primate communities in Africa, Asia and the Neotropics consist of member species that are neither more nor less closely related than expected by chance alone. Yet 37% of Malagasy communities contain species that are more distantly related to each other compared with random species assemblages. Also, we found that the average degree of relatedness among species in communities differed significantly across continents, with African and Malagasy communities consisting of more distantly related taxa compared with communities in Asia and the Neotropics. Finally, we found a significant negative relationship between species richness and phylogenetic distance among species in African, Asian and Malagasy communities. The average relatedness among species in communities decreased as community size increased. Main conclusions The majority of individual primate communities exhibit a phylogenetic structure no different from random. Yet there are across‐continent differences in the phylogenetic structure of primate communities that probably result from the unique ecological and evolutionary characteristics exhibited by the endemic species found on each continent. In particular, the recent extinctions of numerous primates on Madagascar are likely responsible for the low levels of evolutionary relatedness among species in Malagasy communities.  相似文献   

10.
Secondary forests that develop following land abandonment could compensate for the losses of diversity and structure that accompany deforestation of old‐growth forests in tropical regions. Whether secondary forests can harbor similar species richness, density, and composition of old‐growth forests for vascular epiphytes remains largely unknown for secondary forests older than 50 yr. We examined community structure (species richness, density, and species composition) of vascular epiphytes in older secondary forests between 35 and 115 yr after land abandonment and nearby old‐growth forests to determine if the community structure of epiphytes in secondary forests approaches that of old‐growth forests over time. The recovery of epiphyte species richness was rapid with 55‐year‐old forests containing 65 percent of old‐growth epiphyte species richness. Secondary forest epiphyte communities were found to be statistically nested within secondary forests older in age and within old‐growth forests. Similarity of epiphyte communities to old‐growth forests increased to 75 percent, 115 yr after abandonment. This study suggests that secondary forests will likely recover old‐growth epiphyte richness and composition given enough time. Epiphyte densities did not recover quickly with 55‐year‐old forests having 14 percent and 115‐year‐old forests having only 49 percent of the density of old‐growth forest epiphytes. The low density of epiphytes in secondary forests could impact rainforest diversity and function. We conclude that in less than 115 yr, although secondary moist forests have high conservation value for some aspects of community structure, they are unlikely to compensate biologically for the loss of diversity and ecosystem function that high epiphyte densities provide.  相似文献   

11.
Anthropogenic disturbances have resulted in declines of seed-dispersing primate frugivores in tropical forests. Previous work has suggested that loss of seed dispersal by large frugivores may have a negative impact on ecosystem carbon storage by reducing tree biomass. However, we know little about the potential impacts of losing frugivores in Madagascar’s diverse rainforest ecosystem. Understanding the effects of frugivore extinction on carbon loss is relevant in Madagascar, where threatened lemur taxa are the only dispersers of many large-seeded plant species. Using a dataset of tree species composition and traits from the southeastern rainforests of Ranomafana National Park, we examined whether seed size and lemur-dependent dispersal are positively associated with above-ground tree biomass. We then simulated different scenarios of population declines of large-seeded trees (>10 mm seed length) dependent on lemur-mediated seed dispersal, to examine potential directional changes in carbon storage capacity of Malagasy forests under lemur loss. Lemur-dispersed tree species, which have large seeds, had higher above-ground biomass than other species. Our simulations showed that the loss of large frugivorous primates in Madagascar may decrease the forest’s potential to store carbon. These results demonstrate the importance of primate conservation for maintaining functioning ecosystems and forest carbon stocks in one of the world’s hottest hotspots of biodiversity.  相似文献   

12.
Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world’s tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest – open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management.  相似文献   

13.
Topography and soil factors are known to play crucial roles in the species composition of plant communities in subtropical evergreen-deciduous broadleaved mixed forests. In this study, we used a systematic quantitative approach to classify plant community types in the subtropical forests of Hubei Province (central China), and then quantified the relative contribution of drivers responsible for variation in species composition and diversity. We classified the subtropical forests in the study area into 12 community types. Of these, species diversity indices of three communities were significantly higher than those of others. In each community type, species richness, abundance, basal area and importance values of evergreen and deciduous species were different. In most community types, deciduous species richness was higher than that of evergreen species. Linear regression analysis showed that the dominant factors that affect species composition in each community type are elevation, slope, aspect, soil nitrogen content, and soil phosphorus content. Furthermore, structural equation modeling analysis showed that the majority of variance in species composition of plant communities can be explained by elevation, aspect, soil water content, litterfall, total nitrogen, and total phosphorus. Thus, the major factors that affect evergreen and deciduous species distribution across the 12 community types in subtropical evergreen-deciduous broadleaved mixed forests include elevation, slope and aspect, soil total nitrogen content, soil total phosphorus content, soil available nitrogen content and soil available phosphorus content.  相似文献   

14.
Tropical rainforests are characterized by having high structural complexity, stratification, and species diversity. In Colombia, tropical rainforests are critically endangered with only 24% of their area remaining. Forest fragments are often valued based on the presence of vertebrate taxa despite that small habitat remnants may still harbor diverse invertebrate communities. We surveyed the ant fauna associated with rainforest fragments and their surrounding landscape elements (including mature forests, flooded forests, gallery forests, live fences, and pastures) in the Magdalena River watershed. Pitfall traps and litter samples were used to estimate ant richness and diversity, and to compare ant composition among landscape elements. We found 135 species from 42 genera, representing 16% of the species and 43% of the genera known for Colombia. Our surveys also uncovered 11 new ant records for the Colombian inter-Andean region and 2 new records for the country of Colombia: Mycocepurus curvispinosus (Mackay) and Rhopalothrix isthmica (Weber). The highest species richness was found in forest-covered sites, and richness and diversity was lower in the disturbed landscapes surrounding the forest patches. Species composition varied significantly between all habitat types, but was most similar between forest types suggesting that a loss of structural complexity has the greatest effect on ant communities. Across our study sites, ten species showed the greatest response to habitat type and could qualify as indicator taxa for this region. We conclude by discussing the value of conserving even small forests in this landscape due to their ability to retain high diversity of ants.  相似文献   

15.
Increasing temperatures are predicted to have profound effects on montane ecosystems. In tropical forests, biotic attrition may reduce lowland diversity if losses of species due to upslope range shifts are not matched by influxes of warmer‐adapted species, either because there are none or their dispersal is impeded. Australian rainforests consist of a north–south chain of patches, broken by dry corridors that are barriers to the dispersal of rainforest species. These rainforests have repeatedly contracted and expanded during Quaternary glacial cycles. Many lowland rainforests are expansions since the Last Glacial Maximum and may, therefore, show a signal of historical biotic attrition. We surveyed ants from replicated sites along three rainforest elevational transects in eastern Australia spanning 200 to 1200 m a.s.l. and nearly 14° of latitude. We examined elevational patterns of ant diversity and if there was possible evidence of lowland biotic attrition. Each transect was in a different biogeographic region; the Australian Wet Tropics (16.3°S), the central Queensland coast (21.1°S) and subtropical south‐eastern Queensland (28.1°S). We calculated ant species density (mean species per site) and species richness (estimated number of species by incorporating site‐to‐site species turnover) within elevational bands. Ant species density showed no signal of lowland attrition and was high at low and mid‐elevations and declined only at high elevations at all transects. Similarly, estimated species richness showed no evidence of lowland attrition in the Wet Tropics and subtropical south‐east Queensland; species richness peaked at low elevations and declined monotonically with increasing elevation. Persistence of lowland rainforest refugia in the Wet Tropics during the Last Glacial Maximum and latitudinal range shifts of ants in subtropical rainforests during the Holocene climatic optimum may have counteracted lowland biotic attrition. In central Queensland, however, estimated richness was similar in the lowlands and mid‐elevations, and few ant species were indicative of lower elevations. This may reflect historical biotic attrition due perhaps to a lack of lowland glacial refugia and the isolation of this region by a dry forest barrier to the north.  相似文献   

16.
17.
Aim To describe variation in forest bird communities with altitude and latitude. Location Eastern Madagascar. Methods Extraction of data from forest bird inventories conducted in eastern Madagascar. Results There is a strong decline in species richness with altitude, above about 1300 m. Below this altitude, species richness is about constant or declines slightly. Seventy-eight percent of species occurring regularly in forest are absent from at least one of low, mid-altitude or high altitude forest. Of eighty-seven species occurring regularly in forest, only four or possibly five have latitudinally limited distributions, over a latitudinal range of over 1200 km. Three or possibly four are limited to the northern two-thirds, and one appears to be at least much more common in the southern half. Main conclusions Eastern Malagasy rain forest birds show previously unanalysed variation in altitudinal distribution. There is much less latitudinal variation. Species currently considered threatened are concentrated in the lowland and high-altitude zones. This may be at least partly due to lack of survey effort giving the impression that these species are rare, but lowland forests at least are under great human pressure. Bird conservation initiatives would probably have most effect if targeted at lowland east Malagasy rain forest.  相似文献   

18.
The spatial patterns in the distributions of vertebrates in the rainforests of the wet tropics biogeographic region of north-eastern Australia were examined to form hypotheses on the processes that have shaped vertebrate assemblages and patterns of species richness and regional endemism. These rainforests occur in a relatively narrow and discontinuous strip along the coast of north-eastern Australia. We found that the number of regionally endemic species and the proportion of regional endemics present in each subregion are both strongly related to the geographic shape of subregional patches of rainforest, independent of rainforest area, within Australian tropical rainforests. Shape has a more significant influence on regional endemism than area, and area has a stronger influence on species richness. These patterns were congruent for all terrestrial vertebrate classes manuals, birds, reptiles and frogst, and for the four groups combined. Our results suggest that the combination of current rainforest area and shape are an index of the relative susceptibility of each area of rainforest to historical contractions, with the implication that historical habitat fluctuations, coupled with subsequent localized extinctions species sifting; have been extremely important processes in determining current patterns of endemism in Australia''s wet tropical rainforests. This hypothesis is supported by the highly nested structure of the subregional distribution patterns.  相似文献   

19.
 本文通过10个地区61个样地资料分析,研究了中亚热带东部常绿阔叶林群落多样性特征及其随纬度、海拔梯度的变化。结果表明,中亚热带东部常绿阔叶林群落丰富度为49±17种(样地面积400m2),各层次的多样性表现为灌木层(包括幼树与幼苗)>乔木层>草本层。常绿阔叶林各类型间的差异远比落叶阔叶林与多样性较低的常绿阔叶林之间的差异大。各层次中变化幅度从大到小的顺序为:草本层>乔木层>灌木层。在所研究地区常绿阔叶林的群落多样性没有表现出明显的随纬度梯度和海拔梯度的变化规律。  相似文献   

20.
Terrestrial mammals are a key component of tropical forest communities as indicators of ecosystem health and providers of important ecosystem services. However, there is little quantitative information about how they change with local, regional and global threats. In this paper, the first standardized pantropical forest terrestrial mammal community study, we examine several aspects of terrestrial mammal species and community diversity (species richness, species diversity, evenness, dominance, functional diversity and community structure) at seven sites around the globe using a single standardized camera trapping methodology approach. The sites-located in Uganda, Tanzania, Indonesia, Lao PDR, Suriname, Brazil and Costa Rica-are surrounded by different landscape configurations, from continuous forests to highly fragmented forests. We obtained more than 51 000 images and detected 105 species of mammals with a total sampling effort of 12 687 camera trap days. We find that mammal communities from highly fragmented sites have lower species richness, species diversity, functional diversity and higher dominance when compared with sites in partially fragmented and continuous forest. We emphasize the importance of standardized camera trapping approaches for obtaining baselines for monitoring forest mammal communities so as to adequately understand the effect of global, regional and local threats and appropriately inform conservation actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号