首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytotaxonomic analysis of 20 species and subspecies of the genus Poecilimon using C-banding pattern, chiasma frequency, and morphometric characteristics of the chromosomes were described. Using a cladistic analysis the chromosome data provided a basis to produce a phylogenetic tree which was compared with a tree based on morphological characters and DNA sequence data. There are important differences in the grouping of data sets to species obtained on the basis of morphology/DNA analyses and that based on chromosomes. The explanation of the differences between C-banding patterns and taxonomic proximity is probably that the C-banding pattern changes quickly as the result of the high degree of variation of constitutive heterochromatin.  相似文献   

2.
Adaptive convergence in morphological characters has not been thoroughly investigated, and the processes by which phylogenetic relationships may be misled by morphological convergence remains unclear. We undertook a case study on the morphological evolution of viverrid-like feliformians (Nandinia, Cryptoprocta, Fossa, Eupleres, Prionodon) and built the largest morphological matrix concerning the suborder Feliformia to date. A total of 349 characters grouped into four anatomical partitions were used for all species of Viverridae and viverrid-like taxa plus representatives of the Felidae, Hyaenidae, Herpestidae, and one Malagasy mongoose. Recent molecular phylogenetic analyses suggest that viverrid-like morphotypes appeared independently at least three times during feliformian evolution. We thus used a synthetic molecular tree to assess morphological evolutionary patterns characterizing the viverrid-like taxa. We examined phylogenetic signal, convergence and noise in morphological characters using (a) tree-length distribution (g1), (b) partitioned Bremer support, (c) RI values and their distribution, (d) respective contributions of diagnostic synapomorphies at the nodes for each partition, (e) patterns of shared convergences among viverrid-like taxa and other feliformian lineages, (f) tree-length differences among alternative hypotheses, and (g) the successive removal of convergent character states from the original matrix. In addition, the lability of complex morphological structures was assessed by mapping them onto the synthetic molecular tree. The unconstrained morphological analysis yielded phylogenetic groupings that closely reflected traditional classification. The use of a synthetic molecular tree (constraint) combined with our thorough morphological investigations revealed the mosaics of convergences likely to have contributed to part of the historical uncertainty over viverrid classification. It also showed that complex morphological structures could be subjected to reversible evolutionary trends. The morphological matrix proved useful in characterizing several feliformian clades with diagnostic synapomorphies. These results support the removal from the traditionally held Viverridae of several viverrid-like taxa into three distinct families: Nandiniidae (Nandinia), Prionodontidae (Prionodon), and the newly defined Eupleridae (including Cryptoprocta, Fossa, Eupleres plus all "mongoose-like" Malagasy taxa). No clearly "phylogenetically misleading" data subsets could be identified, and the great majority of morphological convergences appeared to be nonadaptive. The multiple approaches used in this study revealed that the most disruptive element with regards to morphological phylogenetic reconstruction was noise, which blured the expression of phylogenetic signal. This study demonstrates the crucial need to consider independent (molecular) phylogenies in order to produce reliable evolutionary hypotheses and should promote a new approach to the definition of morphological characters in mammals. [Constrained analysis; convergence; evolutionary scenario; Feliformia; morphology; noise; phylogenetic signal; phylogeny; Viverridae.].  相似文献   

3.
4.
Heterochronies, temporal changes in ancestral ontogeny, are proposed to play the major role in microand macroevolutionary transformations of lower vertebrates. However, the evolutionary role of heterochronies often remains hypothetical, not verified experimentally. In the present paper, participation of heterochronies in (1) the origin of lacustrine fish species flocks, (2) the diversification of skeletal morphology in teleosts, and (3) the skull evolution in amphibians is experimentally verified. For this purpose, the temporal parameters of ontogeny were directly changed via artificial alterations of the thyroid hormones level in different representatives of lower vertebrates. The data obtained indicate that heterochronies are among the main mechanisms responsible for the current morphological diversity displayed by lower vertebrates at different phylogenetic levels.  相似文献   

5.
The Antarctic fish family Nototheniidae (Perciformes) presumably originated from a benthic ancestor, and several lineages have evolved to live or at least feed in the water column, a trend called pelagization. Here, we use information on phylogeny, allometric growth, and diet composition for an integrated analysis of morphological and ecological diversification in this group, mainly focusing on the subfamilies Trematominae and Pleuragramminae. A phylogenetic analysis of data published in earlier systematic studies produced eight equally parsimonious trees, all indicating that several previously recognized taxa are paraphyletic. These phylogenetic trees all suggest multiple origins of pelagic life styles. Multivariate morphometric analyses including nine species showed that juveniles and adults grow according to a common pattern of ontogenetic allometry. The morphometric differences among species are mosdy the result of lateral transpositions of the growth trajectories, indicating that embryonic and larval development is more important as a determinant of morphological variation than allometric growth as juveniles and adults. We studied patterns of interspecific variation with principal components and the covariation between morphometric variables and food composition with a partial least-squares analysis. Both analyses revealed a gradient from benthic to pelagic foragers. Measurements of structures involved in swimming have a prominent role in these analyses, suggesting adaptive evolution of these traits. Tracing morphometric traits on the phylogenetic trees revealed a considerable amount of evolutionary plasticity, showing that species related phylogenetically need not be morphologically similar, but can diverge considerably, perhaps as a response to natural selection and adaptation to different habitats and foraging modes. In accordance, a test of phylogenetically independent contrasts showed that bursts of increased morphological change accompanied habitat shifts.  相似文献   

6.
卢永彬  黄俞淞  许为斌  黄洁  刘演  向春雷  张强 《广西植物》2017,37(10):1227-1239
石山苣苔属(苦苣苔科)约30种,主要分布于我国南部的石灰岩地区.目前该属已知物种数虽少但花形态极其多样,是该科中分类最为困难的类群之一.基于分子证据,其它8个属中花形态迥异的一些物种被并入石山苣苔属.然而,该属花形态的演化趋势缺乏系统性的研究,传统分类对属的界定与分子系统学研究结果相矛盾的原因,以及是否有形态特征支持新界定的石山苣苔属还不清楚.该研究中,总共编码了19种石山苣苔属植物和9种报春苣苔属植物的35个形态特征,其中包括26个花部形态特征,在分子系统树上追踪了它们的演化路径.结果表明:无论属内还是属间,多数花部形态特征,尤其以往属的分类界定特征,在演化过程中变化频繁且发生了高度同塑性演化,这是导致传统形态分类不自然的关键因素.此外,在观察研究的所有特征中,花丝和柱头的差异可能在石山苣苔属植物共同祖先中经历了演变,或可用于区分石山苣苔属与其姐妹报春苣苔属的大多数种类.因此,在苦苣苔科植物的分类学研究中应当慎用这些花部性状作为分类依据,而且应对形态特征进行广泛地观察研究,在密集的取样和分辨率更高、更可靠的系统树上追踪它们的演化规律.更为重要的是,需要进一步研究导致复杂形态性状演化的内在分子调控机理和外在的自然选择动力,最终更加深入地理解石山苣苔属等典型喀斯特植物的演化过程和机理.  相似文献   

7.
The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage‐specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by 35 families, using a co‐occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages.  相似文献   

8.
Several members of the dipteran family Tephritdae are serious pests because females lay eggs in ripening fruit. The genus Bactrocera is one of the largest within the family with over 500 described species arranged in 28 subgenera. The phylogenetic relationships among the various species and subgenera, and the monophyly of specific groups have not been examined using a rigorous phylogenetic analysis. Therefore, phylogenetic relationships among 24 Bactrocera species belonging to 9 subgenera were inferred from DNA sequence of portions of the mitochondrial 16S rRNA, cytochrome oxidase II, tRNA(Lys), and tRNA(Asp) genes. Two morphological characters that traditionally have been used to define the four groups within the subgenus Bactrocera were evaluated in a phylogenetic context by mapping the character states onto the parsimony tree. In addition, the evolutionary trend in male-lure response was evaluated in a phylogenetic context. Maximum parsimony analyses suggested the following relationships: (1) the genus Bactrocera is monophyletic, (2) the subgenus B. (Zeugodacus) is paraphyletic, (3) the subgenus B. (Daculus) is a sister group to subgenus B. (Bactrocera), and (4) the subgenus B. (Bactrocera) is monophyletic. The mapping analyses suggested that the morphological characters exhibit a simple evolutionary transition from one character state to another. Male-lure response was identified as being a labile behavior that has been lost on multiple occasions. Cue-lure response was plesiomorphic to methyl-eugenol response, and the latter has evolved independently within the Bactrocera and Zeugodacus groups of subgenera. The implications of our results for devising a coherent, consolidated classification for Bactrocera is discussed.  相似文献   

9.

Background  

The family Accipitridae (hawks, eagles and Old World vultures) represents a large radiation of predatory birds with an almost global distribution, although most species of this family occur in the Neotropics. Despite great morphological and ecological diversity, the evolutionary relationships in the family have been poorly explored at all taxonomic levels. Using sequences from four mitochondrial genes (12S, ATP8, ATP6, and ND6), we reconstructed the phylogeny of the Neotropical forest hawk genus Leucopternis and most of the allied genera of Neotropical buteonines. Our goals were to infer the evolutionary relationships among species of Leucopternis, estimate their relationships to other buteonine genera, evaluate the phylogenetic significance of the white and black plumage patterns common to most Leucopternis species, and assess general patterns of diversification of the group with respect to species' affiliations with Neotropical regions and habitats.  相似文献   

10.
Heterochrony, evolutionary changes in developmental rates and timing, is a key concept in the construction of a synthesis of development and evolution. Heterochronic changes in vertebrate evolution have traditionally been identified through plesiomorphic-apomorphic comparisons of bone growth. This methodological framework assumes that observed heterochronies are the outcome of dissociations of developmental processes in time. Recent findings of non-heterochronic developmental changes underlying morphological heterochrony invalidate this assumption. In this paper, a function for bone growth (at the organ level) has been mathematically deduced from the underlying developmental mechanisms. The temporal domain of the model spans from the time at maximum growth rate, after the formation of growth plates, to the time at atrophy of the proliferating stratum of cells. Three organizational levels were considered: (a) cell kinetics of endochondral ossification, (b) variation of bone growth rates and (c) variation of accumulated bone growth with increasing age. This quantitative model provides an excellent tool to deal with the problem of the developmental basis of morphological change. I have modelled potential evolutionary changes on the system at different levels of biological organization. This new framework involves an epistemological shift in heterochronic analysis from a pattern-oriented inductive way to a process-oriented deductive way. The analysis of the relationships between the evolutionary alterations of endochondral ossification and the morphological expression of these changes reveals that observed pattern heterochronies can be the outcome of different process heterochronies. Moreover, I discuss at length the heteroposic hypothesis, that evolutionary changes in the tight regulation of the amount of protein synthesized by a cell population during development would underlie acceleration or deceleration in cases of evolutionary changes in the initial number of proliferating cells at growth plates. Future research on the genetic basis of process heterochronies and heteroposies will complete our understanding of these evolutionary phenomena.  相似文献   

11.

Background  

The family Polypteridae, commonly known as "bichirs", is a lineage that diverged early in the evolutionary history of Actinopterygii (ray-finned fish), but has been the subject of far less evolutionary study than other members of that clade. Uncovering patterns of morphological change within Polypteridae provides an important opportunity to evaluate if the mechanisms underlying morphological evolution are shared among actinoptyerygians, and in fact, perhaps the entire osteichthyan (bony fish and tetrapods) tree of life. However, the greatest impediment to elucidating these patterns is the lack of a well-resolved, highly-supported phylogenetic tree of Polypteridae. In fact, the interrelationships of polypterid species have never been subject to molecular phylogenetic analysis. Here, we infer the first molecular phylogeny of bichirs, including all 12 recognized species and multiple subspecies using Bayesian analyses of 16S and cyt-b mtDNA. We use this mitochondrial phylogeny, ancestral state reconstruction, and geometric morphometrics to test whether patterns of morphological evolution, including the evolution of body elongation, pelvic fin reduction, and craniofacial morphology, are shared throughout the osteichthyan tree of life.  相似文献   

12.
Micrasterias, the name of which is derived from the Greek for 'little star', comprises possibly the most spectacularly shaped desmids (Desmidiales, Streptophyta). Presently, the genus Micrasterias includes about 60 traditional species, the majority of which were described in the early 19th century. We used a comprehensive multigene dataset (including SSU rDNA, psaA, and coxIII loci) of 34 Micrasterias taxa to assess the relationships between individual morphological species. The resulting phylogeny was used to assess the patterns characterizing the morphological evolution of this genus. The phylogenetic analysis led to the recognition of eight well-resolved lineages that could be characterized by selected morphological features. Apart from the members of Micrasterias, three species belonged to different traditional desmid genera (Cosmarium, Staurodesmus, and Triploceras) and were inferred to be nested within the genus. Morphological comparisons of these species with their relatives revealed an accelerated rate of morphological evolution. Mapping morphological diversification of the genus on the phylogenetic tree revealed profound differences in the phylogenetic signal of selected phenotypic features. Whereas the branching pattern of the cells clearly correlated with the phylogeny, cell complexity possibly reflected rather their adaptive morphological responses to environmental conditions. Finally, ancestral reconstruction of distribution patterns indicated potential origin of the genus in North America, with additional speciation events occurring in the Indo-Malaysian region.  相似文献   

13.
Bai M  McCullough E  Song KQ  Liu WG  Yang XK 《PloS one》2011,6(6):e21600
This study examines the evolution hindwing shape in Chinese dung beetle species using morphometric and phylogenetic analyses. Previous studies have analyzed the evolution of wing shape within a single or very few species, or by comparing only a few wing traits. No study has analyzed wing shape evolution of a large number of species, or quantitatively compared morphological variation of wings with proposed phylogenetic relationships. This study examines the morphological variation of hindwings based on 19 landmarks, 119 morphological characters, and 81 beetle species. Only one most parsimonious tree (MPT) was found based on 119 wing and body characters. To better understand the possible role of the hindwing in the evolution of Scarabaeinae, additional phylogenetic analyses were proposed based on the only body features (106 characters, wing characters excluded). Two MPT were found based on 106 body characters, and five nodes were collapsed in a strict consensus. There was a strong correlation between the morphometric tree and all phylogenetic trees (r>0.5). Reconstructions of the ancestral wing forms suggest that Scarabaeinae hindwing morphology has not changed substantially over time, but the morphological changes that do occur are focused at the base of the wing. These results suggest that flight has been important since the origin of Scarabaeinae, and that variation in hindwing morphology has been limited by functional constraints. Comparison of metric disparity values and relative evolutionary sequences among Scarabaeinae tribes suggest that the primitive dung beetles had relatively diverse hindwing morphologies, while advanced dung beetles have relatively similar wing morphologies. The strong correlation between the morphometric tree and phylogenetic trees suggest that hindwing features reflect the evolution of whole body morphology and that wing characters are suitable for the phylogenetic analyses. By integrating morphometric and cladistic approaches, this paper sheds new light on the evolution of dung beetle hind wings.  相似文献   

14.
衣藻属的系统发育分析——基于形态形状和nrDNA ITS序列   总被引:1,自引:0,他引:1  
通过实验分析莱茵衣藻 ( Chlamydomonas reinhardtii) 1个种和互连网获得衣藻属 1 5个种及丝藻属 1个种 ( Ulothrix zonata) ,共 1 7个种的 nr DNA ITS序列 ,并以 U.zonata为外类群 ,采用计算机分析软件包对其进行分析及构建分子系统发育树图。同时以 1 2个传统分类性状 ,对此 1 6种衣藻构建数据矩阵 ;以 U.zonata动孢子的相应性状为外类群原始性状 ,用Wagner法在计算机上对其进行分枝分析 ;然后比较并分析分子系统树和表征性状分支分析树的异同。初步尝试以 ITS分子序列系统发育分析作为传统性状分析的补充来研究衣藻种间的亲缘关系。  相似文献   

15.
This study uses a phylogenetic framework to explore the causes of parallelism in two North American scincid lizard assemblages: the skiltonianus and fasciatus species groups of the genus Plestiodon. Each group consists of several closely related species with conserved neonate morphology; features that distinguish species become accentuated during ontogeny, and these differences often resemble different endpoints along a developmental continuum. This continuum is believed to be an expression of the ancestral ontogeny, and has led to the hypothesis that evolutionary change in development has generated much of the observed morphological diversity. However, progress on understanding these mechanisms is limited by a lack of well-supported phylogenetic data for the fasciatus group, and for Plestiodon in general. Recent phylogenetic studies on the skiltonianus group have revealed previously undetected cases of parallelism, and raise the possibility that similar cases have yet to be discovered in the fasciatus group. Here, I estimate a phylogeny to test the monophyly of the fasciatus group and infer its relationship with other North American Plestiodon using 2537 bp from six mtDNA genes. I use the phylogeny to reconstruct the mode (graduated vs. punctuated) and direction of body size evolution, to map the evolution of two predominant color morphs, and to test whether size and color pattern evolve concertedly. The results show that the morphotypes of the traditional fasciatus group constitute good species, but that the species group is rendered paraphyletic by several geographically overlapping species that deviate from the fasciatus-like ontogeny. Body size evolution has occurred gradually and bi-directionally, and shifts to large body size have been consistently associated with the loss of the striped color pattern during ontogeny. I show that parallelism, a lack of rigorous phylogenetic analysis, and a reliance on shared ontogenetic features for predicting phylogenetic relatedness, has misled the traditional systematics of these lizards, but that general ideas concerning the role of development in their morphological evolution remain supported. I close by proposing that the processes influencing repeated phyletic patterns in the skiltonianus and fasciatus groups represent adherence to an ancestral ground state, and discuss the importance of using phylogenies for the initial characterization of evolutionary changes in development.  相似文献   

16.
Abstract  The genus Phytalmia (antlered flies, Diptera: Tephritidae) contains remarkable flies with elaborate male head projections known as antlers. The antlers are used in antagonistic intraspecific interactions between males competing to occupy oviposition sites. Phylogenetic relationships between the seven known species of Phytalmia were chosen to be investigated in order to determine the current monophyly of the genus and to assess the evolution of secondary sexual characters and associated behaviours, especially male antlers, fore-femoral, spines and stilting. A phylogenetic analysis of Phytalmia was conducted using two closely related species from the same tribe (Phytalmiini): Sessilina nigrilinea (Walker) and Diplochorda minor Malloch, and one species from a different tribe (Dacini): the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) as outgroups. A total of 1259 base pairs of mitochondrial DNA (COII and 16S) and 35 morphological characters were included in the analysis, using parsimony and maximum likelihood inference methods. A phylogenetic tree generated from combined data was used to infer the evolution of antler shapes and associated behaviours in the genus. The results of this paper support the monophyly of Phytalmia , with P. cervicornis Gerstaecker the sister group of the remaining species. The phylogeny suggests a general decrease in antler complexity over evolutionary time; however, the behavioural sequence of male flies becomes more complex over time, with steps (e.g. stilting) being added to the repertoire during antagonistic encounters. Finally, there are strong correlations between functionally constrained morphological and behavioural characters, therefore allowing the authors to make predications for species whose behaviours are unknown based on morphological attributes and the authors' hypothesised evolution of Phytalmia .  相似文献   

17.
The sequences of chloroplast trnL trnF (20 species), psbA trnH(17 species), rpL16 (17 species) and ITS(one species) regions of the genus Viola were analyzed for phylogenetic relationships in the genus with the maximum parsimony (MP) and Bayesian inference (BI) analyses. Hybanthus enneaspermus, Scyphellandra pierrei and Rinorea bengalensis were used as outgroups. Additional sequences corresponding to the same DNA regions for the other taxa in Viola were downloaded from GenBank. The phylogenetic tree indicated that subgenViola is not monophyletic. Moreover, some intrageneric relationships in Viola were clarified. Combining sequences with morphological characters and chromosome number, the inference of morphological evolution in Viola was put forward. It was inferred that: 1) erect stems might well be more primitive than stolons and rosettes; 2) long fimbriate margin in stipules and stipules with 1/2-3/4 adnate part might represent distinctive evolutionary trends of sectTrigonocarpae and of sectAdnatae respectively; 3) species with stigmatic beaks might have been derived from ancestors without beaks; simple structure stigmas transformed into complex structure stigmas, and then transformed back to simple stucture patterns.  相似文献   

18.
Abstract Cordyceps is an endoparasite ascomycetous genus containing approximately 450 species with a diversity of insect hosts, traditionally included in the family Clavicipitaceae of Ascomycota. Establishing the relationships among species with a varied range of morphologies and hosts is of importance to our understanding of the phylogeny and co‐evolution of parasites and hosts in entomopathogenic ascomycetes. To this end, we used a combination of molecular index and morphological characters from 40 representative species to carry out comprehensive molecular phylogenetic analyses. Based on the phylogenetic tree, we used the program DISCRETE for inferring the rates of evolution and finding ancestral states of morphological character. The phylogenetic analyses revealed two important points. (i) Types of perithecia attached to stroma reflected an evolutionary trend in Cordyceps. The vertically immersed perithecia form was the ancestral state, superficial and obliquely immersed perithecia were derived characters, obliquely immersed was irreversible. Species with obliquely immersed perithecia were in a closely related group and were the derived group. (ii) A strong correlation between fungal relatedness and the microhabitat supported the hypothesis that the host jumps through commingling in soil microhabitats. Based on the results of these analyses, host switching explains the diversity of entomopathogenic fungi of the genus Cordyceps.  相似文献   

19.
以鼠鞭草(Hybanthus enneaspermus)、鳞隔堇(Scyphellandra pierrei)、雷诺木(Rinorea bengalensis)作为外类群,对堇菜属(Viola)20个类群的trnL trnF序列,17个类群的psbA trnH、rpL16序列以及1个类群的nrDNA ITS序列进行了测定,并从GenBank下载相应的序列,运用最大简约法以及贝叶斯推论法进行系统分析,构建系统发育树。结果表明:堇菜亚属(subgen.Viola)不是一个单系类群,并明确了堇菜属部分组间类群的亲缘关系。本文还结合形态与细胞学证据对堇菜属进行性状演化的推测。结果表明:1)直立茎较匍匐茎、莲座状茎(叶基生)原始;2)托叶边缘长流苏状与托叶1/2~3/4合生分别是鸟嘴柱头堇菜组(sect.Trigonocarpae)和合生托叶组(sect.Adnatae)演化路线的重要性状标志;3)花柱样式从柱头无喙演化至柱头有喙,并由柱头简单演化至柱头复杂,再趋向于柱头简化。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号