首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has often been suggested that selection on floral traits in hermaphroditic plants should occur primarily through differences in male fitness. However, measurements of selection on floral traits through differences in lifetime male fitness have been lacking. We measured selection on a variety of wild radish floral traits using lifetime male fitness measures derived from genetic paternity analysis. These male fitness estimates were then combined with estimates of lifetime female fitness of the same plants to produce measurements of selection based on lifetime total fitness. Contrary to the prediction above, there was no strong evidence for selection on floral morphology through male fitness differences in any of the three years of the study, but there was strong selection for increased flower size through female fitness differences in one year. The main determinant of both male and female fitness in all years was flower number; this lead to moderately positive correlations between male and female fitness in all three years.  相似文献   

2.
海拔对全缘叶绿绒蒿植株性状和花特征的表型选择分析   总被引:1,自引:0,他引:1  
为了研究海拔差异对植株性状、花特征表型选择的影响,以青藏高原高寒草甸的全缘叶绿绒蒿(Meconopsis integrifolia)为研究材料,于盛花期内,测定不同海拔(4 452、4 081和3 681 m)种群中个体植株性状、花特征、单果结实数并进行统计分析,采用线性回归模型估计不同海拔种群间植株性状、花特征所受的表型选择(选择差与选择梯度)。结果表明:(1)随着海拔升高,全缘叶绿绒蒿植株性状、花特征及单果结实数显著降低,海拔越高的种群中株高越矮、叶面积越小、花数越少、花越小、单果结实数越低。(2)不同海拔种群中各性状的表型选择存在差异,较低海拔(3 681 m)种群中花数、花大小具有显著的选择差和选择梯度,表现为花越多、花越大的个体雌性适合度越高;海拔较高(4 081 m)的种群中株高、叶面积及花数更容易受到选择,表现为植株越高、叶面积越大、花越多的个体雌性适合度越高;海拔最高(4 452 m)的种群中叶面积与花数的选择梯度接近显著。(3)植物性状分化伴随着海拔的变化而呈现出差异,较低海拔种群中花特征容易受到选择,而较高海拔种群中可能由于传粉者稀少、资源限制等因素使得株高、叶面积更容易受到选择。  相似文献   

3.
Pollination syndromes suggest that convergent evolution of floral traits and trait combinations reflects similar selection pressures. Accordingly, a pattern of selection on floral traits is expected to be consistent with increasing the attraction and pollen transfer of the important pollinator. We measured individual variation in six floral traits and yearly and lifetime total plant seed and fruit production of 758 plants across nine years of study in natural populations of Ruby-Throated Hummingbird-pollinated Silene virginica. The type, strength, and direction of selection gradients were observed by year, and for two cohorts selection was estimated through lifetime maternal fitness. Positive directional selection was detected on floral display height in all years of study and stigma exsertion in all years but one. Significant quadratic and correlational selection gradients were rare. However, a canonical analysis of the gamma matrix indicated nonlinear selection was common; if significant curvature was detected it was convex with one exception. Our analyses demonstrated selection favored trait combinations and the integration of floral features of attraction and pollen transfer efficiency that were consistent with the hummingbird pollination syndrome.  相似文献   

4.
传粉者的选择作用是花表型性状进化的重要驱动力, 解析选择作用的强度是理解花进化的关键。通过表型操控实验和表型选择研究能够分析花性状与其适合度的关系, 探究花性状的表型选择作用。为揭示花性状变化对雌性适合度的影响, 本研究处理展毛翠雀(Delphinium kamaonense var. glabrescens)花萼片大小, 并进行表型选择分析。结果表明: 人为减小展毛翠雀花萼片显著降低了传粉者的访花频率, 但是并没有影响种子产量(种子数和结籽率), 说明展毛翠雀花萼片的大小不影响种子产量, 可能主要吸引传粉昆虫输出花粉。通过雌性适合度(种子数量)估计表型选择梯度, 发现花萼片大小(长和宽)没有受到显著的直接选择梯度。但是, 花距长受到显著的线性选差和选择梯度, 表明花距的延长能够增加种子产量。本研究表明展毛翠雀花性状受到选择的作用, 但萼片和花距有不同的功能, 分别影响传粉者访问频率和种子产量。  相似文献   

5.
为了研究植物生长季内开花时间对花特征表型选择的影响,我们以青藏高原东缘高寒草地的毛茛状金莲花Trollius ranunculoides)为实验材料,在生长季内不同开花时间(花前期、花末期)测定花特征,观察访花昆虫的类群和访花频率,生长季结束后收集种子.根据昆虫访花的喜好和季节内类群与访花频率的变化,分析了不同开花时间毛茛状金莲花的花特征与昆虫的选择;并用种子产量表示雌性适合度,估计了毛茛状金莲花的花特征在不同开花时间所受的表型选择.结果表明:不同花期植物的花特征有显著差异,相应的访花昆虫的类群和频率也存在差异,不同类群昆虫访花喜好也不一样.蜂喜好花瓣和花萼较宽、花茎短和花茎数少的个体,这正符合花前期的特征,因而蜂的访花频率在花前期较高;蝇对花特征没有明显的偏好.而通过雌性适合度估计毛茛状金莲花花特征所受的表型选择则是:花前期,花茎较长和花茎数多的植株适合度大;花末期,花茎数多的植株适合度大.我们的研究表明:在植物生长季,花期的分化伴随着传粉昆虫活动的变化.不同花期,访花昆虫的变化可能对植物花特征的分化起了至关重要的作用.但是访花昆虫对花特征的选择与通过雌性适合度估计植物受到的选择不尽相同,这可能是由于其他因素造成的.  相似文献   

6.
Many factors may affect reproduction of animal-pollinated species. In this study, the effects of pollen limitation, attractive traits (flower number, plant height and flower width) and flowering phenological traits (flowering onset, duration and synchrony) on female reproduction, as well as the patterns of variation in fruit and seed production within plants, were investigated in Paeonia ostii “Feng Dan” over two flowering seasons (2018 and 2019). Fruit set was very high (90%), and pollen supplementation did not increase fruit and seed production in either year, indicating no pollen limitation. Fruit set, ovule number per fruit and mean individual seed weight per fruit were not affected by any of the six attractive and phenological traits in either year, whereas seed number per fruit was related to the three attractive traits in one or both years. Seed number per plant was positively affected by the three attractive traits and best explained by flower number in both years, but the effect of each of the three phenological traits on seed number per plant differed between years. Within plants, the fruit set, ovule number, seed set and seed number per fruit declined from early- to late-opening flowers, presumably because of resource preemption, but the mean individual seed weight did not vary across the flowering sequence. Our study shows that attractive traits of Paeonia ostii “Feng Dan” are more important than flowering phenological traits in the prediction of total seed production per plant.  相似文献   

7.
We examined the consequences of differences in flowering date on seed production in the self-compatible herb Heloniopsis orientalis. The number of selfed seeds per fruit, as determined by microsatellite markers, did not depend on when the plant flowered, whereas the number of outcrossed seeds per fruit increased with later flowering dates. Consequently, the selfing rate decreased with later flowering dates. The number of seeds (including both selfed and outcrossed ones) per fruit and the seed?:?ovule ratio increased with later flowering dates. We also examined the effects of pollinators and plant size on seed production. The visitation rate of Diptera did not depend on the flowering season, whereas that of Hymenoptera markedly increased as the flowering season progressed. Diptera stayed longer than Hymenoptera on each plant and flower. Seed production per fruit did not depend on plant size. Thus, the change in selfing rate associated with later flowering dates resulted from the seasonal change in pollinators rather than plant size.  相似文献   

8.
Ovule number per flower in a world of unpredictable pollination   总被引:1,自引:0,他引:1  
The number of ovules per flower varies over several orders of magnitude among angiosperms. Here we consider evidence that stochastic uncertainty in pollen receipt and ovule fertilization has been a selective factor in the evolution of ovule number per flower. We hypothesize that stochastic variation in floral mating success creates an advantage to producing many ovules per flower because a plant will often gain more fitness from occasional abundant seed production in randomly successful flowers than it loses in resource commitment to less successful flowers. Greater statistical dispersion in pollination and fertilization among flowers increases the frequency of windfall success, which should increase the strength of selection for greater ovule number per flower. We therefore looked for evidence of a positive relationship between ovule number per flower and the statistical dispersion of pollen receipt or seed number per flower in a comparative analysis involving 187 angiosperm species. We found strong evidence of such a relationship. Our results support the hypothesis that unpredictable variation in mating success at the floral level has been a factor in the evolution of ovule packaging in angiosperms.  相似文献   

9.
The availability of both pollen and resources can influence natural selection on floral traits, but their relative importance in shaping floral evolution is unclear. We experimentally manipulated pollinator and resource (fertilizer and water) availability in the perennial wildflower Asclepias syriaca L. Nine floral traits, one male fitness component (number of pollinia removed), and two female fitness components (number of pollinia inserted and number of fruits initiated) were measured for plants in each of three treatments (unmanipulated control, decreased pollinator access, and resource supplementation). Although decreasing pollinators’ access to flowers did result in fewer pollinia inserted and removed, fruit set and phenotypic selection on floral traits via female and male fitness did not differ from the control. In contrast, resource supplementation increased fruit set, and phenotypic selection on seven out of nine floral traits was stronger via female than male fitness, consistent with the prediction that selection via female fitness would be greater when reproduction was less resource-limited. Our results support the hypothesis that abiotic resource availability can influence floral evolution by altering gender-specific selection.  相似文献   

10.
Flower size and number usually evolve under pollinator‐mediated selection. However, hot, dry environments can also modulate display, counteracting pollinator attraction. Increased pollen deposition on larger flower displays may not involve higher female fitness. Consequently, stressful conditions may constrain flower size, favouring smaller‐sized flowers. The large‐flowered, self‐incompatible Mediterranean shrub Cistus ladanifer was used to test that: (1) this species suffers pollen limitation; (2) pollinators are spatially–temporally variable and differentially visit plants with more/larger flowers; (3) increased visits enhance reproduction under pollen limitation; (4) stressful conditions reduce female fitness of larger displays; and (5) phenotypic selection on floral display is not just pollinator‐mediated. We evaluated pollen limitation, related floral display to pollinator visits and fruit and seed production and estimated phenotypic selection. Flower size was 7.2–10.5 cm and varied spatially–temporally. Visitation rates (total visits/50 min) ranged from 0.26 to 0.43 and increased with flower size. Fruit set averaged 80% and seed number averaged 855, but only fruit set varied between populations and years. Selection towards larger flowers was detected under conditions of pollen limitation. Otherwise, we detected stabilizing selection on flower size and negative selection on flower number. Our results suggest that selection on floral display is not only pollinator‐dependent through female fitness in C. ladanifer. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 540–555.  相似文献   

11.
In this paper we examine some ecological consequences and phenotypic correlates of flower size variation in wild radish, Raphanus sativus. Mean corolla diameter varied significantly among individuals within natural populations of R. sativus in California. On the average, almost 40% of flower biomass was allocated to corolla tissue. In field experiments, pollinator visitation increased significantly with corolla size. Large flowers also accumulated more nectar when pollinators were excluded from plants. In three populations, corolla size was positively correlated with allocation to pollen per flower (either anther weight or pollen grain number), but there was usually no phenotypic relationship between corolla size and several measures of female allocation (ovule number per flower, proportion fruit set, and total seed mass per fruit). Plants growing in the field produced fewer large flowers per unit of stem, and stem biomass was negatively related to corolla size for plants grown under controlled greenhouse conditions. Male and female fitness may covary differently with allocation to attractive floral features in species such as R. sativus, where seed production is often limited by resources rather than by pollen.  相似文献   

12.
The rate of pollen exchange within and among flowers may depend on pollinator attraction traits such as floral display size and flowering plant density. Variations in these traits may influence pollinator movements, pollen receipt, and seed number. To assess how floral display size and flowering plant density affect parameters of pollinator visitation rate, pollen receipt per flower, seed number per fruit and the between-plant pollinator movements, we studied the self-incompatible plant, Nierembergia linariifolia. Per-flower pollinator visitation rate and bout length increased linearly with increasing floral display size. Pollen receipt per flower increased linearly with increasing flowering plant density. For seed number per fruit, a polynomial model describing an increased seed number per fruit at low density and a decreased seed number per fruit at high density provided a significant fit. Per-flower pollinator visitation rate was not associated with pollen receipt per flower and seed number per fruit. Bees visited plants located near to the center of the population more frequently than plants located at the periphery. Increases in both floral display size and flowering plant density led to an increased chance of a plant being chosen as the center of the pollinator foraging area. These results suggest that even though large floral displays and high flowering plant density are traits that attract more pollinators, they may also reduce potential mate diversity by restricting pollen movement to conspecific mates that are closely located.  相似文献   

13.
For plants that rely on animals for pollination, the ability to attract the animals to their flowers can be a crucial component of fitness. A large number of studies have documented pollinators to be important selective agents driving the evolution of flower size and correlated traits on a large scale. In this paper, we studied variations of reproductive traits in self-incompatible Trollius ranunculoides (Ranunculaceae) among local habitats at Alpine Meadow. The results showed significant variations of floral size, seed mass per fruit and sex allocation (male/female mass ratio) between different habitats, where floral size and seed mass was not explained fully by variation of plant size among habitats. It suggested that other factors unrelated to plant size might also influence floral variation. However, in our manipulated experiment, it showed no effects of manipulated floral size not only on visit rate of effective pollinators (bees and flies) but also on female success (seed set, seed mass per fruit), irrespective of flower density. Consequently, we could not conclude that the variation of floral size in T. ranunculoides was due to phenotypic plasticity, or natural selection. But if selection occurred, it should not be mediated by pollinators. It was likely that variation of sex allocation between habitats lead to changes of flower or corolla size, because plant invested much less to male function (female-biased sex allocation and larger single seed mass) in shade habitat (bottom of bush) than other exposed habitats, to gain higher fitness. In addition, high-floral density in T. ranunculoides had a negative effect on service of main pollinator (bees) and female success. This situation would influence the strength of selection on floral size.  相似文献   

14.
Aims Within inflorescences of sexually reproducing hermaphrodites, the production of ovules, fruits and seeds commonly declines from basal (early-opening) to distal (late-opening) flowers, while pollen production remains constant or only changes slightly, with the result that distal (late-opening) flowers become functionally male. However, few empirical studies have specifically examined whether or not changes in allocation to pollen production actually lead to changes in the number of seeds sired, a more direct measure of male fitness. In pseudogamous apomicts, fitness depends on the number of seeds produced; thus, a contrasting pattern of variation in the pollen-to-ovule (P/O) ratio within inflorescences might be expected.Methods We investigated floral sex allocation and reproductive success within racemes of Hosta ventricosa, a pseudogamous apomictic hermaphrodite possessing flowers that open acropetally. We quantified variations in pollen number, ovule number, the P/O ratio and fruit and seed production, from 2007 to 2011, among flowers within racemes of four populations of H. ventricosa in southwest China. Ecological causes for fruit and seed production were evaluated by observing patterns of pollen deposition, flower removal and supplemental pollination.Important findings Pollen number, ovule number and the P/O ratio declined from basal-to-distal positions in all sampled populations (years). Fruit and seed production decreased distally in most populations (years). Low fruit and seed set of distal flowers was not due to pollen limitation because pollen deposition never declined distally and the low fruit and seed set of distal flowers remained even after supplementary pollination was provided. The flower-removal experiment indicated that inter-fruit competition for resources among flowers was common. The low P/O ratio of distal flowers in H. ventricosa might be favored because they were unable to obtain fitness by donating pollen and siring seeds on other plants. Our study may help to understand the adaptive significance of sex allocation among flowers within inflorescences of sexually reproducing hermaphrodites.  相似文献   

15.
Linking trait selection to environmental context is necessary to move beyond the simple recognition that selection is spatially variable and to understand what ultimately drives this variation. Natural selection acts through differences among individuals in lifetime fitness and information about effects on fitness components is therefore often not sufficient to gain such an understanding. We investigated how environmental context influenced intensity of seed predation, flower abortion and selection on floral display traits in 44–52 populations of the perennial herb Primula veris over 2 years. Phenotypic selection on both inflorescence height and flower number varied among populations and was mediated partly by pre-dispersal seed predation and flower abortion in one of the years. Among-population variation in selection on inflorescence height, but not flower number, was linked to variation in canopy cover via its effects on seed predation. Lifetime fitness was less sensitive to seed predator damage in shaded environments but estimates of selection based on lifetime fitness agreed qualitatively with those based on seed output. Our results demonstrate that seed predators constitute an important link between environmental conditions and trait evolution in plants, and that selection on plant traits by seed predators can depend on environmental context.  相似文献   

16.
ESS models of reproductive allocation have been used extensively to explain patterns of floral diversity in angiosperms. These theoretical explorations assume that proportional allocation to pollen, ovules, and seeds, as well as to secondary features such as showy petals and nectar rewards, can evolve independently within the limits set by total resource availability. In populations of California wild radish, we have shown previously that petal size, a strong determinant of visitation by honey bee pollinators, is positively correlated with both pollen and nectar production, but not with ovule or seed number per flower. These phenotypic associations may reflect selection, environmental correlation, and/or genetic constraint. By exerting selection on the petal size : pollen number ratio over two generations, we eliminated the positive correlation between petal size and pollen production, with both characters showing significant change after a single selection episode. Once these two floral traits became uncoupled, nectar sugar production was significantly correlated only with petal size. Our results suggest that natural selection could readily alter reproductive allocation in these flowers, and that the phenotypic correlations observed in nature may be maintained by selection for effective reproductive phenotypes.  相似文献   

17.
Floral traits that increase attractiveness to pollinators are predicted to evolve through selection on male function rather than on female function. To determine the importance of male-biased selection in dioecious Wurmbea dioica, we examined sexual dimorphism in flower size and number and the effects of these traits on pollinator visitation and reproductive success of male and female plants. Males produced more and larger flowers than did females. Bees and butterflies responded to this dimorphism and visited males more frequently than females, although flies did not differentiate between the sexes. Within sexes, insect pollinators made more visits to and visited more flowers on plants with many flowers. However, visits per flower did not vary with flower number, indicating that visitation was proportional to the number of flowers per plant. When flower number was experimentally held constant, visitation increased with flower size under sunny but not overcast conditions. Flower size but not number affected pollen removal per flower in males and deposition in females. In males, pollen removal increased with flower size 3 days after flowers opened, but not after 6 days when 98% of pollen was removed. Males with larger flowers therefore, may have higher fitness not because pollen removal is more complete, but because pollen is removed more rapidly providing opportunities to pre-empt ovules. In females, pollen deposition increased with flower size 3 days but not 6 days after flowers opened. At both times, deposition exceeded ovule production by four-fold or more, and for 2 years seed production was not limited by pollen. Flower size had no effect on seed production per plant and was negatively related to percent seed set, implying a tradeoff between allocation to attraction and reproductive success. This indicates that larger flower size in females is unlikely to increase fitness. In both sexes, gamete production was positively correlated with flower size. In males, greater pollen production would increase the advantage of large flowers, but in females more ovules may represent a resource cost. Selection to increase flower size and number in W. dioica has probably occurred through male rather than female function. Received: 15 June 1997 / Accepted: 12 February 1998  相似文献   

18.
Two widespread assumptions underlie theoretical models of the evolution of sex allocation in hermaphroditic species: (1) resource allocations to male and female function are heritable; and (2) there is an intrinsic, genetically based negative correlation between male and female reproductive function. These assumptions have not been adequately tested in wild species, although a few studies have detected either genetic variation in pollen and ovule production per flower or evidence of trade-offs between male and female investment at the whole plant level. It may also be argued, however, that in highly autogamous, perfect-flowered plant taxa that exhibit genetic variation in gamete production, strong stabilizing selection for an efficient pollen:ovule ratio should result in a positive correlation among genotypes with respect to mean ovule and mean pollen production per flower. Here we report the results of a three-generation artificial selection experiment conducted on a greenhouse population of the autogamous annual plant Spergularia marina. Starting with a base population of 1200 individuals, we conducted intense mass selection for two generations, creating four selected lines (high and low ovule production per flower; high and low anther production per flower) and a control line. By examining the direct and correlated responses of several floral traits to selection on gamete production per flower, we evaluated the expectations that primary sexual investment would exhibit heritable variation and that resource-sharing, variation in resource-garnering ability, or developmental constraints mold the genetic correlations expressed among floral organs. The observed direct and correlated responses to selection on male and female gamete production revealed significant heritabilities of both ovule and anther production per flower and a significant negative genetic correlation between them. When plants were selected for increased ovules per flower over two generations, ovule production increased and anther production declined relative to the control line. Among plants selected for decreased anthers per flower, we observed a decline in anther production and an increase in ovule production relative to the control line. In contrast, the lines selected for low ovules per flower and for high anthers per flower exhibited no evidence for significant genetic correlations between male and female primary investment. Correlated responses to selection also indicate a genetically based negative correlation between the production of normal versus developmentally abnormal anthers (staminoid organs); a positive correlation between the production of ovules versus staminoid organs; and a positive correlation between the production of anthers and petals. The negative relationship between male versus female primary investment supports classical sex allocation theory, although the asymmetrical correlated responses to selection indicate that this relationship is not always expressed.  相似文献   

19.
Many studies have been done on seed production as a function of population density in wild plants Most of them show a higher seed-set per flower of densely growing plants In this study, in a gynodioecious Silene uniflora (Caryophyllaceae) population on the Baltic island of Oland, high plant density did not increase fruit-set or seed-set Instead, the total number of seeds set was slightly higher for widely scattered plants as a result of a somewhat lower number of ovules per flower in densely growing plants Individuals had nothing to gain by growing close together, because there was no reproductive parameter which could compensate for the low ovule number per flower of closely growing plants Plant size determined the total seed production of individuals, but did not correlate with any of the fitness components studied per flower basis The different gender morphs showed the same pattern, which is discussed as a comparison with pollen limitation in self-incompatible and self-incompatible plants  相似文献   

20.
I describe temporal patterns of seed production in the andromonoecious lily Zigadenus particulatus. Fruit set per flower and seed set per fruit declined through time within plants. Hand pollination experiments showed that this was not due to increasing pollen limitation. Nutrient supplementation had little effect on seed output, but leaf clipping reduced seed production, especially in late-blooming flowers, and removal of early-blooming flowers increased seed set by later flowers. Thus, the temporal pattern of seed output was due to declining availability of photosynthates. Plants with larger bulbs produced larger inflorescences, a greater proportion of hermaphrodite flowers, more fruits per hermaphrodite flower, and more seeds per fruit, but lost a greater fraction of their initial bulb mass as a consequence of fruiting. After controlling for the effects of bulb mass, plants with larger inflorescences produced a greater proportion of male flowers, and plants with more hermaphrodite flowers produced fewer fruits per hermaphrodite flower and fewer seeds per fruit. Thus, the female fitness gain curve was decelerating. The temporal decline in seed output provides a partial explanation for the parallel decline in allocation to pistils. However, a complete explanation for the pattern of gamete packaging requires an understanding of factors controlling male, as well as female, fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号