首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Diluted whole blood (WB) culturing may be the most appropriate milieu in which to study cytokine production in vitro. We tested TNFα and IL-6 production using small volumes of WB (25 μl) from HIV-1 positive patients with a one-step procedure that combines WB stimulation with LPS, PHA and cytokine measurement. We studied 49 patients without secondary infection or at distance of secondary infection staged according to the 1993 classification of the CDC and 12 healthy seronegative subjects. Heparinized blood from 5 control subjects had been collected sequentially during a period of 5 months. The individual variations of TNFα and IL-6 production were limited for all these individuals. In 1 out of 20 CDC group A patients, 6 out of 17 CDC group B patients and 3 out of 12 CDC group C patients, we obtained higher values of TNFα than the mean + 2 S.D. of the control group. In 3 out of 20 CDC group A patients, 1 out of 17 CDC group B patients without AIDS and 5 out of 12 CDC group C patients, the TNFα values were lower than the mean ?2 S.D. of the control group. Low IL-6 values were obtained in 1 out of 20 CDC group A patients and 1 out of 17 CDC group B patients and 3 out of 12 CDC group C patients. There was no correlation between TNFα production in vitro and plasma level of TNFα. We found no correlation between the levels of cytokines and monocyte count or between the levels of cytokines and CD4 T-cell count in peripheral blood. Our data point out a disarray in TNFα and IL-6 production by WB from HIV-1 infected patients. The relationship between the disarray of cytokine production and cytopathogenicity of HIV-1 isolates in the P4 cell line was investigated in this study. We found a correlation between the high level of TNFα produced by WB and the phenotype of HIV-1 isolates isolated from patients. The one-stage procedure used in this work is of potential value to investigate the activation status of cells for monitoring HIV-1 positive individuals and predicting HIV-1 phenotype.  相似文献   

2.
More than 90 % of [35S]proteoglycans isolated from the secretions of human skin fibroblasts bind to Concanavalin A-Sepharose 4B (Con A-Sepharose) in the presence of 1 M NaCl. Above pH 5.0 1 M concentrations of methyl-α-D-mannoside and other haptenic inhibitors for Con A-sugar interaction prevent binding of [35S]proteoglycans, whereas equimolar concentrations of non-haptenic carbohydrates do not effect binding. Below pH 5.0 [35S]proteoglycans bind to Con A-Sepharose in the presence of both methyl-α-D-mannoside and galactose. About 60 % of the proteoglycans bound at pH 4.0 are eluted at pH 7.5 in the presence of 1 M methyl-α-D-mannoside. [35S] Glycosaminoglycans prepared from [35S] proteoglycans do not bind to Con A-Sepharose in the presence of 1 M NaCl.These results indicate a [35S]proteoglycan-Con A interaction via the protein core of the proteoglycan and the sugar binding sites of Con A.  相似文献   

3.
Concanavalin A (con A) bound to Sepharose beads stimulates human peripheral blood lymphocytes and as with soluble con A, DNA synthesis can be prevented by the addition of methyl-α-mannoside (MAM) 1 hr after exposure to mitogen. In contrast to the response of cells stimulated with soluble con A, addition of MAM 24 hr after the start of incubation with Sepharose bound mitogen does not prevent a second round of DNA replication as determined in bromodeoxyuridine density transfer experiments indicating that MAM does not dissociate the Sepharose-con A responding cell complex. We infer that within 24 hr, lymphocytes develop associations with con A-Sepharose beads at non MAM dissociable sites.  相似文献   

4.
5.
Tumor necrosis factor-α (TNFα), a proinflammatory cytokine, causes vascular smooth muscle cell (VSMC) proliferation and migration and promotes inflammatory vascular lesions. Nuclear factor-kappa B (NF-κB) activation by TNFα requires endosomal superoxide production by Nox1. In endothelial cells, TNFα stimulates c-Jun N-terminal kinase (JNK), which inhibits NF-κB signaling. The mechanism by which JNK negatively regulates TNFα-induced NF-κB activation has not been defined. We hypothesized that JNK modulates NF-κB activation in VSMC, and does so via a Nox1-dependent mechanism. TNFα-induced NF-κB activation was TNFR1- and endocytosis-dependent. Inhibition of endocytosis with dominant-negative dynamin (DynK44A) potentiated TNFα-induced JNK activation, but decreased ERK activation, while p38 kinase phosphorylation was not altered. DynK44A attenuated intracellular, endosomal superoxide production in wild-type (WT) VSMC, but not in NADPH oxidase 1 (Nox1) knockout (KO) cells. siRNA targeting JNK1 or JNK2 potentiated, while a JNK activator (anisomycin) inhibited, TNFα-induced NF-κB activation in WT, but not in Nox1 KO cells. TNFα-stimulated superoxide generation was enhanced by JNK1 inhibition in WT, but not in Nox1 KO VSMC. These data suggest that JNK suppresses the inflammatory response to TNFα by reducing Nox1-dependent endosomal ROS production. JNK and endosomal superoxide may represent novel targets for pharmacologic modulation of TNFα signaling and vascular inflammation.  相似文献   

6.
7.
Only a few reports have been published on the interactions between Coxsackievirus B4 (CVB4) and human peripheral blood mononuclear cells (PBMC) but have not been extensively documented. Human serum containing non-neutralizing anti-CVB4 antibodies increased CVB4-induced synthesis of IFNα by PBMC. In this study, we determined if CVB4 and human serum have the ability to activate inflammatory cytokines in addition to IFNα in PBMC cultures. PBMC from healthy donors were inoculated with infectious, inactivated CVB4 or with CVB4 incubated with dilutions of human serum or polyvalent IgG with anti-CVB4 activity. Levels of IFNα, TNFα, IL-6, IL-12, IFNγ and IL-10 in the cell-free supernatants of PBMC cultures were measured using ELISA. Infection was assessed by real-time PCR. PBMC inoculated with CVB4 produced inflammatory cytokines but not IFNα. When CVB4 was incubated with serum or IgG, IFNα was detected in the culture supernatants, and high concentrations of TNFα and IL-6 were measured. The concentrations of TNFα and IL-6 were not reduced in cultures inoculated with inactivated CVB4, whereas the IgG-dependent enhancement of IFNα, IL-6 and TNFα production with inactivated virus was suppressed. The potentiation of IFNα production was associated with a high intracellular viral load. Infectious and non-infectious CVB4 can induce the production of inflammatory cytokines but not IFNα by PBMC. High levels of IFNα, in addition to TNFα and IL-6, in culture supernatants were obtained when infectious CVB4 was combined with immune serum or IgG, and they were associated with high amounts of intracellular viral RNA.  相似文献   

8.
To clarify the mechanism by which curdlan sulfate (CRDS) inhibits human immunodeficiency virus (HIV)-1 infection, we examined its influence on the binding of gp120 to CD4 molecules on T cells and macrophages, as well as on the production of TNF-α by gp120-stimulated macrophages (which promotes HIV-1 replication). CRDS treatment of cells not only inhibited the binding of HIV-1 gp120 to CD4+ cells, but also inhibited TNF-α production induced by gp120. Inhibition of HIV-1 infection by CRDS may be related to these two actions.  相似文献   

9.
10.
Fumonisin B1 is a mycotoxin produced by Fusarium verticillioides, frequently associated with corn. It produces species‐specific and organ‐specific toxicity, including equine leukoencephalomalacia, porcine pulmonary edema, and hepatic or renal damage in most animal species. Fumonisin B1 perturbs sphingolipid metabolism by inhibiting ceramide synthase. Our previous studies indicated that fumonisin B1 caused localized activation of cytokines in liver produced by macrophages and other cell types that modulate fumonisin B1 induced hepatic apoptosis in mice. The role of tumor necrosis factor α (TNFα) in fumonisin B1 mediated hepatocyte apoptosis has been established; not much is known about the downstream events leading to apoptosis. In the current study, fumonisin B1 induced apoptosis in primary culture of liver cells. In consistence with previous reports, fumonisin B1 caused accumulation of sphingoid bases and led to increase in TNFα expression. Phosphorylated and total c‐Jun NH2‐terminal kinase (JNK) activities were increased after 24 h fumonisin B1 treatment. JNK inhibitor (SP600125) and anti‐TNFα reduced the apoptosis induced by fumonisin B1. The role of JNK signaling in fumonisin B1 induced apoptosis is downstream of TNFα production, as fumonisin B1‐mediated activation of JNK was reduced by the presence of anti‐TNFα in the medium, whereas the presence of JNK inhibitor did not change the fumonisin B1 induced TNFα expression. Results of this study imply that generation of fumonisin B1 induced TNFα results in modulation of mitogen activated protein kinases, particularly of JNK, and provides a possible mechanism for apoptosis in murine hepatocytes. © 2005 Wiley Periodicals, Inc. J Biochem Mol Toxicol 19:359‐367, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20102  相似文献   

11.
12.
13.
CD8+ T-lymphocytes can utilize noncytolytic mechanisms to suppress HIV-1 replication through the secretion of soluble factors. The secretion of MIP-1β, MIP-1α, IP-10, MIG, IL-1α, and interferon gamma correlated most strongly with soluble noncytolytic suppression (p < 0.0001). Since the noncytolytic response is impaired by histone hyperacetylation, we examined the ability of histone hyperacetylation to alter the expression of immune-related genes. MIP-1α and IP-10 were also among the genes that were down-regulated by histone hyperacetylation. We define a multifactorial cytokine profile of CD8+ T-lymphocytes capable of mediating noncytolytic suppression of CXCR4-tropic HIV-1 replication.  相似文献   

14.
Type 1 interferons (IFNs) induce the expression of the tripartite interaction motif (TRIM) family of E3 ligases, but the contribution of these antiviral factors to HIV pathogenesis is not completely understood. We hypothesized that the increased expression of select type 1 IFN and TRIM isoforms is associated with a significantly lower likelihood of HIV-1 acquisition and viral control during primary HIV-1 infection. We measured IFN-α, IFN-β, myxovirus resistance protein A (MxA), human TRIM5α (huTRIM5α), and TRIM22 mRNA levels in peripheral blood mononuclear cells (PBMCs) of high-risk, HIV-1-uninfected participants and HIV-1-positive study participants. Samples were available for 32 uninfected subjects and 28 infected persons, all within 1 year of infection. HIV-1-positive participants had higher levels of IFN-β (P = 0.0005), MxA (P = 0.007), and TRIM22 (P = 0.01) and lower levels of huTRIM5α (P < 0.001) than did HIV-1-negative participants. TRIM22 but not huTRIM5α correlated positively with type 1 IFN (IFN-α, IFN-β, and MxA) (all P < 0.0001). In a multivariate model, increased MxA expression showed a significant positive association with viral load (P = 0.0418). Furthermore, TRIM22 but not huTRIM5α, IFN-α, IFN-β, or MxA showed a negative correlation with plasma viral load (P = 0.0307) and a positive correlation with CD4(+) T-cell counts (P = 0.0281). In vitro studies revealed that HIV infection induced TRIM22 expression in PBMCs obtained from HIV-negative donors. Stable TRIM22 knockdown resulted in increased HIV-1 particle release and replication in Jurkat reporter cells. Collectively, these data suggest concordance between type 1 IFN and TRIM22 but not huTRIM5α expression in PBMCs and that TRIM22 likely acts as an antiviral effector in vivo.  相似文献   

15.
16.
In rheumatoid arthritis (RA), macrophage is one of the major sources of inflammatory mediators. Macrophages produce inflammatory cytokines through toll‐like receptor (TLR)‐mediated signalling during RA. Herein, we studied macrophages from the synovial fluid of RA patients and observed a significant increase in activation of inositol‐requiring enzyme 1α (IRE1α), a primary unfolded protein response (UPR) transducer. Myeloid‐specific deletion of the IRE1α gene protected mice from inflammatory arthritis, and treatment with the IRE1α‐specific inhibitor 4U8C attenuated joint inflammation in mice. IRE1α was required for optimal production of pro‐inflammatory cytokines as evidenced by impaired TLR‐induced cytokine production in IRE1α‐null macrophages and neutrophils. Further analyses demonstrated that tumour necrosis factor (TNF) receptor‐associated factor 6 (TRAF6) plays a key role in TLR‐mediated IRE1α activation by catalysing IRE1α ubiquitination and blocking the recruitment of protein phosphatase 2A (PP2A), a phosphatase that inhibits IRE1α phosphorylation. In summary, we discovered a novel regulatory axis through TRAF6‐mediated IRE1α ubiquitination in regulating TLR‐induced IRE1α activation in pro‐inflammatory cytokine production, and demonstrated that IRE1α is a potential therapeutic target for inflammatory arthritis.  相似文献   

17.
18.
Adalimumab and Infliximab are recombinant IgG1 monoclonal antibodies (mAbs) that bind and neutralize human tumor necrosis factor alpha (TNFα). TNFα forms a stable homotrimer with unique surface‐exposed sites for Adalimumab, Infliximab, and TNF receptor binding. Here, we report the structures of Adalimumab‐TNFα and Infliximab‐TNFα complexes modeled from negative stain EM and cryo‐EM images. EM images reveal complex structures consisting of 1:1, 1:2, 2:2, and 3:2 complexes of Adalimumab‐TNFα and Infliximab‐TNFα. The 2:2 complex structures of Adalimumab‐TNFα and Infliximab‐TNFα show diamond‐shaped profiles and the 2D class averages reveal distinct orientations of the Fab domains, indicating different binding modes by Adalimumab and Infliximab to TNFα. After separation by size exclusion chromatography and analysis by negative stain EM, the 3:2 complexes of Adalimumab‐TNFα or Infliximab‐TNFα complexes are more complicated but retain features recognized in the 2:2 complexes. Preliminary cryo‐EM analysis of 3:2 Adalimumab‐TNFα complex generated a low‐resolution density consistent with a TNFα trimer bound with three Fab domains from three individual antibody molecules, while each antibody molecule binds to two molecules of TNFα trimer. The Fc domains are not visible in the reconstruction. These results show the two mAbs form structurally distinct complexes with TNFα.  相似文献   

19.
20.
The injection of α-MSH or of one of its analogues ([Nle4-D.Phe7] α-MSH4–10) reduced, in vivo, the release of two cytokines (IL-1α and TNFα) involved in inflammation. The inflammatory state was induced in BALB/c mice by intraperitoneal injection of a sublethal dose of lipopolysaccharides (LPS). The assay of these cytokines by ELISA showed a reduction of 20% with α-MSH and between 30 and 60% with the α-MSH analogue. The α-MSH or the analogue was administered in one of two ways: intravenously or subcutaneously. The most efficient method seemed to be the subcutaneous one because it improved the activity 10,000 times more than the intravenous method. Moreover, the analogue induced a regression of mortality in the animals treated by the intravenous method. Our results show that α-MSH and one of its analogues inhibit IL-1α and TNFα, and can be used as anti-inflammatory molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号