首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. As part of a larger study on canopy arthropods and birds, a 1‐year chemical knockdown study was carried out in one Western Australian forest, where jarrah Eucalyptus marginata and marri E. (Corymbia) calophylla were sampled, and one eastern Australian (New South Wales) forest, where narrow‐leaved ironbark E. crebra and grey box E. moluccana were sampled. 2. Ten trees of each species were sampled during each of the four seasons and the arthropods were sorted to morphospecies level. This paper documents the foliage‐associated component of arboreal arthropod communities and compares arthropod species richness within orders and families, between tree species, and between the two forest types. 3. Hymenoptera, Coleoptera, Diptera, and Araneae were the richest in species. Nine hundred and seventy‐six species in 173 families were found in the eastern Australian forest, while 687 species in 176 families were found in the western Australian forest. Only 53% of families were common to both forests, but almost half the families recorded were represented by fewer than five species. Species overlap between tree species in each region was 40–53%. 4. Analysis using nonparametric bootstrapping procedures showed that sampling of foliage was comprehensive and that only 4–9% more species would be expected with more intensive sampling of the canopy. Absolute richness, as well as differences between tree species and regions, therefore appear to be real and not the result of sampling errors. As a consequence, arthropod species richness in Australian eucalypt forests is shown to be substantially greater than previous estimates.  相似文献   

2.
Summary   The assessment of forest health is an essential part of the monitoring of ecological sustainability in managed native forests. In Australia, unfortunately, very limited quantitative information on forest health is actually obtained for management and reporting purposes. In this article, we summarize current approaches used in Australia to assess native forest health and some recent developments in the application of remotely acquired digital imagery for classifying canopy health. In a recent study examining Bell miner associated dieback (BMAD), high-resolution airborne imagery was successfully manipulated to present severity categories for BMAD affected canopy. The potential of remotely sensed imagery lies not in map production but in the statistical modelling capacity of this spatial information, particularly when added to climatic and terrain-based spatial data sets. There are several statistical approaches to modelling these spatial datasets and in this article, we discuss our approach to producing a preliminary BMAD model. The importance of ground-based assessments is also emphasized and we recommend tree crown condition as a key health attribute for the spatial modelling of forests. Although significant progress has been made in the application of remote sensing technologies, the structural complexity of native forests means that there are still technical issues that require resolving before this approach becomes operationally routine.  相似文献   

3.
Abstract Chemical knockdown is a commonly used method for sampling canopy arthropods. The procedure is susceptible to high winds and in certain conditions may be virtually unusable. Here we introduce a new procedure, branchlet shaking, and compare it with chemical knockdown. Samples produced by branchlet shaking yield fewer arthropods per tree and tend to miss some larger (>1.0cm) and some smaller (<0.2cm) animals. However, the two procedures generally produce data which can portray similar information about the canopy fauna. It is concluded that although chemical knockdown is a superior sampling procedure, branchlet shaking is a possible alternative for situations where chemical knockdown is impractical. Interpretation of the data must, however, take into account the limitations of the branchlet shaking procedure.  相似文献   

4.
Nocturnal flying insects were collected monthly for 13 months using ultra violet light-traps set at various vertical levels in a weakly-seasonal, tropical lowland dipterocarp forest in Sarawak, Malaysia. Abundance, faunal composition, size distribution and guild structure of these samples were analyzed with respect to temperal and vertical distributions. The nocturnal flying insect community in the canopy level was highly dominated by fig wasps (84%) in individual number, and by scarabaeid beetles (28%) in weight. A principal component analysis on monthly catches detected non-random, seasonal trends of insect abundance. The first two principal trends were an alternation of wetter (September to January) and less wet seasons (February to August) and an alternation between the least wet (January to March) and the other seasons. Many insect groups were less abundant in the least wet season than the other seasons, whilst inverse patterns were found in Scarabaeidae and Tenebrionidae. Significantly positive and negative correlations between monthly catch and rainfall were detected only in ovule-feeders and in phloem-feeders, respectively. Delayed, significant negative correlations between monthly catch and 1–3 month preceding rainfall were more frequently detected in phytophages, phloem-feeders, seed-feeders, wood-borers and scavengers. The peak in abundance along vertical levels were found at the canopy level (35 m) for phloem-, ovule-, seed-, root-, fungal-feeders and nectar collectors, at an upper subcanopy level (25 m) for scavengers and aquatic predators, and at a middle subcanopy level (17 m) for ants. Catches at the emergent level (45 m) did not exceed those at the canopy level.  相似文献   

5.
The mean annual litterfall at two dry woodland sites in central Queensland was 1129 kg ha–1 for an open E. populnea F. Muell. woodland (n = 2 years), and 2318 kg ha–1 for a woodland dominated by E. cambageana Maiden (n = 1 year). Leaves formed the largest component of total litterfall, which varied seasonally with a spring–summer maximum. Annual litterfall at these sites conformed with a pattern of decreasing litter production with declining annual rainfall, consistent with a range of eucalypt-dominated communities.  相似文献   

6.
Abstract Social crab spiders (Thomisidae, Diaea) are found in Eucalyptus forests of varying latitude, altitude and species composition in southern Australia. Neither temperature nor rainfall differ between areas where social Diaea are found, suggesting that spiders have a preferred climatic range, and that they change altitudes at different latitudes to maintain their preferred range. In these areas, those Eucalyptus species that hosted Diaea had smaller leaves and fruit than eucalypts that did not, which suggests that the spiders may choose trees based on leaf morphology.  相似文献   

7.
Abstract. The cause of tree disease in any location is difficult to diagnose because of the multiplicity of potential causes. Spatial analysis provides useful evidence on the significance, scale and shape of patterns for disease diagnosis. This study explores the causes of dieback through spatial analysis of tree health at Coranderrk Reserve, an example of an important conservation reserve on the urban fringe of Melbourne, Victoria. Ca. 200 trees were sampled at two sites and measured for position, diameter and height in each of two different community types. An index of tree health was developed, and each tree was assigned a value of health. Dead trees were categorized based on state of decay. Correlograms using Moran's I found significant spatial structure at both study sites. The study employed a method of analysis that compares the spatial patterns in dead and living trees. When all dead trees were eliminated from the analysis, significant spatial pattern was found only at one site. The spatial structures obtained were compared with those expected from the different possible causes of tree dieback. Some potential explanations were eliminated. The results illustrate how spatial analysis may make useful contributions to disease diagnosis if employed systematically together with other modes of investigation.  相似文献   

8.
An understanding of the effects of climate on fuel is required to predict future changes to fire. We explored the climatic determinants of variations in surface fine fuel parameters across forests (dry and wet sclerophyll plus rainforest) and grassy woodlands of south‐eastern Australia. Influences of vegetation type and climate on fuel were examined through statistical modelling for estimates of litterfall, decomposition and steady state fine litter fuel load obtained from published studies. Strong relationships were found between climate, vegetation type and all three litter parameters. Litterfall was positively related to mean annual rainfall and mean annual temperature across all vegetation types. Decomposition was both negatively and positively related to mean annual temperature at low and high levels of warm‐season rainfall respectively. Steady state surface fine fuel load was generally, negatively related to mean annual temperature but mean annual rainfall had divergent effects dependent on vegetation type: i.e. positive effect in low productivity dry sclerophyll forests and grassy woodlands versus negative effect in high productivity wet sclerophyll forests and rainforests. The species composition of the vegetation types may have influenced decomposition and steady state fuel load responses in interaction with climate: e.g. lower decomposition rates in the low productivity vegetation types that occupied drier environments may be partially due to the predominance of species with sclerophyllous leaves. The results indicate that uncertain and highly variable future trends in precipitation may have a crucial role in determining the magnitude and direction of change in surface fine fuel load across south‐eastern Australia.  相似文献   

9.
Properties of the top 30 cm of soil under plantations of 1-yr to 8-yr old Eucalyptus (the hybrid E. tereticornis) and in adjacent natural mixed broad-leaved forest were compared in the sub-tropical zone of the central Himalaya. Various soil-physical characteristics decreased with increasing age; soil-chemical properties, notably organic carbon, total N, P and K decreased as a result of reforestation with Eucalyptus and further decreased with increasing age of the plantation.  相似文献   

10.
Summary Nutrient pools in litter and soil and the major nutrient transfers and additions in rainfall, throughfall and litterfall were measured in eight mature, undisturbed eucalypt forests covering a range of species, climate, productivity and soil type. Litterfall is the major pathway for the return of N, P, Ca and usually Mg, to the soil. The forests covered almost the range of litterfall reported for eucalypt forests and, in conjunction with published data, litterfall was strongly related to climatic variables. Extractable P in the soil and P concentrations in litter and litterfall were significantly higher in two sub-alpine forests (Eucalyptus pauciflora andE. delegatensis) than in all other forests. In general, nutrient turnover, particularly N turnover, was related to the rate of organic matter turnover. Rates of organic matter turnover in these forests and in other studies of eucalypts were correlated with climatic conditions using the simple climatic scalar developed by Vitousek. Nitrogen turnover, especially that proportion cycling via leaf litterfall is primarily a function of organic matter turnover, but litter quality appears also to have an influence.  相似文献   

11.
Many species of Eucalyptus in Australia provide copious amounts of nectar during their reproductive seasons. The nectar is used by many animal species but especially by birds, insects and some bats, which act as pollinators. One of the major features of eucalypt flowering in southern Australia is the patchy, asynchronous flowering of different species, which appears to drive mass nomadism of nectarivorous birds among regions and among habitats. Here we explore whether flowering asynchrony or climate is primarily responsible for the influxes and effluxes of vast numbers of nectarivorous birds in central Victoria, Australia. By using a structured sampling program, we show that winter flowering by red ironbark Eucalyptus tricarpa is the most likely agent controlling avian-nectarivore dynamics rather than climatic differences among regions. Densities and species richness of nectarivores, and numbers of nectarivory events, are all closely related to measures of flowering intensity. However, nonnectarivores, such as insectivores and granivores, show no relationships with either habitat or region. We discuss how dependence on a patchily distributed but highly rewarding resource such as nectar influences population densities and community structure in birds.  相似文献   

12.
Aphids are short-lived and occupy habitats which vary in quality in both time and space. They exploit their ephemerally nutritious habitats by rapidly producing many small offspring when conditions are good, and fewer, larger offspring when conditions are poor, at which time they also divert more of their resources into fat storage. Aphids of each of the generations which make up a life cycle have specific reproductive strategies adapted to the conditions they are most likely to encounter, that is they anticipate the predictable seasonal trends in habitat quality.  相似文献   

13.
The vegetation of Kings Park, near the centre of Perth, Western Australia, once had an overstorey of Eucalyptus marginata (jarrah) or Eucalyptus gomphocephala (tuart), and many trees still remain in the bushland parts of the Park. Avenues and roadsides have been planted with eastern Australian species, including Eucalyptus cladocalyx (sugar gum) and Eucalyptus botryoides (southern mahogany), both of which have become invasive. The present study examined the effect of a recent burn on the level of herbivory on these native and exotic eucalypts. Leaf damage, shoot extension and number of new leaves were measured on tagged shoots of saplings of each tree species in unburnt and burnt areas over an 8‐month period. Leaf macronutrient levels were quantified and the number of arthropods on saplings was measured at the end of the recording period by chemical knockdown. Leaf macronutrients were mostly higher in all four species in the burnt area, and this was associated with generally higher numbers of canopy arthropods and greater levels of leaf damage. It is suggested that the pulse of soil nutrients after the fire resulted in more nutrient‐rich foliage, which in turn was more palatable to arthropods. The resulting high levels of herbivory possibly led to reduced shoot extension of E. gomphocephala, E. botryoides and, to a lesser extent, E. cladocalyx. This acts as a negative feedback mechanism that lessens the tendency for lush, post‐fire regrowth to outcompete other species of plants. There was no consistent difference in the levels of the various types of leaf damage or of arthropods on the native and the exotic eucalypts, suggesting that freedom from herbivory is not contributing to the invasiveness of the two exotic species.  相似文献   

14.
Plant area index (PAI) measured with a LI-COR LAI-2000 plant canopy analyser (PCA) was calibrated with leaf area index (LAI) in a young stand of Eucalyptus grandis in the KwaZulu-Natal Midlands, South Africa. Destructive sampling and allometric equations were used to estimate LAI at 2 and 3 years after planting. Significant correlations (P<0.001) were found between LAI and PAI for each age with different equations being generated for the two ages (LAI=1.0594(PAI)−0.892 at 2 years of age, and LAI=1.0393(PAI) at 3 years of age). The equations differed from those reported in other eucalypt studies, as the PCA in this study over-predicted LAI at 2 years, and slightly under-predicted at 3 years, of age. It is argued that the stage of growth influenced this calibration, as the canopy and foliar structure may have been different in the young stands, affecting the basic assumptions for the PCA. A broad conversion from PCA derived PAI to LAI may not necessarily be valid for young, short rotation eucalypt plantations.  相似文献   

15.
Abstract In the dry eucalypt forests of north‐eastern New South Wales, Australia, cattle grazing occurs at low intensities and is accompanied by frequent low‐intensity burning. This study investigated the combined effects of this management practice on the ground‐dwelling and arboreal (low vegetation) spider assemblages. Spiders were sampled at 49 sites representing a range of grazing intensities, using pitfall trapping, litter extraction and sweep sampling. A total of 237 spider morphospecies from 37 families were collected using this composite sampling strategy. The abundance, richness, composition and structure of spider assemblages in grazed and ungrazed forest sites were compared and related to a range of environmental variables. Spider assemblages responded to a range of environmental factors at the landscape, habitat and microhabitat scales. Forest type, spatial relationships and habitat variability at the site scale were more important in determining spider assemblages than localized low‐intensity grazing and burning. However, it is possible that a threshold intensity of grazing may exist, above which spiders respond to grazing and burning. Although low‐intensity grazing and burning may not affect spider assemblages below a threshold stocking rate, that stocking rate has yet to be established.  相似文献   

16.
Changes in assemblages of plants, macroinvertebrates and fishes on three eastern Tasmanian reefs were monitored over 12 months in replicated control blocks and adjacent 10×12-m blocks cleared of fucoid, laminarian and dictyotalean algae. Removal of canopy-forming plants produced less change to biotic assemblages than reported in studies elsewhere, with the magnitude of change for fish and invertebrate taxa lower than variation between sites and comparable to variation between months.The introduced annual kelp Undaria pinnatifida exhibited the only pronounced response to canopy removal amongst algal taxa, with a fivefold increase in cleared blocks compared to control blocks. Marine reserves are suggested to assist reef communities resist invasion by U. pinnatifida, through an indirect mechanism involving increased predation pressure on sea urchins and reduced formation of urchin barrens that are amenable to U. pinnatifida propagation.Large invertebrates were more associated with turfing algae or the reef substratum than the macroalgal canopy. The herbivorous sea urchin Heliocidaris erythrogramma and abalone Haliotis ruber showed the strongest response to clearing amongst common macroinvertebrate species, with a halving of population numbers. Observed densities of the common monacanthid fish Acanthaluteres vittiger also declined by about 50%. The relatively high level of resistance shown by eastern Tasmanian reef biota to patch disturbance was attributed largely to high diversity and biomass of turfing macroalgae damping effects of canopy clearance.  相似文献   

17.
1 We characterized and compared diversity patterns of canopy and understorey spiders (Arachnida: Araneae) on sugar maple ( Acer saccharum Marsh.) and American beech ( Fagus grandifolia Ehrh.) in hardwood forests of southern Québec, Canada.
2 We sampled canopies of 45 sugar maple and 45 American beech trees and associated understorey saplings in mature protected forests near Montréal. Samples were obtained by beating the crown foliage at various heights and by beating saplings around each tree.
3 Eighty-two species were identified from 13 669 individuals. Forty-eight species and 3860 individuals and 72 species and 9809 individuals were collected from the canopy and the understorey, respectively.
4 Multivariate analyses (NMDS ordination and NPMANOVA) showed the composition of canopy and understorey assemblages differed significantly, and canopy assemblages differed between tree species. Rank-abundance distribution models fitted to the canopy and understorey data indicated that different mechanisms structure the assemblages in both habitats. Three abundant spider species were significantly more common in the canopy; ten species were collected significantly more often in the understorey.
5 The forest canopy was shown to be an important reservoir for spider diversity in north-temperate forests.  相似文献   

18.
Abstract

Old-growth forests in south eastern Australia are important for biodiversity conservation, recreation, carbon storage, social values and, to a declining extent, for timber production. Developing a comprehensive definition of old-growth forest that can apply across all Australian vegetation types has been challenging. Old growth can be viewed from ecological and social perspectives. For policy and management purposes old growth has been defined as a growth stage in forest development, incorporating ecological maturity and lack of evidence of past disturbance. Classification and assessment of old growth has largely been restricted to those areas covered by regional forest agreements (RFAs) between different states and the Federal Government. Old growth can be impacted by wildfire, timber harvesting, insect pests, diseases and other disturbances. Climate change will also present challenges for the future management of old-growth forests. There is increasing scientific understanding of the relationships between species, forest growth stage and old-growth forest attributes. To meet biodiversity conservation objectives, the management focus is shifting from assessing and protecting old-growth forests, to providing for forests across the landscape with old-growth attributes. This approach may be at odds with other conceptions of old growth based on notions of undisturbed systems free of human influence.  相似文献   

19.
Abstract Trunk–associated invertebrates were sampled on two rough‐barked tree species (jarrah, Eucalyptus marginata and marri, E. calophylla) at Karragullen, in the hills near Perth, Western Australia, and on these two species plus two smooth‐barked species (wandoo, E. wandoo, and powderbark wandoo, E. accedens) at Dryandra, a drier site situated 150 km to the south‐east. Invertebrates were sampled by intercept traps, which collect animals that attempt to land on the trunks, and photo‐eclector bark traps, which collect invertebrates that move, or live, on the trunk. The range and abundance of invertebrates sampled was generally greater in the intercept than the bark traps. Invertebrate abundance and activity (but not biomass) on bark was strongly seasonal, with greater numbers being found during the moister periods. The two smooth‐barked species supported, and were visited by, more invertebrates than the two rough‐barked species. There was some evidence that jarrah supported more invertebrates than marri at both Karragullen and Dryandra, although the results were equivocal. Within the two smooth‐barked species, wandoo tended to support more invertebrates than powderbark wandoo. These trends are discussed in terms of the characteristics of the bark of these trees and the environments in which they occur.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号