首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dicroglossum gen. nov. (Delesseriaceae, Ceramiales) is a monotypic genus based on Delesseria crispatula, a species originally described by Harvey for plants collected from southwestern Western Australia. Distinctive features of the new genus include exogenous indeterminate branches; growth by means of a single transversely dividing, apical cell; absence of intercalary divisions in the primary, secondary, and tertiary cell rows; lateral pericentral cells not transversely divided; not all cells of the secondary cell rows producing tertiary cells rows; all tertiary initials reaching the thallus margin; midrib present but lateral nerves absent; determinate lateral bladelets arising endogenously; blades monostromatic, except, at the midrib; carpogonial branches restricted to primary cell rows, on both surfaces of unmodified blades; procarps produced on both blade surfaces, each procarp consisting of a supporting cell that bears two four-celled carpogonial branches and one sterile-cell group of three to four cells; and tetrasporangia borne in two layers, separated by a central row of sterile cells. The combination of exogenous indeterminate branching and bicarpogonial procarps is considered to warrant the recognition of a new tribe, the Dicroglosseae, within the subfamily Delesserioideae.  相似文献   

2.
Two new taxa of Liagoraceae (Nemaliales) are described from Western Australia. Gloiotrichus fractalis gen. et sp. nov. has been collected from 3–20 m depths at the Houtman Abrolhos, Western Australia. Plants are calcified, extremely lubricous, and grow to 17 cm in length. Carpogonial branches are straight, 6 or 7 cells in length, arise from the basal or lower cells of cortical fascicles, and are occasionally compound. Branched sterile filaments of narrow elongate cells arise on the lower cells of the carpogonial branch prior to gonimoblast initiation, at first on the basal cells, then on progressively more distal cells. Following presumed fertilisation the carpogonium divides transversely, with both cells giving rise to gonimoblast filaments. The distal cells of the carpogonial branch then begin to fuse, with fusion progressing proximally until most of the cells of the carpogonial branch are included. As fusion extends, the filaments on the carpogonial branch are reduced to the basal 2 or 3 cells. The gonimoblast is compact and bears terminal carposporangia. Spermatangial clusters arise on subterminal cells of the cortex, eventually displacing the terminal cells. The sequence of pre- and post-fertilisation events occurring in the new genus separates it from all others included in the Liagoraceae, although it appears to have close affinities with the uncalcified genus Nemalion. Ganonema helminthaxis sp. nov. was collected from 12 m depths at Rottnest Island, Western Australia. Plants are uncalcified and mucilaginous, the axes consisting of a few (< 10) primary medullary filaments, each cell of which gives rise to a cortical fascicle at alternate forks of the pseudodichotomies borne on successive medullary cells. Subsidiary (adventitious) filaments and rhizoids comprise the bulk of the thallus. Carpogonial branches are straight, (3-)4(-6) cells in length, arise on the basal 1–4 cells of the cortical fascicles, and are frequently compound. Carposporophytes develop from the upper of two daughter cells formed by a transverse division of the fertilised carpogonium. Ascending and descending sterile filaments girdle the carpogonial branch cells and arise mostly on the supporting cell prior to fertilisation. Ganonema helminthaxis is the first completely non-calcified member of the genus, and its reproductive and vegetative morphology supports the recognition of Ganonema as a genus independent from Liagora. Liagora codii Womersley is a southern Australian species displaying features of Ganonema, to which it is transferred.  相似文献   

3.
A new genus, Augophyllum Lin, Fredericq et Hommersand gen. nov. related to Nitophyllum, tribe Nitophylleae, subfam. Nitophylloideae of the Delesseriaceae, is established to contain the type species Augophyllum wysorii Lin, Fredericq et Hommersand sp. nov. from Caribbean Panama; Augophyllum kentingii Lin, Fredericq et Hommersand sp. nov. from Taiwan; Augophyllum marginifructum (R. E. Norris et Wynne) Lin, Fredericq et Hommersand comb. nov. (Myriogramme marginifructa R. E. Norris et Wynne 1987) from South Africa, Tanzania, and the Sultanate of Oman; and Augophyllum delicatum (Millar) Lin, Fredericq et Hommersand comb. nov. (Nitophyllum delicatum Millar 1990 ) from southeastern Australia. Like Nitophyllum, Augophyllum is characterized by a diffuse meristematic region, the absence of macro‐ and microscopic veins, procarps consisting of a supporting cell bearing a slightly curved four‐celled carpogonial branch flanked laterally by a cover cell and a sterile cell, a branched multicellular sterile group after fertilization, absence of cell fusions between gonimoblast cells, and tetrasporangia transformed from multinucleate surface cells. Augophyllum differs from Nitophyllum by the blades becoming polystromatic inside the margins, often with a stipitate cylindrical base, the possession of aggregated discoid plastids neither linked by fine strands nor forming bead‐like branched chains, spermatangia and procarps initiated at the margins of blades, not diffuse, and a cystocarp composed of densely branched gonimoblast filaments borne on a conspicuous persistent auxiliary cell with an enlarged nucleus. Analyses of the rbcL gene support the separation of Augophyllum from Nitophyllum. An investigation of species attributed to Nitophyllum around the world is expected to reveal other taxa referable to Augophyllum.  相似文献   

4.
A new member of Delesseriaceae (Ceramiales, Rhodophyta) is described from Southern Taiwan and the Philippines. On the basis of comparative vegetative and reproductive morphology, and phylogenetic analysis inferred from nuclear-encoded large-subunit ribosomal DNA sequences (LSU rDNA), we conclude that it belongs in the genus Drachiella, tribe Schizoserideae, subfamily Phycodryoideae. The new taxon shares with other Drachiella species the absence of macro- and microscopic veins; diffuse growth by marginal and intercalary meristematic cells; a polystromatic, lobed thallus; abundance of rhizoidal marginal proliferations used for attachment; convoluted plastids in surface cells; abundant secondary pit connections among adjacent vegetative cells; large intercellular spaces between surface cells; procarps confined to the upper side of the thallus, circular in outline, consisting of a supporting cell bearing a strongly curved carpogonial branch and two sterile groups that remain undivided; vertical division of gonimoblast initial from auxiliary cell, and unilateral, monopodial branching of gonimoblasts; and mature cystocarps with a massive candelabrum-like fusion cell of fused gonimoblasts bearing carposporangia in branched chains. It is distinguished from the other members of the genus by thalli that consist of extensive tangled mats of prostrate and overlapping decumbent blades, procarps confined to the upper side of the thallus, and the lack of basal stalks or stipes. Whereas the Schizoserideae is predominantly a Southern Ocean tribe, one of the tribe's four genera, Drachiella, was known only from the eastern Atlantic and Mediterranean. We herein report the first record of the genus for the Indo-Pacific Ocean, and describe Drachiella liaoii, sp. nov., as a fourth species in the genus.  相似文献   

5.
Two species of Phycodrys, Phycodrys quercifolia (Bory) Skottsberg and Phycodrys profunda E.Y.Dawson were previously recorded from New Zealand. However, an examination of Phycodrys collections from the New Zealand region showed that all were morphologically different from P. quercifolia (Type locality: the Falkland Islands) and P. profunda (Type locality: CA, USA). RbcL sequence analyses established that the New Zealand Phycodrys species formed a natural assemblage within the genus, consisting of three new species: P. novae-zelandiae sp. nov., P. franiae sp. nov. and P. adamsiae sp. nov. Phycodrys novae-zelandiae is the largest of the three, up to 20 cm in height, with a distinct midrib and multicellular, opposite to subopposite lateral macroscopic veins. It has entirely monostromatic blades except near the midrib and veins, and its procarp contains a three-celled sterile group one (st1) and a one-celled sterile group two (st2). Phycodrys franiae was previously treated as a cryptic species among herbarium collections of P. ‘quercifolia’. It is smaller (4–11 cm high) with weakly developed midribs and veins, the blade is tristromatic throughout, except at the growing margins, and the procarp consists of a four-celled st1 and a two–three-celled st2. Phycodrys adamsiae, previously reported as P. profunda, is a small decumbent or prostrate plant, 1–8 cm long, with a midrib and inconspicuous lateral veins. The blades are tristromatic with serrated margins, two–four-celled surface spines and multicellular marginal holdfasts that differ from those of Californian specimens. The tetrasporangia are borne on marginal bladelets. Phylogenetic analyses place the New Zealand species in a separate group that is distantly removed from most other Phycodrys species.  相似文献   

6.
The Myriogramme group of Kylin contains two distinct clusters of genera that merit recognition at the tribal level. We previously established the tribe Myriogrammeae, and in this paper we erect the Schizoserideae based on a study of the type species of Schizoseris, S. laciniata (=S. condensata), from the southern hemisphere. The Schizoserideae is characterized by 1) marginal and diffuse intercalary meristems; 2) nuclei initially arranged in a plate in the median plane in meristematic and mature cells; 3) chloroplasts one to few, lobed or dissected; 4) microscopic veins absent; 5) procarps scattered, formed singly on either side of the blade with cover cells absent and consisting of a one- to two-celled lateral sterile group, a one- to two-celled basal sterile group, and a four-celled carpogonial branch in which the trichogyne passes beneath the lateral sterile group and emerges anterior to it; 6) auxiliary cell diploidized by a connecting cell cut off posteriolaterally from the fertilized carpogonium; 7) gonimoblast initial cut off laterally from one side of the auxiliary cell and giving rise to unilaterally branched gonimoblast filaments bearing carposporangia in branched chains; 8) gonimoblast fusion cell highly branched, candelabra-like, incorporating all but the basalmost cells of the carposporangial chains and radiating through the central cells in the floor of the cystocarp; 9) spermatangial and tetrasporangial sori formed from surface cells in both monostromatic and polystromatic portions on both sides of the blade; and 10) tetrasporangia formed primarily from cortical rather than from central cells. The Schizoserideae presently includes Schizoseris Kylin, Neuroglossum Kützing, Abroteia J. Agardh, and Polycoryne Skottsberg in Kylin and Skottsberg.  相似文献   

7.
Polysiphonia sensu lato comprises approximately 200 species, which are currently assigned to several different genera. To date, one of these genera, namely, Polysiphonia, has been reported to have 17 species. Here, we describe for the first time P. freshwateri sp. nov. and P. koreana sp. nov. from Uljin and Ulleung Island, Korea, based on morphological and molecular evidence. Polysiphonia freshwateri sp. nov. and P. koreana sp. nov. are characterized by having the typical Polysiphonia features. Polysiphonia freshwateri sp. nov. is further characterized by having abundant trichoblasts, conspicuous scar cells, and tetrasporangia arranged in spiral series. Polysiphonia koreana sp. nov. is further characterized by having very scarce scar cells placed between two pericentral cells, from which cicatrigenous branches arise. The results of our rbcL sequence analyses support the taxonomic placement of P. freshwateri sp. nov. and P. koreana sp. nov. within Polysiphonia.  相似文献   

8.
An elachistacean epiphyte, Neoleptonema yongpilii E.-Y. Lee & I.K. Lee, gen. et sp. nov., is reported from Korean coasts. The plants are distinguished by having unbranched assimilatory filaments with intercalary plurilocular sporangia as well as lateral plurilocular sporangia from the cortex. The new genus differs from the genera Leptonematella P. Silva and Halothrix Reinke by having pod-shaped plurilocular sporangia on the medulla, and from Elachista Duby and Proselachista Y.P. Lee & Garbary by having intercalary plurilocular sporangia and a poorly developed medulla. The phylogenetic relationships of Neoleptonema yongpilii were inferred from the spacer sequences between the genes coding for the large and small subunits of the RuBisCO gene. The new genus is a member of a poorly resolved clade consisting of several genera within the Elachistaceae, within which it is more closely related to Halothrix and Elachista nipponica than to Leptonematella.  相似文献   

9.
Three new species of the genus Balliella Itono & Tanaka are described from eastern Australia. Balliella amphiglanda from Lord Howe I. and Port Hacking, N.S.W., is distinctive in producing either abaxial or adaxial gland cells from the basal cells of lateral branches and in having tetrasporangia restricted to short branches. Balliella repens, from Tryon I., Heron I and Wistari Reef Qld., and Lord Howe I., N.S.W., is distinguished from the other species of the genus by its regularly developed prostrate systems and clustered tetrasporangia. Balliella grandis, from Wistari Reef, North West I. and One Tree I., Qld., is the largest recorded species of Balliella. It has correspondingly large gland cells and abaxial as well as adaxial tetrasporangia. Our work supports the placement of Balliella in the tribe Antithamnieae, a move which necessitates emending Wollaston's definition of the tribe to include species with procarps that form at successive levels along main axes rather than at only one or two points behind the apices.  相似文献   

10.
Womersleya monanthos (J. Agardh) Papenfuss is typically an epiphyte of larger brown and red algae that are common in drift along the southeastern coasts of Australia. A hitherto little-known member of the Phycodrys group of the Nitophylloideae, its reproductive features have been studied in detail and its taxonomic position clarified. Blades are polystromatic throughout and lack veins or nerves, with blades originating from apical cells of primary and second-order cell rows. Intercalary cell divisions take place in primary cell rows and all other branch orders, with third-order laterals arising both abaxially and adaxially on cells of second-order rows. Fertile central cells bear procarps on pericentral cells on both sides of the blade, the procarps consisting of two 4-celled carpogonial branches and a single central group of sterile cells that enlarge and persist at the distal end of a bicampanulate fusion cell at maturity. Spermatangia and tetrasporangia form in circular subapical sori on both sides of the blade or in marginal lobes or proliferations. After comparing it to other members of the Phycodrys group, we conclude that Womersleya is a monotypic genus well distinguished from other genera and with probable closest affinities to the Northern Hemisphere Polyneura, Erythroglossum and Sorella, as well as the Australian endemic, Crassilingua.  相似文献   

11.
An examination of cystocarps from the rarely collected southern Australian alga currently known as Lomentaria corynephora (J. Agardh) Kylin has shown it to be a member of the Rhodymeniales but incorrectly placed in Lomentaria. As it is not referable to any of the genera presently ascribed to the order, the new genus Semnocarpa is proposed to accommodate its suite of unique features. Semnocarpa closely resembles Lomentaria in habit and in having basally septate branches, a peripheral network of widely separated medullary filaments around the cell-free (but mucilage-filled) centres of the main and lateral axes, gland cells directed inwardly on scattered medullary cells, and tetrasporangia produced laterally from surface cortical cells that line deep cavities in the branch surfaces. Features of the mature cystocarp, however, strongly differentiate Semnocarpa from Lomentaria. The carposporophyte has a fusion cell in which outlines of the component cells remain discernible, as opposed to having a fully consolidated fusion cell, and is laxly enclosed in a system of filaments derived from surrounding inner cortical cells. The cystocarp is entirely submerged within the bearing branch, there being no protuberant pericarp derived from the outer cortex of the sort previously thought to be a uniform feature of the family Lomentariaceae and virtually all Rhodymeniales. These features suggest that Semnocarpa is likely to be a highly derived member of the Lomentariaceae. A second species is newly described from material collected in Western Australia. Semnocarpa minuta sp. nov. differs from S. corynephora in its exclusively epiphytic habit, two-layered medulla, smaller stature and extensive crustose holdfast.  相似文献   

12.
A new Grateloupia species from Luxun park, Qingdao Province, North China, was discovered during recent investigations and named Grateloupia serra H. W. Wang &; Y. Lou sp. nov. Morphological observations showed that: (1) the thalli were purple to dark red, cartilaginous and mucilaginous in texture, 15–45?cm in height; (2) the surface of thalli was covered with numerous proliferous branchlets and proliferous branchlets that were dentate when on the main axes; (3) the thalli were 450–550?µm thick, a cortex consisted of 6–8 layers of oblong or rounded cells and a medulla covered by compact medullary filaments; (4) the carpogonial branch was 6-celled and the auxiliary-cell branch was 5-celled, they were typical Grateloupia-type; (5) the internal structure of mature tetrasporangia were cruciately divided, oblong or square in shape. The morphological differences were supported by molecular analyses based on ribulose-1, 5-bisphosphate carboxylase/oxygenase gene (rbcL) sequences. Sequences of four G. serra sp. nov. samples were embedded into the Grateloupia clade and showed no pairwise divergence.  相似文献   

13.
Hybrid cells were obtained from somatic cell fusion among male, female, and tetrasporangial plants in Griffithsia japonica Okamura by a wound-healing process. Isolated fusion cells regenerated new mature plants with mixed reproductive structures. The plants regenerated from hybrid cells between male and female plants developed into 1) spermatangiate, 2) carpogonial, 3) bisexual with spermatangia and carpogonial branches, 4) mixed-phase with spermatangia and tetrasporangia, or 5) bisexual/mixed-phase plants with spermatangia, carpogonial branches, and tetrasporangia. About 70% of the plants regenerated from hybrid cells between male and female plants produced tetrasporangia that were always formed with spermatangia on a single cell. Some of those tetrasporangia released tetraspores, six of which gave rise to mature plants. The plants regenerated from hybrid cells between male and tetrasporangial plants developed into spermatangiate, tetrasporangiate, or mixed-phase plants with spermatangia and tetrasporangia. The plants regenerated from hybrid cells between female and tetrasporangial plants developed into carpogonial, tetrasporangiate, or mixed-phase plants with carpogonial branches and tetrasporangia. All types of reproductive structures we re functional.  相似文献   

14.
15.
Some Liagora and Izziella distributed in Taiwan display a wide range of morphological variation and can be difficult to distinguish. To clarify species concepts, we applied DNA sequence analyses and examined carposporophyte development in detail. These studies revealed two new species, which are described herein as Izziella hommersandii sp. nov. and Izziella kuroshioensis sp. nov. I. kuroshioensis superficially resembles Izziella formosana and Izziella orientalis in that its involucral filaments subtend rather than surround the lower portion of the gonimoblast mass (= Izziella type) and a fusion cell is formed from cells of the carpogonial branch, but it can be separated by differences in the cell numbers and branching pattern of the involucral filaments, as well as thallus morphology. In contrast to other species that also bear short lateral branchlets, I. hommersandii is unique in possessing a mixture of short and long involucral filaments, a phenomenon not reported before. The length of the involucral filaments is species specific among species of Izziella and contrasts to the behavior of the involucral filaments after fertilization in species such as “Liagorasetchellii [= Titanophycus setchellii comb. nov.], in which the filaments completely envelop the gonimoblast. In addition, the cells of the carpogonial branch in Titanophycus do not fuse after fertilization to form a fusion cell. Thus, a combination of characters with respect to the behavior of the carpogonial branch and the involucral filaments after fertilization is very useful for delineating species boundaries in Izziella and for separating Titanophycus from Izziella and Liagora.  相似文献   

16.
A hemiparasitic alga, Sorellocotax stellaris sp. nov. is described growing on plants of Sorella repens collected from Onagawa, Miyagi Prefecture, east coast of Honshu, Japan. The thallus is small, up to 2 mm high, once or twice branched from the margin. The growing apex has a transversely dividing apical cell, and intercalary cell divisions occur in the cells of first-order rows. Tetrasporangia are cut off from the cells of the inner cortex, The procarp is composed of a supporting cell, one group of sterile cells and two carpogonial branches. Carposporangia are borne in short chains.  相似文献   

17.
The South African marine alga Amphithallia crassiuscula, previously subsumed in the widely reported Synarthrophyton patena, is here re-described as a distinct species and genus. Thalli grow as obligate epiphytes on Gelidium capense in the upper sublittoral zone (while S. patena grows on Ballia callitricha). Gametophytes are monoecious with four-celled carpogonial branches and sterile cells are borne on supporting cells (dioecious or hermaphroditic with two or three-celled carpogonial branches and sterile cells borne on hypogynous cells in Synarthrophyton). Postfertilization stages involve a connecting filament linking the carpogonium to several putative auxiliary cells, demonstrating a non-procarpic condition with apparent absence of a fusion cell. Gonimoblast filaments develop at the level of basal cells of carpogonial branches. Spermatangial mother cells remain either unbranched (cutting off spermatangia only) or develop dendroid (branched) filaments with terminal spermatangia (as in Synarthrophyton). Multiporate conceptacles develop straight pore canals lined by non-differentiated cells (conical canals with differentiated pore cells along the base in Synarthrophyton). The here described pre- and post-fertilization characters are new for the order Corallinales motivating the establishment of the new genus Amphithallia.  相似文献   

18.
The mode of division of vegetative cells, formation of spermatangial parent cells, initiation of the carpogonial branch apparatus, and formation of tetrasporangial initials are homologous developmental processes that are documented for the first time in the type species of the economically important family Gracilariaceae, Gracilaria verrucosa (Hudson) Papenfuss from the British Isles. G. verrucosa is characterized by a supporting cell of intercalary origin that bears a 2-celled carpogonial branch flanked by two sterile branches, direct fusion of cells of sterile branches onto the carpogonium, formation of an extensive carpogonial fusion cell through the incorporation of additional gametophytic cells prior to gonimoblast initiation, gonimoblast initials produced from fusion cell lobes, schizogenous development of the cytocarp cavity, inner gonimoblast cells producing tubular nutritive cells that fuse with cells of the pericarp or floor of the cystocarp, absence of cytologically modified tissue in the floor of the cystocarp, and carposporangial initials produced in clusters or irregular chains. Spermatangial parent cells are generated in flaments from intercalary cortical cells that line an intercellular space forming a ‘pit’ or ‘conceptacle’. Tetrasporangial initials are transformed from terminal cells derived through division of an outer cortical cell. Tetrasporangia are cruciately divided. The Gracilariaceae is removed from Gigartinales and transferred to the new order Gracilariales. Their closest living relatives appear to be agarophytes belonging to the Gelidiales and Ahnfeltiales.  相似文献   

19.
The red alga Cenacrum subsutum gen. et sp. nov. is described from material collected at Macquarie Island in the subantarctic between November 1977 and February 1978. The habit and carposporophyte development are similar to members of the family Rhodymeniaceae (Rhodymeniales), but certain vegetative features are unique. The frond is a variously incised or lobed foliose blade with hollow apices above and a medulla which becomes progressively filled basipetally with ingrowing rhizoidal filaments. Details of carpogonial branch, auxiliary cell, connecting cell and gonimoblast anatomy are given, as well as observations on the habitats and distribution of the species.  相似文献   

20.
A new ceramiaceous alga, Sciurothamnion stegengae De Clerck et Kraft, gen. et sp. nov., is described from the western Indian Ocean and the Philippines. Sciurothamnion appears related to the tribe Callithamnieae on the basis of the position and composition of its procarps and by the majority of post‐fertilization events. It differs, however, from all current members of the tribe by the presence of two periaxial cells bearing determinate laterals per axial cell. Additionally, unlike any present representative of the subfamily Callithamnioideae, no intercalary foot cell is formed after diploidization of the paired auxiliary cells. The genus is characterized by a terminal foot cell (“disposal cell”), which segregates the haploid nuclei of the diploidized auxiliary cell from the diploid zygote nucleus. The nature of three types of foot cells reported in the Ceramiaceae (intercalary foot cells containing only haploid nuclei, intercalary foot cells containing haploid nuclei and a diploid nucleus, and terminal foot cells containing only haploid nuclei) is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号