首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
F. X. Pic  T. Koubek 《Acta Oecologica》2003,24(5-6):289-294
Heterocarpic plants are characterized by the production of distinct types of fruits that usually differ in their ecological behavior. In the Asteraceae, differences are mainly found between peripheral non-dispersal and central dispersal achenes (single-seeded fruits). Inbreeding depression is considered as an evolutionary force as it may reduce several fitness traits, and in the case of heterocarpic plants, it could influence fitness traits (e.g., seed set, germination rate, growth rate) of each fruit morph, which may have important ecological and evolutionary consequences. In particular, differential effects on fitness traits and dispersal of selfed and outcrossed progeny can strongly determine the viability of extant populations and the potential to colonize new habitats. We conducted a hand-pollination experiment in greenhouse conditions to test whether inbreeding affects the fitness of achene morphs in the heterocarpic herb Leontodon autumnalis (Asteraceae). Results show that achene morphs significantly differ in their ecological behavior, peripheral achenes germinating more and faster than central achenes. The significant interaction between pollination treatment and achene morph for germination probability might indicate a link between dormancy and mating system in L. autumnalis: germination was higher for outcrossed achenes in central achenes whereas the opposite pattern was exhibited by peripheral achenes. Selfing dramatically reduced seed set, probably as a consequence of strong self-incompatibility mechanisms rather than inbreeding effects. Inbreeding depression significantly affected late life-cycle traits, such as growth rate and biomass at flowering. Overall, results suggest that inbreeding depression seems to be an important selective force maintaining outcrossing in L. autumnalis.  相似文献   

2.
Inbreeding depression may be caused by (partially) recessive or overdominant gene action. The relative evolutionary importance of these two modes has been debated; the former mode is emphasized in the “dominance hypothesis,” the latter in the “overdominance hypothesis.” We analyzed the genetic basis of inbreeding depression in the self-incompatible herb Arabis petraea (L.) Lam.: In the selfed progeny of twelve parental plants, we studied the proportion of chlorophyll-deficient seedlings, the genotypic distributions of marker genes, and associations of marker genotypes with viability and quantitative traits. Early components of fitness were examined by scoring seed size, germination time, and early growth rate and by observing the proportion of chlorophyll-deficient seedlings. Later components of fitness, flowering, and root and aboveground biomass were also measured. Marker genotypes of young seedlings were scored for 11 enzyme loci and three microsatellite markers. We found a high proportion (about 70%) of families with chlorophyll-deficient seedlings, indicating a high mutational load. We found six significant deviations from 1:2:1 ratio at marker loci of 60 tests in seedlings, with three of these significant at the experimentwide level. Deviations from the expected ratio were assumed to be due to linked viability loci. A graphical and a Bayesian method were used to distinguish between the overdominance and dominance hypotheses. Most of the deviant segregation ratios suggested overdominance instead of recessivity of the deleterious allele. Neither the early (seed size, germination time, or early growth trait) nor the late quantitative traits (flowering, and root and aboveground biomass) showed significant linkage to markers at the experimentwide level. Presence of significant associations between markers and early viability, but lack thereof for quantitative traits expressed late, suggests either that there may be relatively low inbreeding depression in later life stages or that individual quantitative trait loci may have smaller effects than loci contributing to early viability.  相似文献   

3.
Seeds were sampled from 19 populations of the rare Gentiana pneumonanthe, ranging in size from 5 to more than 50,000 flowering plants. An analysis was made of variation in a number of life-history characters in relation to population size and offspring heterozygosity (based on seven polymorphic isozyme loci). Life-his-tory characters included seed weight, germination rate, proportion of seeds germinating, seedling mortality, seedling weight, adult weight, flower production per plant and proportion of plants flowering per family. Principal component analysis (PCA) reduced the dataset to three main fitness components. The first component was highly correlated with adult weight and flowering performance, the second with germination performance and the third component with seed and seedling weight and seedling mortality. The latter two components were considered as being maternally influenced, since these comprised life-history traits that were significantly correlated with seed weight. Multiple regression analysis showed that variation in the first fitness component was mainly associated with heterozygosity and not with population size, while the third fitness component was only correlated with population size and not with heterozygosity. The latter relationship appeared to be non-linear, which suggests a stronger loss of fitness in the smallest populations. The second (germination) component was neither correlated with population size nor with genetic variation. There was only a weak association between population size, heterozygosity and the population coefficients of variation for each life history character. Most correlation coefficients were negative, however, which suggests that there is more variation among progeny from smaller populations. We conclude that progeny from small populations of Gentiana pneumonanthe show reduced fitness and may be phenotypically more variable. One of the possible causes of the loss of fitness is a combination of unfavourable environmental circumstances for maternal plants in small populations and increased inbreeding. The higher phenotypic variation in small populations may also be a result of inbreeding, which can lead to deviation of individuals from the average phenotype through a loss of developmental stability.  相似文献   

4.
Inbreeding depression, or the decreased fitness of progeny derived from self-fertilization as compared to outcrossing, is thought to be the most general factor affecting the evolution of self-fertilization in plants. Nevertheless, data on inbreeding depression in fitness characters are almost nonexistent for perennials observed in their natural environments. In this study I measured inbreeding depression in both survival and fertility in two sympatric, short-lived, perennial herbs: hummingbird-pollinated Lobelia cardinalis (two populations) and bumblebee-pollinated L. siphilitica (one population). Crosses were performed by hand in the field, and seedlings germinated in the greenhouse. Levels of inbreeding depression were determined for one year in the greenhouse and for two to three years for seedlings transplanted back to the natural environment. Fertility was measured as flower number, which is highly correlated with seed production under natural conditions in these populations. Inbreeding depression was assessed in three ways: 1) survival and fertility within the different age intervals; 2) cumulative survival from the seed stage through each age interval; and 3) net fertility, or the expected fertility of a seed at different ages. Net fertility is a comprehensive measure of fitness combining survival and flower number. In all three populations, selfing had nonsignificant effects on the number and size of seeds. Lobelia siphilitica and one population of L. cardinalis exhibited significant levels of inbreeding depression between seed maturation and germination, excluding the consideration of possible differences in dormancy or longterm viability in the soil. There was no inbreeding depression in subsequent survival in the greenhouse in any population. In the field, significant survival differences between selfed and outcrossed progeny occurred only in two years and in only one population of L. cardinalis. For both survival and fertility there was little evidence for the expected differences among families in inbreeding depression. Compared to survival, inbreeding depression in fertility (flower number) tended to be much higher. By first-year flower production, the combined effects on survival and flower number caused inbreeding depression in net fertility to reach 54%, 34% and 71% for L. siphilitica and the two populations of L. cardinalis. By the end of the second year of flowering in the field, inbreeding depression in net fertility was 53% for L. siphilitica and 54% for one population of L. cardinalis. For the other population of L. cardinalis, these values were 76% through the second year of flowering and 83% through the third year. Such high levels of inbreeding depression should strongly influence selection on those characters affecting self-fertilization rates in these two species.  相似文献   

5.
The shape of the fitness function relating the decline in fitness with coefficient of inbreeding (f) can provide evidence concerning the genetic basis of inbreeding depression, but few studies have examined inbreeding depression across a range of f using noncultivated species. Futhermore, studies have rarely examined the effects of inbreeding depression in the maternal parent on offspring fitness. To estimate the shape of the fitness function, we examined the relationship between f and fitness across a range off from 0.000 to 0.875 for components of both male and female fitness in Cucurbita pepo ssp. texana. Each measure of female fitness declined with f, including pistillate flower number, fruit number, seed number per fruit, seed mass per fruit, and percentage seed germination. Several aspects of male fitness also declined with f, including staminate flower number, pollen number per flower, and the number of days of flowering, although cumulative inbreeding depression was less severe for male (0.34) than for female function (0.39). Fitness tended to decline linearly with f between f = 0.00 and f = 0.75 for most traits and across cumulative lifetime fitness (mean = 0.66), suggesting that individual genes causing inbreeding depression are additive and the result of many alleles of small effect. However, most traits also showed a small reduction in inbreeding depression between f = 0.75 and f = 0.875, and evidence of purging or diminishing epistasis was found for in vitro pollen-tube growth rate. To examine inbreeding depression as a maternal effect, we performed outcross pollinations on f = 0.0 and f = 0.5 mothers and found that depression due to maternal inbreeding was 0.07, compared to 0.10 for offspring produced through one generation of selfing. In at least some families, maternal inbreeding reduced fruit number, seed number and mass, staminate flower number, pollen diameter, and pollen-tube growth rate. Collectively these results suggest that, while the fitness function appears to be largely linear for most traits, maternal effects may compound the effects of inbreeding depression in multigenerational studies, though this may be partially offset by purging or diminishing epistasis.  相似文献   

6.
In natural populations, the expression and severity of inbreeding depression can vary widely across taxa. Describing processes that influence the extent of inbreeding and inbreeding depression aid in our understanding of the evolutionary history of mating systems such as cooperative breeding and nonrandom mate selection. Such findings also help shape wildlife conservation theory because inbreeding depression reduces the viability of small populations. We evaluated the extent of inbreeding and inbreeding depression in a small, re‐introduced population of red wolves (Canis rufus) in North Carolina. Since red wolves were first re‐introduced in 1987, pedigree inbreeding coefficients (f) increased considerably and almost every wild born wolf was inbred (average = 0.154 and max = 0.383). The large inbreeding coefficients were due to both background relatedness associated with few founders and numerous close relative matings. Inbreeding depression was most evident for adult body size and generally absent for direct fitness measures such as reproductive success and survival; no lethal equivalents (LE = 0.00) were detected in juvenile survival. The lack of strong inbreeding depression in direct measures of fitness could be due to a founder effect or because there were no outbred individuals for comparison. Our results highlight the variable expression of inbreeding depression across traits and the need to measure a number of different traits when evaluating inbreeding depression in a wild population.  相似文献   

7.
Little is known about how inbreeding alters selection on ecologically relevant traits. Inbreeding could affect selection by changing the distribution of traits and/or fitness, or by changing the causal effect of traits on fitness. Here, I test whether selection on egg size varies with the degree of inbreeding in the seed‐feeding beetle, Stator limbatus. There was strong directional selection favoring large eggs for both inbred and outbred beetles; offspring from smaller eggs had lower survivorship on a resistant host. Inbreeding treatment had no effect on the magnitude of selection on egg size; all selection coefficients were between ~0.078 and 0.096, regardless of treatment. However, inbreeding depression declined with egg size; this is because the difference in fitness between inbreds and outbreds did not change, but average fitness increased, with egg size. A consequence of this is that populations that differ in mean egg size should experience different magnitudes of inbreeding depression (all else being equal) and thus should differ in the magnitude of selection on traits that affect mating, simply as a consequence of variation in egg size. Also, maternal traits (such as egg size) that mediate stressfulness of the environment for offspring can mediate the severity of inbreeding depression.  相似文献   

8.
Levels of inbreeding depression, outcrossing rates, and phenotypic patterns of resource allocation were studied to examine their relative importance in the maintenance of high numbers of females in gynodioecious Schiedea adamantis (Caryophyllaceae), an endemic Hawaiian shrub found in a single population on Diamond Head Crater, Oahu. In studies of inbreeding depression in two greenhouse environments, families of hermaphrodites exhibited significant inbreeding depression (δ = 0.60), based on a multiplicative fitness function using seeds per capsule, germination, survival, and the inflorescence biomass of progeny. Differences between inbred and outcrossed progeny were smallest at the early stage of seeds per capsule and more pronounced at the later stages of survival and inflorescence production. These results are consistent with inbreeding depression caused by many mutations of small effect. Using allozyme analyses, the inbreeding coefficient of adult plants in the field was not significantly different from zero, implying that δ in nature may be equal to one. The single locus estimate of the outcrossing rate for hermaphrodites was 0.50 based on progeny that survived to flowering; corrected for the disproportionate loss before flowering of progeny from selfing, the adjusted outcrossing rate at the zygote stage was 0.32, suggesting that considerable selfing occurs in hermaphrodites. Females were totally outcrossed. When females and hermaphrodites were compared for reproductive output in the field, females produced over twice as many seeds per plant as hermaphrodites, primarily because females had far more capsules per inflorescence than hermaphrodites. Females had greater mass per seed than hermaphrodites in the field, either because of greater provisioning or reduced inbreeding depression. There was no significant differential mortality with respect to sex over a seven year period. The higher number of seeds per plant of females, combined with substantial inbreeding depression and relatively high selfing rates for hermaphrodites, are probably responsible for the maintenance of females in this population. The predicted frequency of females based on data for seed production, the adjusted selfing rate, and inbreeding depression is 42%, remarkably close to the observed frequency of 39%. High levels of inbreeding depression suggest that considerable quantitative genetic variation is present for traits affecting fitness in this population, despite low allozyme variability and a presumed founder effect.  相似文献   

9.
The effects of self-fertilization, within-population crosses (WPC) and between-population crosses (BPC) on progeny fitness were investigated in the greenhouse for Scabiosa columbaria populations of varying size. Plants grown from field collected seeds were hand pollinated to produce selfed, WPC, and BPC progeny. The performance of these progenies was examined throughout the entire life cycle. The different pollination treatments did not significantly affect germination, seedling-to-adult survival, flowering percentage and the number of flower heads. But severe inbreeding depression was demonstrated for biomass production, root development, adult survival, and seed set. Additionally, multiplicative fitness functions were calculated to compare relative fitnesses for progeny. On average, WPC progeny showed a more than 4-fold, and BPC progeny an almost 10-fold, advantage over selfed progeny, indicating that S. columbaria is highly susceptible to inbreeding. No clear relationship was found between population size and level of inbreeding depression, suggesting that the genetic load has not yet been reduced substantially in the small populations. A significant positive correlation was found between plant dry weight and total fitness. In two out of six populations, the differences between the effects of the pollination treatments on dry weight increased significantly when seedlings were grown under competitive conditions. This result is interpreted as an enhancement of inbreeding depression under these conditions. It is argued that improvement of the genetic exchange between populations may lower the probability of population extinction.  相似文献   

10.
In a controlled crossing experiment on Lychnis flos-cuculi plants in the greenhouse, outbred and selfed maternal plants were each treated with pollen from unrelated plants, siblings and selves. The seeds thus obtained had expected inbreeding coefficients of 0, 0.25 and 0.5 for the outbred maternal plants, and 0, 0.5 and 0.75 for the selfed maternal plants. Seed abortion rate, seed weight and germination rate were estimated. Seedlings were transplanted to an outdoor garden, and monitored for survival, probability of flowering, number of capsules and area of capsules next spring. Inbred seeds germinated slower and in lower proportions than those less inbred, and seedlings had lower survival, flowering, fruit set and area of capsules if inbred. Combined fitness values were estimated from the survival and fecundity components, and severe inbreeding depression was detected for these estimates (0.51 and 0.56 for one generation of selfing). The fitness function decreased linearly with the increase in inbreeding coefficient, which is as expected if the inbreeding depression is additive among loci.  相似文献   

11.
We compared inbreeding depression in hermaphroditic Schiedea lydgatei and its gynodioecious sister species, S. salicaria, to infer the level of inbreeding depression in their common ancestor. With measurements of selfing rates, this information can be used to assess the importance of inbreeding depression in the evolution of breeding systems in S. lydgatei and S. salicaria. Morphological and physiological characters related to fitness were compared for inbred and outcrossed S. lydgatei in high- and low-fertilizer environments in the greenhouse. Seed mass, number of seeds per capsule, germination, survival, biomass, number of flowers, and age at first flowering were compared for inbred versus outcrossed progeny. We also measured inbreeding depression in maximal rates of photosynthetic carbon assimilation and stomatal conductance to water vapor, traits that affect fitness through their influence on plant carbon balance and water-use efficiency (ratio of carbon gain to water loss). All traits except number of seeds per capsule in parents and survival showed inbreeding depression, with the magnitude depending on family and environment. High inbreeding depression is likely in the ancestor of S. lydgatei and S. salicaria, indicating that, with sufficiently high selfing rates, females could spread in populations. Hermaphroditism in S. lydgatei is probably favored by low selfing rates. In contrast, the evolution of gynodioecy in S. salicaria apparently has been favored by relatively high selfing rates in combination with high inbreeding depression.  相似文献   

12.
The current study tests the hypothesis that life-history traits (closely related to fitness) show greater inbreeding depression than morphological traits (less closely related to fitness). The mean and median slope of the standardized coefficient of inbreeding depression (the slope of the linear relationship between F and the trait value) for life-history and morphological traits were compared. Slopes for life-history traits were higher than those for morphological traits. At F = 0.25 (full-sibling mating), life-history traits experienced a median reduction of 11.8% in trait value, whereas morphological traits showed a depression in trait value of approximately 2.2%.  相似文献   

13.
Mating with relatives has often been shown to negatively affect offspring fitness (inbreeding depression). There is considerable evidence for inbreeding depression due to effects on naturally selected traits, particularly those expressed early in life, but there is less evidence of it for sexually selected traits. This is surprising because sexually selected traits are expected to exhibit strong inbreeding depression. Here, we experimentally created inbred and outbred male mosquitofish (Gambusia holbrooki). Inbred males were the offspring of matings between full siblings. We then investigated how inbreeding influenced a number of sexually selected male traits, specifically: attractiveness, sperm number and velocity, as well as sperm competitiveness based on a male's share of paternity. We found no inbreeding depression for male attractiveness or sperm traits. There was, however, evidence that lower heterozygosity decreased paternity due to reduced sperm competitiveness. Our results add to the growing evidence that competitive interactions exacerbate the negative effects of the increased homozygosity that arises when there is inbreeding.  相似文献   

14.
Inbreeding depression (δ) is a major selective force favoring outcrossing in flowering plants. Many phenotypic and genetic models of the evolution of selfing conclude that complete outcrossing should evolve whenever inbreeding depression is greater than one-half, otherwise selfing should evolve. Recent theoretical work, however, has challenged this view and emphasized (1) the importance of variation in inbreeding depression among individuals within a population; and (2) the nature of gene action between deleterious mutations at different loci (epistasis) as important determinants for the evolution of plant mating systems. The focus of this study was to examine the maintenance of inbreeding depression and the relationship between inbreeding level and inbreeding depression at both the population and the individual level in one population of the partially self-fertilizing plant Plantago coronopus (L.). Maternal plants, randomly selected from an area of about 50 m2 in a natural population, were used to establish lines with expected inbreeding coefficients (f) of 0, 0.25, 0.50, 0.75, and 0.875. Inbreeding depression was estimated both in the greenhouse and at the site of origin of the maternal plants by comparing growth, survival, flowering, and seed production of the progeny with different inbreeding coefficients. No significant inbreeding depression for these fitness traits was detected in the greenhouse after 16 weeks. This was in strong contrast to the field, where the traits all displayed significant inbreeding depression and declined with increased inbreeding. The results were consistent with the view that mutation to mildly deleterious alleles is the primary cause of inbreeding depression. At the family level, significantly different maternal line responses (maternal parent × inbreeding level interaction) provide a mechanism for the invasion of a selfing variant into the population through any maternal line exhibiting purging of its genetic load. At the population level, evidence for synergistic epistasis was detected for the probability of flowering, but not for total seed production. At the family level, however, a significant interaction between inbreeding level and maternal families for both traits was observed, indicating that epistasis could play a role in the expression of inbreeding depression among maternal lines.  相似文献   

15.
Inbreeding depression varies among species and among populations within a species. Few studies, however, have considered the extent to which inbreeding depression varies within a single population. We report on two experiments to provide evidence that inbreeding depression is genetically variable, such that within a single population some lineages suffer severe inbreeding depression, others suffer only mild inbreeding depression, and some lineages actually increase in phenotypic value at higher levels of inbreeding. We examine the effects of population structure on inbreeding depression for two traits in the first experiment (adult dry weight and female relative fitness), and for seven traits in the second experiment (female and male adult dry weight, female and male relative fitness, female and male developmental time, and egg-to-adult viability). In the first experiment, we collected data from 4 families within each of 38 lineages derived from a single ancestral stock population and maintained for four generations of full-sib mating. Both traits demonstrate significant inbreeding depression and provide evidence that even within a single lineage there is significant genetic variability in inbreeding depression. In the second experiment, we collected data from 5 replicates for each of 15 lineages derived from the same ancestral population used in the first experiment; these lineages were maintained for four generations of full-sib mating. We also collected data on outbred control beetles in each generation and incorporated these data into the analyses to account for environmental effects in an unbiased manner. All traits except female and male developmental time show significant inbreeding depression. All traits showing inbreeding depression are genetically variable in inbreeding depression, as is evident from a significant linear lineage-×-f component. For both experiments, the effect of population structure on inbreeding depression is further evident from the increasing amount of variation that can be explained by the models used to measure inbreeding depression when additional levels of population structure are included. Genetic variation in inbreeding depression has important implications for conservation biology and may be an important factor in mating-system evolution.  相似文献   

16.
The effect of inbreeding on genetic diversity is expected to decrease plant defences or vigour-related traits that, in turn, can modify the pattern of attack by herbivores. The selective damage caused by herbivores can produce variable fitness costs between inbred and outcrossed progenies influencing the evolution of a species’ plant mating system. By exposing inbred and outcrossed plants to natural conditions of seed predation, we assessed whether inbreeding increases weevil incidence and infestation, and how weevil seed predation affects the fitness of inbred and outcrossed progeny. To test if inbreeding affected the host’s plant quality, we weighed the biomass of weevils developed in inbred and outcrossed progenies. An additional experiment was carried out to examine whether weevils preferentially attack vigorous plants regardless from the level of inbreeding. The average value of leaf size was 21% larger in outcrossed plants than in inbred plants. Likewise, weevil incidence and infestation were 13 and 40%, respectively, higher on outcrossed plants relative to their inbred counterparts. However, the relative impact of seed predation was significantly lower in outcrossed progeny than in inbred progeny. In contrast, inbreeding did not alter host plant quality and weevils developed in inbred and outcrossed plants had a similar biomass. Variations in fruit number were consistently associated with the infestation level in both experiments, whereas leaf size only predicted the number of weevils in one experiment, suggesting that fruit number is the most influential vigour-related characteristic of a weevil attack. These findings indicate that the costs of inbreeding of the interaction D. stramonium-T. soror were higher for inbred plants than for outcrossed plants. The interaction between seed predation and inbreeding depression could prevent the fixation of selfing as a unique reproductive strategy in D. stramonium.  相似文献   

17.
If inbreeding depression is caused by deleterious recessive alleles, as suggested by the partial dominance hypothesis, a negative correlation between inbreeding and inbreeding depression is predicted. This hypothesis has been tested several times by comparisons of closely related species or comparisons of populations of the same species with different histories of inbreeding. However, if one is interested in whether this relationship contributes to mating-system evolution, which occurs within populations, comparisons among families within a population are needed; that is, inbreeding depression among individuals with genetically based differences in their rate of selfing should be compared. In gynodioecious species with self-compatible hermaphrodites, hermaphrodites will have a greater history of potential inbreeding via both selfing and biparental inbreeding as compared to females and may therefore express a lower level of inbreeding depression. We estimated the inbreeding depression of female and hermaphrodite lineages in gynodioecious Lobelia siphilitica in a greenhouse experiment by comparing the performance of selfed and outcrossed progeny, as well as sibling crosses and crosses among subpopulations. We did not find support for lower inbreeding depression in hermaphrodite lineages. Multiplicative inbreeding depression (based on seed germination, juvenile survival, survival to flowering, and flower production in the first growing season) was not significantly different between hermaphrodite lineages (δ = 0.30 ± 0.08) and female lineages (δ = 0.15 ± 0.18), although the trend was for higher inbreeding depression in the hermaphrodite lineages. The population-level estimate of inbreeding depression was relatively low for a gynodioecious species (δ = 0.25) and there was no significant inbreeding depression following biparental inbreeding (δ = 0.01). All measured traits showed significant variation among families, and there was a significant interaction between family and pollination treatment for four traits (germination date, date of first flowering, number of flowers, and aboveground biomass). Our results suggest that the families responded differently to selfing and outcrossing: Some families exhibited lower fitness following selfing whereas others seemed to benefit from selfing as compared to outcrossing. Our results support recent simulation results in that prior inbreeding of the lineages did not determine the level of inbreeding depression. These results also emphasize the importance of determining family-level estimates of inbreeding depression, relative to population-level estimates, for studies of mating-system evolution.  相似文献   

18.
Inbreeding depression of an aspect of fitness is observed in many insects, but the traits that are of importance for inbreeding depression of fitness remain poorly understood. Here the magnitude of inbreeding depression of fitness-related traits in the development and adult stages was measured in a captive population of the adzuki bean beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Beetles produced by full-sib matings had 8% lower survival in the development stage than did beetles produced by unrelated matings. Although inbred and outbred offspring did not differ in body size after emergence, inbred offspring took 2–3% longer to develop to emergence. This indicates inbreeding depression of growth rate. At the adult stage, inbreeding had no significant effect on longevity, however lifetime offspring production was reduced by 11%. Thus, the magnitude of inbreeding depression was relatively large for offspring production. This suggests inbreeding depression of fitness manifests, to a particularly significant extent, in reduced productivity. This study shows the C. chinensis population, which has been in captivity for more than 100 generations, harbors genetic loads.  相似文献   

19.
Inbreeding depression, the reduced fitness of offspring of closely related parents, is commonplace in both captive and wild populations and has important consequences for conservation and mating system evolution. However, because of the difficulty of collecting pedigree and life‐history data from wild populations, relatively few studies have been able to compare inbreeding depression for traits at different points in the life cycle. Moreover, pedigrees give the expected proportion of the genome that is identical by descent (IBDg) whereas in theory with enough molecular markers realized IBDg can be quantified directly. We therefore investigated inbreeding depression for multiple life‐history traits in a wild population of banded mongooses using pedigree‐based inbreeding coefficients (fped) and standardized multilocus heterozygosity (sMLH) measured at 35–43 microsatellites. Within an information theoretic framework, we evaluated support for either fped or sMLH as inbreeding terms and used sequential regression to determine whether the residuals of sMLH on fped explain fitness variation above and beyond fped. We found no evidence of inbreeding depression for survival, either before or after nutritional independence. By contrast, inbreeding was negatively associated with two quality‐related traits, yearling body mass and annual male reproductive success. Yearling body mass was associated with fped but not sMLH, while male annual reproductive success was best explained by both fped and residual sMLH. Thus, our study not only uncovers variation in the extent to which different traits show inbreeding depression, but also reveals trait‐specific differences in the ability of pedigrees and molecular markers to explain fitness variation and suggests that for certain traits, genetic markers may capture variation in realized IBDg above and beyond the pedigree expectation.  相似文献   

20.
Tychoparthenogenesis, a form of asexual reproduction in which a small proportion of unfertilized eggs can hatch spontaneously, could be an intermediate evolutionary link in the transition from sexual to parthenogenetic reproduction. The lower fitness of tychoparthenogenetic offspring could be due to either developmental constraints or to inbreeding depression in more homozygous individuals. We tested the hypothesis that in populations where inbreeding depression has been purged, tychoparthenogenesis may be less costly. To assess this hypothesis, we compared the impact of inbreeding and parthenogenetic treatments on eight life‐history traits (five measuring inbreeding depression and three measuring inbreeding avoidance) in four laboratory populations of the desert locust, Schistocerca gregaria, with contrasted demographic histories. Overall, we found no clear relationship between the population history (illustrated by the levels of genetic diversity or inbreeding) and inbreeding depression, or between inbreeding depression and parthenogenetic capacity. First, there was a general lack of inbreeding depression in every population, except in two populations for two traits. This pattern could not be explained by the purging of inbreeding load in the studied populations. Second, we observed large differences between populations in their capacity to reproduce through tychoparthenogenesis. Only the oldest laboratory population successfully produced parthenogenetic offspring. However, the level of inbreeding depression did not explain the differences in parthenogenetic success between all studied populations. Differences in development constraints may arise driven by random and selective processes between populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号