首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inbreeding depression is a major selective force favoring outcrossing in flowering plants. However, some self-fertilization should weaken the harmful effects of inbreeding by exposing deleterious alleles to selection. This study examines the maintenance of inbreeding depression in the predominantly outcrossing species Pinus sylvestris L. (Scots pine). Open-pollinated and self-fertilized progeny of 23 maternal trees, originating from a natural stand in southern Finland, were grown at two sites. We observed significant inbreeding depression in two of the four life stages measured. Inbreeding depression was largest for seed maturation (δ = 0.74), where seedset in open-pollinated strobili (70.9%) was about four times higher than in selfed strobili (18.3%). Inbreeding depression in postgermination survival (upto an age of 23 years) was also high (δ = 0.62–0.75). No significant differences in height (δ = 0.05) or flowering (δ = 0.14) of the trees after 23 years were observed. Cumulative inbreeding depression was high (δ = 0.90–0.94) and differed significantly among maternal families (range 0.45–1.00). The magnitude of inbreeding depression among the 23 maternal parents was not significantly correlated between early (seed maturation) and later (postgermination survival) life stages, suggesting that its genetic basis varies across the life cycle. Size differences among the progeny types diminished in time due to nonrandom size-specific mortality, causing a decrease in the inbreeding depression estimates for height over time. Our results indicate that Scots pine exhibits high levels of inbreeding depression during both early and later stages of the life cycle. It is argued that self-fertilization in Scots pine is inefficient in purging the genetic load caused by highly deleterious mutations because of the nearly complete loss of selfed individuals over time. This results in an effectively random mating outcrossing population.  相似文献   

2.
If inbreeding depression is caused by deleterious recessive alleles, as suggested by the partial dominance hypothesis, a negative correlation between inbreeding and inbreeding depression is predicted. This hypothesis has been tested several times by comparisons of closely related species or comparisons of populations of the same species with different histories of inbreeding. However, if one is interested in whether this relationship contributes to mating-system evolution, which occurs within populations, comparisons among families within a population are needed; that is, inbreeding depression among individuals with genetically based differences in their rate of selfing should be compared. In gynodioecious species with self-compatible hermaphrodites, hermaphrodites will have a greater history of potential inbreeding via both selfing and biparental inbreeding as compared to females and may therefore express a lower level of inbreeding depression. We estimated the inbreeding depression of female and hermaphrodite lineages in gynodioecious Lobelia siphilitica in a greenhouse experiment by comparing the performance of selfed and outcrossed progeny, as well as sibling crosses and crosses among subpopulations. We did not find support for lower inbreeding depression in hermaphrodite lineages. Multiplicative inbreeding depression (based on seed germination, juvenile survival, survival to flowering, and flower production in the first growing season) was not significantly different between hermaphrodite lineages (δ = 0.30 ± 0.08) and female lineages (δ = 0.15 ± 0.18), although the trend was for higher inbreeding depression in the hermaphrodite lineages. The population-level estimate of inbreeding depression was relatively low for a gynodioecious species (δ = 0.25) and there was no significant inbreeding depression following biparental inbreeding (δ = 0.01). All measured traits showed significant variation among families, and there was a significant interaction between family and pollination treatment for four traits (germination date, date of first flowering, number of flowers, and aboveground biomass). Our results suggest that the families responded differently to selfing and outcrossing: Some families exhibited lower fitness following selfing whereas others seemed to benefit from selfing as compared to outcrossing. Our results support recent simulation results in that prior inbreeding of the lineages did not determine the level of inbreeding depression. These results also emphasize the importance of determining family-level estimates of inbreeding depression, relative to population-level estimates, for studies of mating-system evolution.  相似文献   

3.
Predominantly outcrossing plant species are expected to accumulate recessive deleterious mutations, which can be purged when in a homozygous state following selfing. Individuals may vary in their genetic load because of different selfing histories, which could lead to differences in inbreeding depression among families. Lineage-dependent inbreeding depression can appear in gynodioecious species if obligatory outcrossed females are more likely to produce female offspring and if partially selfing hermaphrodites are more likely to produce hermaphrodites. We investigated inbreeding depression at the zygote, seed, and germination stages in the gynomonoecious-gynodioecious Dianthus sylvestris, including pure-sexed plants and a mixed morph. We performed hand-pollinations on 56 plants, belonging to the three morphs, each receiving 2-3 cross treatments (out-, sib- and self-pollination) on multiple flowers. Effects of cross treatments varied among stages and influenced seed provisioning, with sibling competition mainly occurring within outcrossed fruits. We found significant inbreeding depression for seed mass and germination and cumulative early inbreeding depression varied greatly among families. Among sex morphs, we found that females and hermaphrodites differed in biparental inbreeding depression, whereas uniparental was similar for all. Significant inbreeding depression levels may play a role in female maintenance in this species, and individual variation in association with sex-lineages proclivity is discussed.  相似文献   

4.
Most models of mating-system evolution predict inbreeding depression to be low in inbred populations due to the purging of deleterious recessive alleles. This paper presents estimates of outcrossing rates and inbreeding depression for two highly selfing, monoecious annuals Begonia hirsuta and B. semiovata. Outcrossing rates were estimated using isozyme polymorphisms, and the magnitude of inbreeding depression was quantified by growing progeny in the greenhouse produced through controlled selfing and outcrossing. The estimated single-locus outcrossing rate was 0.03 ± 0.01 (SE) for B. hirsuta and 0.05 ± 0.02 for B. semiovata. In both species, the seed production of selfed flowers was on average 12% lower than that of outcrossed flowers (B. hirsuta P = 0.07, B. semiovata P < 0.05, mixed model ANOVAs). There was no significant effect of crosstype on germination rate or survival, but selfed offspring had a lower dry mass than outcrossed offspring 18 weeks after planting in both species (on average 18% lower in B. hirsuta and 31% lower in B. semiovata). Plants that were the products of selfing began flowering later than plants produced through outcrossing in B. semiovata, but not in B. hirsuta. The effects of crosstype on seed production (B. semiovata), days to first flower and offspring dry mass (both species) varied among maternal parents, as indicated by significant crosstype x maternal parent interactions for these characters. Both species showed significant inbreeding depression for total fitness (estimated as the product of seed production, germination rate, survival and dry mass at 18 weeks). In B. hirsuta, the average total inbreeding depression was 22% (range -57%-98%; N = 23 maternal parents), and in B. semiovata, it was 42% (-11%-84%; N = 21). This study demonstrates that highly selfing populations can harbor substantial inbreeding depression. Our findings are consistent with the hypothesis that a high mutation rate to mildly deleterious alleles contributes to the maintenance of inbreeding depression in selfing populations.  相似文献   

5.
The models of Lande and Schemske predict that among species in which the selfing rate is largely under genetic control and not subject to tremendous environmental variation, the distribution of selfing rates should be bimodal. When this prediction was tested empirically using data from the literature for species of angiosperms and gymnosperms, the distribution of outcrossing rates for all species was clearly bimodal. To provide another empirical test of the prediction, we analyzed mating-system data for 20 species of Pteridophyta (ferns). Homosporous ferns and their allies are unique among vascular plants because three types of mating are possible: intragametophytic selfing (selfing of an individual gametophyte); intergametophytic selfing (analogous to selfing in seed plants); and intergametophytic crossing (analogous to outcrossing in seed plants). The distribution of intragametophytic selfing rates among species of homosporous ferns is clearly uneven. Most species of homosporous ferns would be classified as extreme outcrossers. In contrast, a few species are nearly exclusively inbreeding. In only a few populations of Dryopteris expansa and Hemionitis palmata and a single population of Blechnum spicant do we see convincing evidence of a mixed mating system. The uneven distribution of selfing rates we observed for homosporous ferns, coupled with a corresponding bimodality of the magnitude of genetic load, strongly supports the model.  相似文献   

6.
We quantified inbreeding depression for fruit production, embryo vitality and seed germination in three deceptive orchids, Serapias vomeracea, S. cordigera and S. parviflora, which do not provide any reward to their pollinators, and are predicted to experience high outcrossing. Of the three species examined only S. parviflora was autonomously selfing. Both S. vomeracea and S. cordigera showed highly significant differences in fitness between selfed and outcrossed progenies, resulting in high levels of inbreeding depression, which increased in magnitude from seed set to seed germination. Inbreeding depression may promote outcrossing in Serapias by acting as a post-pollination barrier to selfing. Cumulative inbreeding depression across three stages in S. parviflora was lower that in both outcrossing species. The large difference in germination between selfed and outcrossed seeds is an important issue in conservation biology.  相似文献   

7.
Levels of inbreeding depression, outcrossing rates, and phenotypic patterns of resource allocation were studied to examine their relative importance in the maintenance of high numbers of females in gynodioecious Schiedea adamantis (Caryophyllaceae), an endemic Hawaiian shrub found in a single population on Diamond Head Crater, Oahu. In studies of inbreeding depression in two greenhouse environments, families of hermaphrodites exhibited significant inbreeding depression (δ = 0.60), based on a multiplicative fitness function using seeds per capsule, germination, survival, and the inflorescence biomass of progeny. Differences between inbred and outcrossed progeny were smallest at the early stage of seeds per capsule and more pronounced at the later stages of survival and inflorescence production. These results are consistent with inbreeding depression caused by many mutations of small effect. Using allozyme analyses, the inbreeding coefficient of adult plants in the field was not significantly different from zero, implying that δ in nature may be equal to one. The single locus estimate of the outcrossing rate for hermaphrodites was 0.50 based on progeny that survived to flowering; corrected for the disproportionate loss before flowering of progeny from selfing, the adjusted outcrossing rate at the zygote stage was 0.32, suggesting that considerable selfing occurs in hermaphrodites. Females were totally outcrossed. When females and hermaphrodites were compared for reproductive output in the field, females produced over twice as many seeds per plant as hermaphrodites, primarily because females had far more capsules per inflorescence than hermaphrodites. Females had greater mass per seed than hermaphrodites in the field, either because of greater provisioning or reduced inbreeding depression. There was no significant differential mortality with respect to sex over a seven year period. The higher number of seeds per plant of females, combined with substantial inbreeding depression and relatively high selfing rates for hermaphrodites, are probably responsible for the maintenance of females in this population. The predicted frequency of females based on data for seed production, the adjusted selfing rate, and inbreeding depression is 42%, remarkably close to the observed frequency of 39%. High levels of inbreeding depression suggest that considerable quantitative genetic variation is present for traits affecting fitness in this population, despite low allozyme variability and a presumed founder effect.  相似文献   

8.
Inbreeding depression and selfing rates were investigated in Schiedea membranacea (Caryophyllaceae), a hermaphroditic species endemic to the Hawaiian Islands. Most theoretical models predict high inbreeding depression in outcrossing hermaphroditic species and low inbreeding depression in inbreeding species. Although high outcrossing rates and high levels of inbreeding depression are characteristic of many species of Schiedea, self- fertilization is common among relatives of hermaphroditic S. membranacea, and high selfing rates and low levels of inbreeding depression were predicted in this species. Sixteen individuals grown in the greenhouse were used to produce selfed and outcrossed progeny. Inbreeding depression, which was evident throughout the stages measured (percentage viable seeds per capsule, mean seed mass, percentage seed germination, percentage seedling survival, and biomass after 8 mo), averaged 0.70. Inbreeding depression among maternal families varied significantly for all measured traits and ranged from −0.12 to 0.97. Using isozyme analysis, the multilocus selfing rate varied from 0.13 to 0.38 over 4 yr. Contrary to the initial prediction of high selfing and low inbreeding depression based on phylogenetic relationships within Schiedea, low selfing rates and high levels of inbreeding depression were found in S. membranacea. These results indicate that outcrossing is stable in this species and maintained by high levels of inbreeding depression.  相似文献   

9.
This paper examines several aspects of the expression of inbreeding depression in an outcrossing, obligately biennial plant, Hydrophyllum appendiculatum (Hydrophyllaceae). The amount of inbreeding depression detected was small during the first year of life but increased with age and had significant effects on adult size and reproductive traits. The lack of significant inbreeding depression during early growth is likely due to the overriding influence of maternal environmental effects on seed size and seedling growth. However, as maternal effects decreased with age, the seedling's own genotype became a more important determinant of its fate. To examine whether the expression of inbreeding depression was sensitive to ecological conditions, selfed and outcrossed seedlings were grown alone or with other H. appendiculatum seedlings. No inbreeding depression was detected in the plants grown alone. In contrast, under competitive conditions, outcrossed seedlings were significantly larger than selfed seedlings by the end of the first growing season. To address whether parental mating history influences the amount of inbreeding depression expressed, I examined the consequences of two successive generations of selfing on seed set and seed weight. The amount of inbreeding depression increased following the second generation of selfing. In the first generation, seed set and seed weight differed by less than 5% between selfed and outcrossed progeny. However, both traits were 15% greater for outcrossed plants after two generations. These results indicate that the alleles responsible for the reductions in these traits were not purged and suggest the action of multiple loci with deleterious effects.  相似文献   

10.
Geum urbanum and Geum rivale are two widely hybridizing perennial herbs. Estimation of the breeding systems of these taxa using nuclear microsatellite markers scored in mother–progeny arrays demonstrated that, in pure populations, G. urbanum is predominantly selfing (outcrossing rate, t = 0.058 to 0.177), whereas G. rivale is predominantly outcrossing (t = 0.686–0.775). Theory suggests that hybridization between inbreeding and outcrossing species can potentially generate novel inbreeding lineages. However, the establishment of such lineages may be restricted either by self‐incompatibility loci or deleterious recessive alleles derived from the outcrossing parent. To assess the likelihood that hybridization between G. urbanum and G. rivale will generate novel inbreeding lineages, self‐incompatibility and inbreeding depression were investigated in the two taxa. Seed set in the absence of pollinators, and after controlled self‐ and cross‐pollination, was measured to study self‐incompatibility. Inbreeding depression was measured by estimating the relative fitness of offspring from controlled self‐and cross‐pollinations. Geum urbanum was fully self‐compatible [self‐compatibility index (SCI) = 1] and bagged flowers showed full seed set. By contrast, only 3% of bagged flowers set seed in G. rivale and controlled self‐pollinations showed a 60–80% reduction in seed set compared to controlled outcross pollinations (SCI = 0.28). There was no evidence for inbreeding depression in G. urbanum, although significant, albeit low levels of inbreeding depression were detected in one of two G. rivale populations (δ = 0.33). The implication of these results is that if genetic material from G. rivale was incorporated into a hybrid with a selfing morphology, the establishment of this selfing lineage could be compromised by self‐incompatibility and inbreeding depression. The wider implications of these results for evolution in hybrid swarms between G. urbanum and G. rivale are discussed. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 977–990.  相似文献   

11.
Studies of inbreeding depression in plant populations have focused primarily on comparisons of selfing versus outcrossing in self-compatible species. Here we examine the effect of five naturally occurring levels of inbreeding (f ranging from 0 to 0.25 by pedigree) on components of lifetime fitness in a field population of the self-incompatible annual, Raphanus sativus. Pre- and postgermination survival and reproductive success were examined for offspring resulting from compatible cross-pollinations. Multiple linear regression of inbreeding level on rates of fruit and seed abortion as well as seed weight and total seed weight per fruit were not significant. Inbreeding level was not found to affect seed germination, offspring survival in the field, date of first flowering, or plant biomass (dry weight minus fruit). The effect of inbreeding on seedling viability in the greenhouse and viability to flowering was significant but small and inconsistently correlated with inbreeding level. Maternal fecundity, however, a measure of seed yield, was reduced almost 60% in offspring from full-sib crosses (f = 0.25) relative to offspring resulting from experimental outcross pollinations (f = 0). Water availability, a form of physiological stress, affected plant biomass but did not affect maternal fecundity, nor did it interact with inbreeding level to influence these characters. The delayed expression of strong inbreeding depression suggests that highly deleterious recessive alleles were not a primary cause of fitness loss with inbreeding. Highly deleterious recessives may have been purged by bottlenecks in population size associated with the introduction of Raphanus and its recent range expansions. In general, reductions in total relative fitness of greater than 50% associated with full-sib crosses should be sufficient to prohibit the evolution of self-compatibility via transmission advantage in Raphanus.  相似文献   

12.
Inbreeding depression should evolve with selfing rate when frequent inbreeding results in exposure of and selection against deleterious alleles. The selfing rate may be modified by plant traits such as flower size, or by population characteristics such as census size that can affect the probability of biparental inbreeding. Here we quantify inbreeding depression (δ) among different population sizes of Collinsia parviflora, a wildflower with interpopulation variation in flower size, by comparing fitness components and multiplicative fitness of experimentally produced selfed and outcrossed offspring. Selfed offspring had reduced multiplicative fitness compared to outcrossed offspring, but inbreeding depression was low in all combinations of population size and flower size (δ ≤ 0.05) except in large populations of large-flowered plants (δ = 0.45). The decrement to multiplicative fitness with inbreeding was not affected by population size nested within flower size, but differed between small- and large-flowered plants: small-flowered populations had lower overall inbreeding depression (δ = 0.04) compared to large-flowered populations (δ = 0.25). The difference in load with flower size suggests that either selection has removed deleterious recessive alleles or these alleles have become fixed in small-flowered, potentially more selfing populations, but that purging has not occurred to the same extent in presumably outcrossing large-flowered populations.  相似文献   

13.
Selfing has evolved repeatedly in outcrossing taxa, and theory predicts that an increase in the level of self-fertilization should occur in concert with changes in reproductive allocation and the magnitude of inbreeding depression. Here we characterize the mating system of two sympatric congeners, Epilobium ciliatum and E. angustifolium, and compare the taxa for 1) reproductive allocation patterns and 2) the fitness consequences of self-fertilization. For E. ciliatum, autogamy rates were high, pollinator visitation was low, and electrophoresis revealed no genetic variation at 11 putative isozyme loci. For E. angustifolium, autogamy rates were low, pollinator visitation was relatively high, and electrophoresis generated an outcrossing rate estimate of t = 0.64 (SE = 0.08). The pollen/ovule ratio was ten times higher for E. angustifolium than for E. ciliatum, due to a decline in pollen production in the selfing species. The proportion of total flower biomass allocated to female function was significantly greater in E. ciliatum, while that allocated to male function and attractive structures was greater in E. angustifolium. We quantified the fitness consequences of selfing at three life stages: seed number, percent germination, and mature biomass. Relative performance (RP) measures indicated less inbreeding depression for E. ciliatum than for E. angustifolium at all stages; differences in RP between the species were significant for seed number and cumulative total, but not for germination or biomass. RP was correlated among life history stages for only one comparison, suggesting that the genetic basis of inbreeding depression differs among life history stages. Variation among maternal parents for RP was significant at almost all stages in both species, with the exception of seed number in E. ciliatum. The striking variation among maternal parents in E. angustifolium, ranging from strong inbreeding depression to strong outbreeding depression, may reflect both variation in the history of inbreeding and the long-distance migration of individuals from different populations.  相似文献   

14.
Little is known about the breeding systems of perennial Lupinus species. We provide information about the breeding system of the perennial yellow bush lupine, Lupinus arboreus, specifically determining self-compatibility, outcrossing rate, and level of inbreeding depression. Flowers are self-compatible, but autonomous self-fertilization rarely occurs; thus selfed seed are a product of facilitated selfing. Based on four isozyme loci from 34 maternal progeny arrays of seeds we estimated an outcrossing rate of 0.78. However, when we accounted for differential maturation of selfed seeds, the outcrossing rate at fertilization was lower, ~0.64. Fitness and inbreeding depression of 11 selfed and outcrossed families were measured at four stages: seed maturation, seedling emergence, seedling survivorship, and growth at 12 wk. Cumulative inbreeding depression across all four life stages averaged 0.59, although variation existed between families for the magnitude of inbreeding depression. Inbreeding depression was not manifest uniformly across all four life stages. Outcrossed flowers produced twice as many seeds as selfed flowers, but the mean performance of selfed and outcrossed progeny was not different for emergence, seedling survivorship, and size at 12 wk. Counter to assumptions about this species, L. arboreus is both self-compatible and outcrosses ~78% of the time.  相似文献   

15.
High inbreeding depression is thought to be one of the major factors preventing evolutionary transitions in hermaphroditic plants from self‐incompatibility (SI) and outcrossing toward self‐compatibility (SC) and selfing. However, when selfing does evolve, inbreeding depression can be quickly purged, allowing the evolution of complete self‐fertilization. In contrast, populations that show intermediate selfing rates (a mixed‐mating system) typically show levels of inbreeding depression similar to those in outcrossing species, suggesting that selection against inbreeding might be responsible for preventing the transition toward complete self‐fertilization. By implication, crosses among populations should reveal patterns of heterosis for mixed‐mating populations that are similar to those expected for outcrossing populations. Using hand‐pollination crosses, we compared levels of inbreeding depression and heterosis between populations of Linaria cavanillesii (Plantaginaceae), a perennial herb showing contrasting mating systems. The SI population showed high inbreeding depression, whereas the SC population displaying mixed mating showed no inbreeding depression. In contrast, we found that heterosis based on between‐population crosses was similar for SI and SC populations. Our results are consistent with the rapid purging of inbreeding depression in the derived SC population, despite the persistence of mixed mating. However, the maintenance of outcrossing after a transition to SC is inconsistent with the prediction that populations that have purged their inbreeding depression should evolve toward complete selfing, suggesting that the transition to SC in L. cavanillesii has been recent. SC in L. cavanillesii thus exemplifies a situation in which the mating system is likely not at an equilibrium with inbreeding depression.  相似文献   

16.
BACKGROUND AND AIMS: Inbreeding depression is thought to play a central role in the evolution and maintenance of cross-fertilization. Theory indicates that inbreeding depression can be purged with self-fertilization, resulting in positive feedback for the selection of selfing. Variation among populations of Leptosiphon jepsonii in the timing and rate of self-fertilization provides an opportunity to study the evolution of inbreeding depression and mating systems. In addition, the hypothesis that differences in inbreeding depression for male and female fitness can stabilize mixed mating in L. jepsonii is tested. METHODS: In a growth room experiment, inbreeding depression was measured in three populations with mean outcrossing rates ranging from 0.06 to 0.69. The performance of selfed and outcrossed progeny is compared at five life history stages. To distinguish between self-incompatibility and early inbreeding depression, aborted seeds and unfertilized ovules were counted in selfed and outcrossed fruits. In one population, pollen and ovule production was quantified to estimate inbreeding depression for male and female fitness. KEY RESULTS: Both prezygotic barriers and inbreeding depression limited self seed set in the most outcrossing population. Cumulative inbreeding depression ranged from 0.297 to 0.501, with the lowest value found in the most selfing population. Significant inbreeding depression for early life stages was found only in the more outcrossing populations. Inbreeding depression was not significant for pollen or ovule production. CONCLUSIONS: The results provide modest support for the hypothesized relationship between inbreeding depression and mating systems. The absence of early inbreeding depression in the more selfing populations is consistent with theory on purging. Differences in male and female expression of inbreeding depression do not appear to stabilize mixed mating in L. jepsonii. The current estimates of inbreeding depression for L. jepsonii differ from those of previous studies, underscoring the effects of environmental variation on its expression.  相似文献   

17.
Classical theory on mating system evolution suggests that simultaneous hermaphrodites should either outcross if they have high inbreeding depression (ID) or self‐fertilize if they have low ID. However, a mixture of selfing and outcrossing persists in many species. Previous studies with the tapeworm Schistocephalus solidus have found worms to self‐fertilize some of their eggs despite ID. The probability for selfing to spread depends on the relative fitness of selfers, as well as the genetic basis for ID and whether it can be effectively purged. We bred S. solidus through two consecutive generations of selfing and recorded several fitness correlates over the whole life cycle. After one round of selfing, ID was pronounced, particularly in early‐life traits, and the conservatively estimated lifetime fitness of selfed progeny was only 9% that of the outcrossed controls. After a second generation of selfing, ID remained high but was significantly reduced in several traits, which is consistent with the purging of deleterious recessive alleles (the estimated load of lethal equivalents dropped by 48%). Severe ID, even if it can be rapidly purged, likely prevents transitions toward pure selfing in this parasite, although we also cannot exclude the possibility that low‐level selfing has undetected benefits.  相似文献   

18.
Inbreeding depression is a key factor influencing mating system evolution in plants, but current understanding of its relationship with selfing rate is limited by a sampling bias with few estimates for self‐incompatible species. We quantified inbreeding depression (δ) over two growing seasons in two populations of the self‐incompatible perennial herb Arabidopsis lyrata ssp. petraea in Scandinavia. Inbreeding depression was strong and of similar magnitude in both populations. Inbreeding depression for overall fitness across two seasons (the product of number of seeds, offspring viability, and offspring biomass) was 81% and 78% in the two populations. Chlorophyll deficiency accounted for 81% of seedling mortality in the selfing treatment, and was not observed among offspring resulting from outcrossing. The strong reduction in both early viability and late quantitative traits suggests that inbreeding depression is due to deleterious alleles of both large and small effect, and that both populations experience strong selection against the loss of self‐incompatibility. A review of available estimates suggested that inbreeding depression tends to be stronger in self‐incompatible than in self‐compatible highly outcrossing species, implying that undersampling of self‐incompatible taxa may bias estimates of the relationship between mating system and inbreeding depression.  相似文献   

19.
Hermaphroditic plants can potentially self‐fertilize, but most possess adaptations that promote outcrossing. However, evolutionary transitions to higher selfing rates are frequent. Selfing comes with a transmission advantage over outcrossing, but self‐progeny may suffer from inbreeding depression, which forms the main barrier to the evolution of higher selfing rates. Here, we assessed inbreeding depression in the North American herb Arabidopsis lyrata, which is normally self‐incompatible, with a low frequency of self‐compatible plants. However, a few populations have become fixed for self‐compatibility and have high selfing rates. Under greenhouse conditions, we estimated mean inbreeding depression per seed (based on cumulative vegetative performance calculated as the product of germination, survival and aboveground biomass) to be 0.34 for six outcrossing populations, and 0.26 for five selfing populations. Exposing plants to drought and inducing defences with jasmonic acid did not magnify these estimates. For outcrossing populations, however, inbreeding depression per seed may underestimate true levels of inbreeding depression, because self‐incompatible plants showed strong reductions in seed set after (enforced) selfing. Inbreeding‐depression estimates incorporating seed set averaged 0.63 for outcrossing populations (compared to 0.30 for selfing populations). However, this is likely an overestimate because exposing plants to 5% CO2 to circumvent self‐incompatibility to produce selfed seed might leave residual effects of self‐incompatibility that contribute to reduced seed set. Nevertheless, our estimates of inbreeding depression were clearly lower than previous estimates based on the same performance traits in outcrossing European populations of A. lyrata, which may help explain why selfing could evolve in North American A. lyrata.  相似文献   

20.
The magnitude of inbreeding depression caused by recessive mutations in a population is dependent on the mutation rate and on the intensity of selection against the mutations. We studied geographical differences in the level of early inbreeding depression of Scots pine in a common garden experiment. The mean abortion rate of experimentally self-pollinated seeds was significantly lower (75.4%) among trees that originated from northern populations (66–69°N) than among trees from more southern (60–62°N) populations (86.5%). Thus, the number of embryonic lethal equivalents was lower in the northern populations (4.5) than in the southern ones (6.9). The outcrossing rate at the mature seed stage was slightly lower in the northern populations (average 0.93) than in the southern one (0.99). The estimated selfing rate at the zygote stage varied from 0–0.28 in the populations. The reduction in the magnitude of inbreeding depression in the north may have been caused by increased levels of self-fertilization in the northern populations. The proportion of self-fertilized seedlings and adults was very small in all populations (F ≈ 0), indicating high inbreeding depression also in later life stages. The high level of inbreeding depression in the partially selfing Scots pine can be explained by mutation-selection balance only if the mutation rate is high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号