首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 520 毫秒
1.
Foliar carbon isotope discrimination (Δ) of C3 plants decreases in water‐deficit situations as discrimination by the photosynthetic primary carboxylation reaction decreases. This diminished Δ in leaves under water deficit can be used as a tracer to study whole plant carbon allocation patterns. Carbon isotope composition (δ13C value) of leaf hot water extracts or leaf tissue sap represents a short‐term integral of leaf carbon isotope discrimination and thus represents the δ13C value of source carbon that may be distributed within a plant in water‐deficit situations. By plotting the δ13C values of source carbon against the δ13C values of sink tissues, such as roots or stems, it is possible to assess carbon allocation to and incorporation into sink organs in relation to already present biomass. This natural abundance labelling method has been tested in three independent experiments, a one‐year field study with the fruit tree species Ziziphus mauritiana and peach (Prunus persica), a medium‐term drought stress experiment with Ziziphus rotundifolia trees in the glasshouse, and a short‐term drought stress experiment with soybean (Glycine max). The data show that the natural abundance labelling method can be applied to qualitatively assess carbon allocation in drought‐stressed plants. Although it is not possible to estimate exact fluxes of assimilated carbon during water deficit the method represents an easy to use tool to study integrated plant adaptations to drought stress. In addition, it is a less laborious method that can be applied in field studies as well as in controlled experiments, with plants from any developmental stage.  相似文献   

2.
Transpiration, xylem water potential and water channel activity were studied in developing stolons and leaves of strawberry (Fragaria × ananassa Duch.) subjected to drought or flooding, together with morphological studies of their stomata and other surface structures. Stolons had 0.12 stomata mm–2 and a transpiration rate of 0.6 mmol H2O m–2 s–1, while the leaves had 300 stomata mm–2 and a transpiration rate of 5.6 mmol H2O m–2 s–1. Midday water potentials of stolons were always less negative than in leaves enabling nutrient ion and water transport via or to the strawberry stolons. Drought stress, but not flooding, decreased stolon and leaf water potential from –0.7 to –1 MPa and from –1 to –2 MPa, respectively, with a concomitant reduction in stomatal conductance from 75 to 30 mmol H2O m–2 s–1. However, leaf water potentials remained unchanged after flooding. Similarly, membrane vesicles derived from stolons of flooded strawberry plants showed no change in water channel activity. In these stolons, turgor may be preserved by maintaining root pressure, an electrochemical and ion gradient and xylem differentiation, assuming water channels remain open. By contrast, water channel activity was reduced in stolons of drought stressed strawberry plants. In every case, the effect of flooding on water relations of strawberry stolons and leaves was less pronounced than that of drought which cannot be explained by increased ABA. Stomatal closure under drought could be attributed to increased delivery of ABA from roots to the leaves. However, stomata closed more rapidly in leaves of flooded strawberry despite ABA delivery from the roots in the xylem to the leaves being strongly depressed. This stomatal closure under flooding may be due to release of stress ethylene. In the relative absence of stomata from the stolons, cellular (apoplastic) water transport in strawberry stolons was primarily driven by water channel activity with a gradient from the tip of the stolon to the base, concomitant with xylem differentiation and decreased water transport potential from the stolon tip to its base. Reduced water potential in the stolons under drought are discussed with respect to reduced putative water channel activity.  相似文献   

3.
Abstract Potted seedlings of four lines of maize and Sorghum of differing drought tolerance were subjected to a single soil drying cycle and were only rewatered when the plants showed the first signs of wilting. Other plants remained well-watered throughout the experimental period. As plant water potentials decreased in the unwatered plants of three of the lines investigated (Sorghum Piper and M35-1, V-4146 and maize Farz 27), endogenous levels of farnesol-like antitranspirants increased. Closure of stomata correlated well with the increase in endogenous antitranspirant. In the fourth line (Sorghum M35-1, V-4184), stomata did not close as the level of plant water stress increased, although leaf diffusion resistance of even the well-watered plants of this line was quite high. In this line, there was no consistent relationship between plant water stress and antitranspirant level or between stomatal behaviour and antitranspirant level. The involvement of farnesol-like antitranspirants in the control of stomatal behaviour in water-stressed plants is discussed.  相似文献   

4.
Differences in plant resistance to water flow, patterns of water transport through stems, and stomatal behavior were studied on three species native to the exceptionally hot and dry habitat of Death Valley, California (—, and Larrea divaricata). Dawn xylem water potentials in July for Atriplex were — 27.5 bar under natural conditions. Corresponding values for Tidestromia and Larrea were respectively — 8.0 bar and -32.0 bar (natural) and — 7.5 bar and — 18.0 bar (irrigated). Recovery of xylem water potential in covered field plants of an irrigated transplant garden reached a maximum value in July of — 9.5 bar in Atriplex, — 5.7 bar in Tidestromia and — 7.0 bar in Larrea. Resistance to free-energy transfer was used to study resistance to water transport through the plants. Under field conditions irrigated Atriplex plants gave a whole plant resistance of 20.70 × 106 s cm-1, as compared lo 18.37 × 106 s cm-1 for Larrea and 10.01 × 106 s cm-1 for Tidestromia. Plant resistance to water How computed by this method on Atriplex plants grown under laboratory conditions gave a value of 3.73 × 106 s cm-1 at 35C. Paths of water flow in field plants as investigated with injected acid fuchsin indicated a sectorial straight type vessel. The relationship between transpiration rates and xylem water potentials in Atriplex hymenelytra was linear between transpiration 1.28 μg cm-2 s-1 and 2.35 μg cm-2 s-1 at 35°C. These results indicate that according to the Van den Honert model for water transport, plant resistance to water flow remained rather constant at this temperature. In Atriplex grown under laboratory conditions there was an adjustment of plant resistance so change in water flux at 9.5°C and 25°C. When laboratory-grown plants of Atriplex and Tidestromia were subjected to water stress by withholding water. Tidestromia closed stomata and reduced transpiration rates at higher water potentials than in Atriplex. The ratio of vapor pressure gradients of leaf/air to leaf diffusion resistance was proportional lo transpiration rates. It is suggested that Atriplex hymenelytra is a species that combines strong regulation of water loss by stomata with low efficiency of the water transport system. These plants are unable to prevent depression of plant water potential as transpiration increases. On the other hand. Tidestromia oblongifolia has little stomatal regulation of transpiration and a highly efficient water transport system. These plants sustain very high rates of transpiration without significant decrease in plant water potential.  相似文献   

5.
Yan C  Shen H  Li Q  He Z 《Planta》2006,224(4):889-899
Hot and dry air (harmattan or xerothermic climate) greatly inhibits plant growth, particularly flowering and seed setting of crops. Little is known about the mechanism of plant response to this extreme environmental stress due to the lack of valuable genetic resource. Here, we report the isolation and characteristics of a unique Arabidopsis mutant, hat1 (h armattan t olerant 1), which shows high tolerance to hot and dry air. Under normal growth conditions, the mutant does not differ in morphology and soil drought tolerance compared to the wild type. When subjected to high temperature (42°C) and low humidity (10–15%), however, it could survive up to 6 days, while the wild type (Col-0) died after 24 h. The hat1 mutant also exhibits enhanced tolerance to soil drought, but only under xerothermic conditions. Mutant plants tightly close their stomata to retain water under xerothermic stress, and are more tolerant to high salinity at all developmental stages, accumulating less Na+ and more K+ than wild-type plants during NaCl treatment. Interestingly, hat1 plants are also ABA-hypersensitive. Genetic analysis revealed that the hat1 phenotype is caused by a dominant mutation at a single nuclear locus. Mapping studies indicate that Hat1 is located at an interval of 168 kb on chromosome 5 in which 21 genes are known to be regulated by diverse abiotic stresses. A mutant of this kind, to our knowledge, has not been previously reported. Thus, this report serves as a starting point in the genetic dissection of the plant response to xerothermic stress, and provides physiological and genetic evidence of the existence of a novel abiotic stress response pathway that is also ABA-dependent.  相似文献   

6.
Both ozone (O3) and drought can limit carbon fixation by forest trees. To cope with drought stress, plants have isohydric or anisohydric water use strategies. Ozone enters plant tissues through stomata. Therefore, stomatal closure can be interpreted as avoidance to O3 stress. Here, we applied an optimization model of stomata involving water, CO2, and O3 flux to test whether isohydric and anisohydric strategies may affect avoidance of O3 stress by stomatal closure in four Mediterranean tree species during drought. The data suggest that stomatal closure represents a response to avoid damage to the photosynthetic mechanisms under elevated O3 depending on plant water use strategy. Under high-O3 and well-watered conditions, isohydric species limited O3 fluxes by stomatal closure, whereas anisohydric species activated a tolerance response and did not actively close stomata. Under both O3 and drought stress, however, anisohydric species enhanced the capacity of avoidance by closing stomata to cope with the severe oxidative stress. In the late growing season, regardless of the water use strategy, the efficiency of O3 stress avoidance decreased with leaf ageing. As a result, carbon assimilation rate was decreased by O3 while stomata did not close enough to limit transpirational water losses.  相似文献   

7.
Efficient procedures for regeneration and Agrobacterium-mediated transformation were established for Agrostis mongolica Roshev. and generated transgenic plants tolerant to drought and heat stresses using a regulatory gene from Arabidopsis, ABF3, which controls the ABA-dependent adaptive responses. The identification and selection of regenerable and reproducible callus type was a key factor for successful transformation. The transformation efficiency was 49.2% and gfp expression was detected in hygromycin-resistant calli and stem of putative transgenic plants. The result of Southern blot analysis showed that the ABF3 transgene was stably integrated into the genome of transgenic plants. Of the five transgenic lines analyzed, single transgene integration was observed in two lines and two copy integration was observed in three transgenic lines. Northern blot analysis confirmed that ubi::ABF3 was expressed in all transgenic lines. Transgenic plants exhibited neither growth inhibition nor visible vegetative phenotypic alternations. However, both transgenic and wild-type plants were highly sterile and did not flower during 3 years of growth period in the open field under subtropical Jeju Island climate. The stomata of the transgenic plants opened less than did stomata of the wild-type plants, and water content of the transgenic leaves remained about 3–4 fold higher than observed for wild-type leaves under drought stress. The transgenic plants showed about 2 fold higher survival rates under drought stress and about 3 fold higher survival rates under heat stress when compared to wild-type plants. Thus, overexpression of the Arabidopsis ABF3 gene results in enhancement of both drought and heat stress tolerance in Agrostis mongolica Roshev.  相似文献   

8.
Stomatal responses to changes in temperature at increasing water stress   总被引:3,自引:0,他引:3  
Summary The response of stomata to a gradual increase in temperature at increasing plant water stress was studied in a hot desert habitat (Negev, Israel) in the field, but under controlled temperature and humidity conditions. Four native species (Zygophyllum dumosum, Artemisia herba-alba, Hammada scoparia, Reaumuria negevensis) and one cultivated plant (Prunus armeniaca) were used in these studies. The stomatal response to temperature was compared with the response in well-irrigated plants of the same species.At low water stress, the diffusion resistance for water vapour decreased in response to a gradual increase in temperature. Transpiration increased accordingly. This response was reversible. All species responded in the same way. The opening of stomata with increasing temperature was apparently independent of the stomatal response regulated by atmospheric humidity. At high plant water stress, the stomatal response was reversed, i.e., the stomata closed when temperature was gradually increased. This stomatal closure was also independent of the closure regulated by atmospheric humidity. The plant water potential at which the stomatal response to temperature was reversed, differed among the species investigated.  相似文献   

9.
Organs or plants grown in vitro do not always exhibit the same responses to salinity as the whole plant of same species grown ex vitro. The response to salinity (100 mM NaCl) of seedlings of the wild tomato species Lycopersicon pennellii acc. Atico (Lpa) and of the cultivated tomato L. esculentum cv. M82 (Lem), the former is known as salt tolerant and the second as relatively salt sensitive under ex vitro conditions, was compared under in vitro conditions with three different ventilation regimes. It was found that under salinity shoots of the wild species accumulated the same or even more dry biomass than the control (roots somewhat less) under all ventilation levels. Growth of shoots and roots of the cultivated species was inhibited under the same conditions especially under the high ventilation. Ventilation reduced some abnormalities of leaf development related to hyperhydricity and consequently ventilated leaves exhibited a more compounded structure, increased area, increased resistance to water loss and stomata functioning. Ventilation increased K+, Na+ and Cl accumulation in shoots of both tomato species. This was more pronounced under salinity and in Lpa. This work indicates that differences that characterize whole plants of these species in response to salinity under ex vitro conditions are exhibited also in whole plants grown in vitro under high ventilation. It is suggested that ventilation is needed to evaluate well the response of whole plants to salt stress applied in vitro.  相似文献   

10.
R. Lösch 《Oecologia》1979,39(2):229-238
Summary Stomatal apertures of isolated and suitably conditioned epidermal strips of Polypodium vulgare are described as the stomata respond to the influences of temperature, air humidity, and water potential at the epidermal inner walls. Water stress as a result of reduced water potential in the substomatal airspace leads to narrower stomatal pores when water potential falls below -8 bar. Water potentials above this threshold value show minor influence. Stomatal responses to such water stress strongly interact with the responses to humidity changes in ambient air and to temperature. The linear dependence of stomatal apertures on the vapor saturation deficit of the air (closing) is shifted to lower values (more closed) by lower leaf bulk water potentials.Stomatal behavior depending on the temperature factor seems to be reversed by higher water stress. Without water stress, rising temperatures between 20 and 28° C are accompanied by further opening of the pores, whereas an increase of temperature within this range leads to narrowing of the stomata under the influence of lower water potentials within the substomatal airspace. It can be demonstrated that stomatal aperture values of Polypodium vulgare depending on temperature always describe optimum curves. With no water stress, closing does not occur before rather high temperatures are reached and above a broad range of maximal opening. Water stress, on the other hand, results in more pronounced narrowing of stomatal pores and shifts the onset to considerably lower temperatures.  相似文献   

11.
Physiological parameters of mycorrhizal symbiosis by Helianthemum almeriense and Terfezia claveryi in orchards were characterized under water deficit conditions. Our orchard included 40 mycorrhizal and 40 nonmycorrhizal plants. Only mycorrhizal plants survived at the beginning of the experimental period, indicating dependency on fungal symbionts in roots for survival. Drought stress significantly affected the mycorrhizal colonization percentage which was 70% in nonirrigated mycorrhizal and 48% in irrigated mycorrhizal plants. No significant differences in plant growth were observed between nonirrigated and irrigated mycorrhizal plants before and after drought stress. Stomatal conductance was more sensitive to water stress than shoot water potential. It decreased more than two-fold under drought-stress compared to control mycorrhizal plants under irrigation/light saturating conditions, indicating important stomatal closure with water deficit. Plants’ water use efficiency improved with drought with stomatal conductance values below 0.3 mol?m?2?s?1. The ability to maintain open stomata and photosynthesis under drought increased carbon supply for growth, and ascocarp fruiting which requires current photosynthates. Basically, H. almeriense shows a conservative water use strategy based mainly on avoiding drought stress by reducing stomatal conductance as soil water potential decreases and atmospheric conditions dry. The results show that mycorrhizal H. almeriense plants maintain good physiological parameters with low soil matric potentials, thus making them an alternative agricultural crop in arid/semi-arid areas.  相似文献   

12.
Late Embryogenesis Abundant (LEA) proteins are associated with tolerance to water-related stress. A wheat (Triticum durum) group 2 LEA proteins, known also as dehydrin (DHN-5), has been previously shown to be induced by salt and abscisic acid (ABA). In this report, we analyze the effect of ectopic expression of Dhn-5 cDNA in Arabidopsis thaliana plants and their response to salt and osmotic stress. When compared to wild type plants, the Dhn-5 transgenic plants exhibited stronger growth under high concentrations of NaCl or under water deprivation, and showed a faster recovery from mannitol treatment. Leaf area and seed germination rate decreased much more in wild type than in transgenic plants subjected to salt stress. Moreover, the water potential was more negative in transgenic than in wild type plants. In addition, the transgenic plants have higher proline contents and lower water loss rate under water stress. Also, Na+ and K+ accumulate to higher contents in the leaves of the transgenic plants. Our data strongly support the hypothesis that Dhn-5, by its protective role, contributes to an improved tolerance to salt and drought stress through osmotic adjustment.  相似文献   

13.
Summary Seedlings of Betula pendula Roth. and Gmelina arborea L. were subjected to variation in temperature and irradiance. The influence of a mild water-stressing treatment on the photosynthetic performance and stomatal behaviour of these plants was assessed. For both species, the shape of the relationships between irradiance and photosynthesis and temperature and photosynthesis resembled those reported for other species. The effect of water stress was to reduce the rate of photosynthesis, particularly at high temperatures. This was largely a function of a reduction in mesophyll conductance under these conditions. The optimum temperature for stomatal opening was significantly lower than the optimum temperature for photosynthesis, which was in turn lowered by the water stress treatment. The stomata of birch seedlings showed maximum opening at an intermediate temperature while the stomata of Gmelina generally exhibited a closing movement when leaf temperatures increased from 15° C. Mesophyll conductances of both species increased with increasing temperature.The physiological basis for the variation in photosynthetic performance and stomatal behaviour and the ecological significance of this variation are discussed.  相似文献   

14.
T. Łoboda 《Photosynthetica》2001,38(3):429-432
During mild water stress (decrease of full water capacity from 60 to 35 %) net photosynthetic rate (P N) of four spring barley and wheat genotypes was about twice lower than that for unstressed plants and was mainly limited by non-stomatal factors. Availability of CO2 from intercellular spaces did not change significantly when stomatal conductance (g s) decreased from 0.25-0.35 to 0.15-0.20 mol(H2O) m−2 s−1. There may be two main processes leading to similar intercellular CO2 concentration (c i) in stressed and unstressed seedlings despite of twice lower P N under mild water stress: (a) lower diffusion of CO2 through stomata represented by lower g s, (b) lower consumption of CO2 by photosynthetic apparatus of stressed plants. Last factor is partially pronounced by lower response of P N to c i observed for stressed than for control plants. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Abstract Previous work with clones of Populus trichocarpa demonstrated that the water vapour conductance of leaves from well-watered cuttings of this species does not decline with loss of turgor from the bulk leaf. In the present study, stomatal responses to water potential in Populus were examined with detached epidermal strips. Stomata in epidermal strips from well-watered plants of P. trichocarpa did not close at low water potentials which led to plasmolysis of the guard cells. In contrast, stomata of P. deltoides and a P. trichocarpa×deltoides hybrid closed when the guard cells lost turgor. A period of water stress preconditioning resulted in modified stomatal responses in P. trichocarpa such that stomata of stressed and re-watered plants nearly closed when guard cell turgor was lost.  相似文献   

16.
Diploid and autotetraploid plants of the cultivated tomato Lycopersicon esculentum cv. Lukullus (Luk) were studied under low and high salinity. Polyploids had a higher water content than diploid plants. Water content in both plant types decreased under salinity, the decrease being smaller in the polyploid plants. Dry weight of whole young plants decreased in both diploid and polyploid plants under salinity, the decrease being smaller in the latter. Transpiration of whole plants, grown in control solution, was lower in polyploid than in diploid plants and decreased more under salinity in the latter. Rate of change of water loss of detached drying leaves was similar in diploid and polyploid plants. Leaves of control diploid plants, however, lost more water per unit leaf area during the phase of stomatal closure apparently due to higher stomatal density. Polyploid plants had fewer but more open stomata per unit leaf area, under both control and saline conditions. Root pressure, determined only under control conditions, seemed to be higher in polyploid plants. No difference in Cl? concentration per unit leaf dry weight was found between diploid and polyploid plants grown in either control or NaCl solution.  相似文献   

17.
Some Effects of Abscisic Acid and Water Stress on Stomata of Vicia faba L.   总被引:2,自引:0,他引:2  
Vicia faba seedlings grown under a plastic tent in the laboratorywere either watered well throughout their growth period or weresubjected to a water stress treatment for several days priorto an experimental treatment. The effects of a further waterstress treatment or an application of an aqueous solution ofabscisic acid (ABA) on the stomata of these plants were determined.Stomata of previously water-stressed plants proved to be moresensitive than stomata of well watered plants to ABA appliedthrough the petiole via the transpiration stream and sprayedonto leaf surfaces. Stomata of previously water-stressed plantsclosed more rapidly and to a greater degree than stomata ofwell watered plants. The hormone had only a small effect whenapplied directly to epidermal fragments removed from both groupsof plants. Stomata of plants which had received a water stresspretreatment were less sensitive to a subsequent period of waterstress than were stomata of previously well watered plants.It is proposed that stomatal adaptation to water stress maybe related to changes in the hormonal balance of the plant.  相似文献   

18.
Abstract Diurnal cycling of osmotic potential was studied in leaves of cotton plants (Gossypium hirsutum L.) grown in the field. Osmotic potential was determined by a pressure-volume procedure as the value coinciding with zero turgor. In plants grown under favourable conditions (no water stress or N stress), osmotic potential at zero-turgor measured at midday was initially about 0.3 MPa lower than before dawn, but this cycling disappeared during the season as the number of fruits per plant increased. In water-stressed or N-deficient plants, osmotic cycling was decreased or even eliminated. Across treatments, cycling of osmotic potential occurred only when plants carried at least 560 cm2 of leaf area per fruit. The results are interpreted to mean that diurnal cycling of osmotic potential reveals a ‘sink-limited’ condition within the plant.  相似文献   

19.
20.
ERA1是控制植物气孔开闭的一个重要基因,根据其保守域构建RNA干扰(RNAi)载体并转化拟南芥,考察转基因植株的生长、气孔导度、离体叶片失水率以及ERA1和相关基因表达,探讨siRNA介导的ERA1表达下调对拟南芥抗旱性的影响。结果表明:转基因拟南芥株系中ERA1的表达受到明显抑制,其离体叶片失水率低于野生型,但并未出现ERA1缺失突变体的负面生长表型;转基因株系对ABA处理比野生型更敏感,其ABA处理株的根长显著变短,气孔孔径更小;转基因株ABI1、ABI2、ATHB6的表达量降低,而RAB18、RD29B、ADH1的表达量升高,siRNA介导的ERA1表达下调可能会激活RAB18、RD29B等逆境响应元件。研究发现,采用RNAi技术可以有效下调ERA1表达,在没有过多负面生长表型的前提下提高拟南芥的抗旱性,且ERA1表达下调可能通过ABA途径正面影响拟南芥的抗旱性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号