首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10 approximately 3, where Q10 is the proportional change with a 10 degrees C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures.  相似文献   

2.
Crustose corallines, crustose and erect brown algae, and sessile animals are major components of the epiphytic community of the Mediterranean seagrass Posidonia oceanica (L.) Delile. Production, biomass, and specific composition of this epiphyte–seagrass association are impacted by anthropogenic increase of nutrient load in this oligotrophic area. In this context, nitrogen uptake by P. oceanica and its epiflora was measured using the isotope 15N at a 10 m depth in the Revellata Bay (Corsica, Mediterranean Sea). Epiflora components showed various seasonal patterns of biomass and abundance. The epiphytic brown algae appeared at the end of spring, later than the crustose corallines, and after the nitrate peak in the bay. Because of their later development in the season, epiphytic brown algae mostly rely on ammonium for their N needs. We hypothesize that the temporal succession of epiphytic organisms plays a crucial role in the N dynamics of this community under natural conditions. The epiphytic brown algae, which have a growth rate one order of magnitude greater than that of crustose corallines, showed lower N‐uptake rates. The greater N‐uptake rates of crustose corallines probably reflect the greater N requirements (i.e., lower C/N ratios) of red algae. We determined that the epiflora incorporated ammonium and nitrate more rapidly than their host. Nevertheless, when biomass was taken into account, P. oceanica was the most important contributor to N uptake from the water column by benthic macrophytes in this seagrass bed.  相似文献   

3.
Abstract. The effect upon potential maximum nitrogen uptake rate of root morphology and nitrogen availability in soil was investigated using a simple nutrient transport model. Parameter values appropriate to an ecological or an agricultural context were introduced from the literature. The model predicted that the maximum uptake rate of nitrate was morphology-dependent only at extremely low concentrations. For ammonium, this was so for all realistic concentrations, assuming a high potential maximum uptake rate. The important concentration range for ammonium was two orders of magnitude greater than that for nitrate. With a lower potential maximum uptake rate of ammonium, root morphology was important below 15/igNg' soil, the concentration range in this case being a single order of magnitude greater than that for nitrate. The effects of root hairs were to decrease the threshold concentration for morphology-dependence, and to minimize root dry weight per unit volume of soil needed to maintain maximum nitrogen uptake rate. The effects of simultaneous mass flow of solution were negligible. The possible significance of these effects upon plant growth are discussed in relation to nitrogen availability.  相似文献   

4.
采用室内营养液培养,聚乙二醇(PEG6000)模拟水分胁迫处理、HgCl2抑制水通道蛋白活性的方法,在3种供氮形态下(NH4^+-N/NO36-N为100/0、50/50和0/100),研究了水稻苗期水分吸收、光合及生长的状况。结果表明,在非水分胁迫下,水稻单位干重吸水量以单一供NO3^--N处理最高,加HgCl2抑制水通道蛋白活性后,单一供NO3^--N、NH4^+-N和NH4^+-N/NO3^--N为50,50处理的水稻水分吸收分别下降了9.6%、20.7%和16.0%;但在水分胁迫下,单一供N03^--N的处理水分吸收量显著降低,低于其它2个处理,加HgCl2抑制水通道蛋白活性后,水分吸收量分别降低了1.0%、18.8%和23.5%。在2种水分条件(水分胁迫与非水分胁迫)下,净光合速率、气孔导度、蒸腾速率和细胞间隙CO2浓度等指标均以单一供NH4^+-N处理最大,NH4^+-N/NO3^--N为50,50处理次之,单一供NO3^--N处理最小。HgCl2处理结果表明,不同形态氮素营养能够影响水稻幼苗根系水通道蛋白活性。在2种水分条件下,NH4^+-N/N03^--N为50,50处理的生物量(干重)均最大。本研究为水稻苗期合理施肥以壮苗提供了理论依据。  相似文献   

5.
采用室内营养液培养, 聚乙二醇(PEG6000)模拟水分胁迫处理、HgCl2抑制水通道蛋白活性的方法, 在3种供氮形态下(NH4+-N/ NO 3--N为100/0、50/50和0/100), 研究了水稻苗期水分吸收、光合及生长的状况。结果表明, 在非水分胁迫下, 水稻单位干重吸水量以单一供NO3--N处理最高, 加HgCl2抑制水通道蛋白活性后, 单一供NO3--N、NH4+-N和NH4+-N/ NO3--N为50/50处理的水稻水分吸收分别下降了9.6%、20.7%和16.0%; 但在水分胁迫下, 单一供NO3--N的处理水分吸收量显著降低, 低于其它2个处理, 加HgCl2抑制水通道蛋白活性后, 水分吸收量分别降低了1.0%、18.8%和23.5%。在2种水分条件(水分胁迫与非水分胁迫)下, 净光合速率、气孔导度、蒸腾速率和细胞间隙CO2浓度等指标均以单一供NH4+-N处理最大,NH4+-N/ NO3--N为50/50处理次之, 单一供NO3--N处理最小。HgCl2处理结果表明, 不同形态氮素营养能够影响水稻幼苗根系水通道蛋白活性。在2种水分条件下, NH4+-N/ NO3--N为50/50处理的生物量(干重)均最大。本研究为水稻苗期合理施肥以壮苗提供了理论依据。  相似文献   

6.
Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10≈3, where Q10 is the proportional change with a 10°C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures.  相似文献   

7.
Production of biofuel from algae is dependent on the microalgal biomass production rate and lipid content. Both biomass production and lipid accumulation are limited by several factors, of which nutrients play a key role. In this research, the marine microalgae Dunaliella tertiolecta was used as a model organism and a profile of its nutritional requirements was determined. Inorganic phosphate PO4(3-) and trace elements: cobalt (Co2+), iron (Fe3+), molybdenum (Mo2+) and manganese (Mn2+) were identified as required for algae optimum growth. Inorganic nitrogen in the form of nitrate NO3- instead of ammonium (NH4+) was required for maximal biomass production. Lipids accumulated under nitrogen starvation growth condition and this was time-dependent. Results of this research can be applied to maximize production of microalgal lipids in optimally designed photobioreactors.  相似文献   

8.
细根能敏感地感知土壤环境变化,对植物生长发育具有重要影响.以6年生翅荚木人工林为对象,对其不同径阶的细根主要功能性状与根际土壤养分特征及两者间关系进行分析.结果表明:细根生物量、根长密度与根体积密度均随径阶增加而增加,比根长与比根面积则随径阶增加呈先升高再下降后升高的趋势,根组织密度则与径阶大小不相关.不同径阶翅荚木根际土壤的pH值及含水率、全碳、全磷、铵态氮、硝态氮和总有效氮含量均存在显著差异,大径阶林木的根际土壤全碳、全氮、硝态氮、总有效氮含量相对较高,小径阶林木的根际土壤含水率、土壤全磷、铵态氮含量相对较高.土壤全氮、全碳、硝态氮和总有效氮含量与林木细根的生物量、根长密度、根体积密度呈显著正相关;土壤全磷与林木细根的根组织密度呈显著正相关,与比根长、比根面积呈显著负相关;土壤含水率与林木细根的生物量和根体积密度均呈显著正相关;根际土壤pH和林木细根的比根长、比根面积呈显著正相关,与根组织密度则呈显著负相关.研究结果可为翅荚木优良种质资源选育提供科学依据.  相似文献   

9.
Zhou XJ  Wang HH  Shu LZ  Zhu PF  Shen JB  Li ZZ  Liang C 《应用生态学报》2010,21(8):2017-2024
通过向玉米幼苗分根装置一侧根室的营养液中加入聚乙二醇(PEG 6000)来模拟植物水分胁迫,并设3种供氮形态(硝态氮、铵态氮、两者各占50%的混合氮),且只加入到一侧根室(当氮加入到和PEG同侧时为水氮异区,加入到无PEG一侧时为水氮同区),测定各处理的光合、生理指标,以研究局部根区水分胁迫下氮形态与供给部位对玉米幼苗生长的影响.结果表明:同一氮形态供给下水氮同区植株的光合速率(Pn)、最大净光合速率(Pmax)、光饱和点(LSP)、CO2饱和点(CSP)、叶绿素a、b及叶绿素总含量、根系活力、氮含量和生物量高于水氮异区,光呼吸速率(Rp)、CO2补偿点(CCP)、木质部汁液脱落酸(ABA)浓度、氮利用效率、水分利用效率低于水氮异区;供混合氮和硝态氮的植株Pn、Pmax、LSP、CSP、氮含量和生物量高于供铵态氮的植株,而CCP、Rp、木质部汁液ABA浓度、氮利用效率、水分利用效率变化趋势则相反.可见,同一供氮形态下,水氮同区比水氮异区更利于植物生长,而水氮利用效率在水氮异区下较高;混合氮和硝态氮对植物生长的促进作用优于单一供给铵态氮,但铵态氮更有利于提高水氮利用效率.  相似文献   

10.
Laboratory and field measurements of the toxin content in Karenia brevis cells vary by >4‐fold. These differences have been largely attributed to genotypic variations in toxin production among strains. We hypothesized that nutrient limitation of growth rate is equally or more important in controlling the toxicity of K. brevis, as has been documented for other toxic algae. To test this hypothesis, we measured cellular growth rate, chlorophyll a, cellular carbon and nitrogen, cell volume, and brevetoxins in four strains of K. brevis grown in nutrient‐replete and nitrogen (N)‐limited semi‐continuous cultures. N‐limitation resulted in reductions of chlorophyll a, growth rate, volume per cell and nirtogen:carbon (N:C) ratios as well as a two‐fold increase (1%–4% to 5%–9%) in the percentage of cellular carbon present as brevetoxins. The increase in cellular brevetoxin concentrations was consistent among genetically distinct strains. Normalizing brevetoxins to cellular volume instead of per cell eliminated much of the commonly reported toxin variability among strains. These results suggest that genetically linked differences in cellular volume may affect the toxin content of K. brevis cells as much or more than innate genotypic differences in cellular toxin content per unit of biomass. Our data suggest at least some of the >4‐fold difference in toxicity per cell reported from field studies can be explained by limitation by nitrogen or other nutrients and by differences in cell size. The observed increase in brevetoxins in nitrogen limited cells is consistent with the carbon:nutrient balance hypothesis for increases in toxins and other plant defenses under nutrient limitation.  相似文献   

11.
Seedlings of carob ( Ceratonia siliqua L. cv. Mulata) were used in two sets of experiments in order to evaluate; (1) the reciprocal effects of each nitrogen form on net uptake of nitrate and ammonium, and (2) the effect of earlier nitrogen nutrition on ammonium versus nitrate uptake. In the former group of experiments we studied the kinetics of nitrate and ammonium uptake as well as the interference of each of the two forms with net uptake of ammonium and nitrate by both nitrogen depleted and nitrogen fed carob seedlings. On the whole, nitrogen depletion led to increase in both affinity and Vmax of the system for both forms of nitrogen, at the same time as the effects of nitrate on uptake of ammonium and vice versa were concentration dependent. In the second group of experiments the effects of earlier nitrogen nutrition on nitrate and ammonium uptake were characterized, and in this case we observed that: (a) if only one form of N was supplied, ammonium was taken up in greater amounts than nitrate; (b) the presence of ammonium enhanced nitrate uptake; (c) ammonium uptake was inhibited by nitrate; (d) there was a significant effect of the earlier nitrogen nutrition on the response of the plants to a different nitrogen source. The latter was evident mainly as regards ammonium uptake by plants grown in ammonium nitrate. The interactions between nitrate and ammonium uptake systems are discussed on the basis of the adaptation to the nitrogen source during early growth.  相似文献   

12.
氮素是植物生长发育的重要营养元素,也是限制植物生物量尤其是经济产量的关键营养元素之一.植物不仅能从外界获取无机氮素(硝酸根、铵根和尿素等),还能以氨基酸、寡肽等形式获取有机氮素.植物已进化出复杂的运输系统来吸收与运输这些含氮化合物.硝酸根运输基因家族分为低亲和力硝酸根运输基因(low-affmity nitrate t...  相似文献   

13.
Ammonium and nitrate as different forms of nitrogen nutrients impact differently on some physiological and biochemical processes in higher plants. Compared to nitrate, ammonium results in small root and small leaf area, which may contribute to a low carbon gain, and an inhibition on growth. On the other hand, due to (photo)energy saving, a higher CO (2) assimilation rate per leaf area was observed frequently in plants supplied with ammonium than in those supplied with nitrate. These results were dependent not only on higher Rubisco content and/or activity, but also on RuBP regeneration rate. The difference in morphology such as chloroplast volume and specific leaf weight might be the reason why the CO (2) concentration in the carboxylation site and hence the photorespiration rate differs in plants supplied with the two nitrogen forms. The effect of nitrogen form on water uptake and transportation in plants is dependent both on leaf area or shoot parameter, and on the root activity (i.e., root hydraulic conductivity, aquaporin activity).  相似文献   

14.
We measured maximum ammonium uptake rates of the green alga Scenedesmus quadricauda (Turpin) Brébisson and the blue-green alga Microcystis novacekii (Kom.) Comp. grown in nitrogen (ammonium)–limited chemostats. Maximum uptake rates per cellular carbon were larger in S. quadricauda than in M. novacekii. These rates increased with increased specific growth rates. Maximum uptake rates per cellular nitrogen were also larger in S. quadricauda than in M. novacekii. The maximum uptake rates per cellular nitrogen were nearly constant against increased cellular N:C ratios under nitrogen-limited conditions. The higher maximum uptake rates indicate that S. quadricauda had higher uptake abilities for ammonium than M. novacekii when grown under nitrogen limitation. We examined the competition between both species under two distinct nutrient supply modes, using measured maximum uptake values and computer simulations. Microcystis novacekii prevailed in the small-pulse, high-frequency nutrient supply mode, whereas S. quadricauda became competitively superior in the large-pulse, low-frequency nutrient supply mode. These results indicate that we could control nuisance blooms of blue-green algae in lakes and reservoirs by changing the nutrient supply modes.  相似文献   

15.
Antibiotics are secondary metabolites, generally produced during stationary phase of growth under different nutritional and hydrodynamic stresses. However, the exact mechanisms of the induction of antibiotics production are still not clearly established. In a previous study, the induction of pristinamycins production by Streptomyces pristinaespiralis as well as product concentrations were correlated with power dissipation per unit of volume (P/V) in shaking flasks. In this study, detailed kinetics of growth, substrate consumption, oxygen transfer rate and pristinamycins production under varying P/V conditions have been obtained and analyzed. Our results showed that higher P/V resulted in a higher concentration of biomass and promoted an earlier nutrient limitation and ultimately an earlier induction of pristinamycins production. The maximal specific growth rate, specific oxygen consumption rate and specific consumption rate of glutamate increased with P/V while influence was less marked with specific consumption rate of glucose, arginine, ammonium ions and phosphate. When oxygen uptake rate (OUR) was limited by free-surface oxygen transfer, pristinamycins production was not detected despite the occurrence of nitrogen and/or phosphate sources limitation. The threshold value for OUR observed was around 25 mmol L(-1) h(-1). This suggested that a limitation in nitrogen and/or phosphate alone was not sufficient to induce pristinamycins production by S. pristinaespiralis pr11. To induce this production, the oxygen transfer had to be non-limiting.  相似文献   

16.
Nitrifying bacteria, cyanobacteria, and algae are important microorganisms in open pond wastewater treatment systems. Nitrification involving the sequential oxidation of ammonia to nitrite and nitrate, mainly due to autotrophic nitrifying bacteria, is essential to biological nitrogen removal in wastewater and global nitrogen cycling. A continuous flow autotrophic bioreactor was initially designed for nitrifying bacterial growth only. In the presence of cyanobacteria and algae, we monitored both the microbial activity by measuring specific oxygen production rate (SOPR) for microalgae and cyanobacteria and specific oxygen uptake rate (SOUR) for nitrifying bacteria. The growth of cyanobacteria and algae inhibited the maximum nitrification rate by a factor of 4 although the ammonium nitrogen fed to the reactor was almost completely removed. Terminal restriction fragment length polymorphism (T‐RFLP) analysis indicated that the community structures of nitrifying bacteria remained unchanged, containing the dominant Nitrosospira, Nitrospira, and Nitrobacter species. PCR amplification coupled with cloning and sequencing analysis resulted in identifying Chlorella emersonii and an uncultured cyanobacterium as the dominant species in the autotrophic bioreactor. Notwithstanding their fast growth rate and their toxicity to nitrifiers, microalgae and cyanobacteria were more easily lost in effluent than nitrifying bacteria because of their poor settling characteristics. The microorganisms were able to grow together in the bioreactor with constant individual biomass fractions because of the uncoupled solids retention times for algae/cyanobacteria and nitrifiers. The results indicate that compared to conventional wastewater treatment systems, longer solids retention times (e.g., by a factor of 4) should be considered in phototrophic bioreactors for complete nitrification and nitrogen removal. Biotechnol. Bioeng. 2010;107: 1004–1011. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Marine phytoplankton and macroalgae acquire important resources, such as inorganic nitrogen, from the surrounding seawater by uptake across their entire surface area. Rates of ammonium and nitrate uptake per unit surface area were remarkably similar for both marine phytoplankton and macroalgae at low external concentrations. At an external concentration of 1 μM, the mean rate of nitrogen uptake was 10±2 nmol·cm?2·h?1 (n=36). There was a strong negative relationship between log surface area:volume (SA:V) quotient and log nitrogen content per cm2 of surface (slope=?0.77), but a positive relationship between log SA:V and log maximum specific growth rate (μmax; slope=0.46). There was a strong negative relationship between log SA:V and log measured rate of ammonium assimilation per cm2 of surface, but the slope (?0.49) was steeper than that required to sustain μmax (?0.31). Calculated rates of ammonium assimilation required to sustain growth rates measured in natural populations were similar for both marine phytoplankton and macroalgae with an overall mean of 6.2±1.4 nmol·cm?2·h?1 (n=15). These values were similar to maximum rates of ammonium assimilation in phytoplankton with high SA:V, but the values for algae with low SA:V were substantially less than the maximum rate of ammonium assimilation. This suggests that the growth rates of both marine phytoplankton and macroalgae in nature are often constrained by rates of uptake and assimilation of nutrients per cm2 surface area.  相似文献   

18.
Barley (Hordeum vulgare L. cv. Golf) was cultured using the relative addition rate technique, where nitrogen is added in a fixed relation to the nitrogen already bound in biomass. The relative rate of total nitrogen addition was 0.09 day?1 (growth limiting by 35%), while the nitrate addition was varied by means of different nitrate: ammonium ratios. In 3- to 4-week-old plants, these ratios of nitrate to ammonium supported nitrate fluxes ranging from 0 to 22 μmol g?1 root dry weight h?1, whereas the total N flux was 21.8 ± 0.25 μmol g?1 root dry weight h?1 for all treatments. The external nitrate concentrations varied between 0.18 and 1.5 μM. The relative growth rate, root to total biomass dry weight ratios, as well as Kjeldahl nitrogen in roots and shoots were unaffected by the nitrate:ammonium ratio. Tissue nitrate concentration in roots were comparable in all treatments. Shoot nitrate concentration increased with increasing nitrate supply, indicating increased translocation of nitrate to the shoot. The apparent Vmax for net nitrate uptake increased with increased nitrate fluxes. Uptake activity was recorded also after growth at zero nitrate addition. This activity may have been induced by the small, but detectable, nitrate concentration in the medium under these conditions. In contrast, nitrate reductase (NR) activity in roots was unaffected by different nitrate fluxes, whereas NR activity in the shoot increased with increased nitrate supply. NR-mRNA was detected in roots from all cultures and showed no significant response to the nitrate flux, corroborating the data for NR activity. The data show that an extremely low amount of nitrate is required to elicit expression of NR and uptake activity. However, the uptake system and root NR respond differentially to increased nitrate flux at constant total N nutrition. It appears that root NR expression under these conditions is additionally controlled by factors related to the total N flux or the internal N status of the root and/or plant. The method used in this study may facilitate separation of nitrate-specific responses from the nutritional effect of nitrate.  相似文献   

19.
Abstract: The significance of root nitrate reductase for sulfur assimilation was studied in tobacco (Nicotiana tabacum) plants. For this purpose, uptake, assimilation, and long-distance transport of sulfur were compared between wild-type tobacco and transformants lacking root nitrate reductase, cultivated either with nitrate or with ammonium nitrate. A recently developed empirical model of plant internal nitrogen cycling was adapted to sulfur and applied to characterise whole plant sulfur relations in wild-type tobacco and the transformant. Both transformation and nitrogen nutrition strongly affected sulfur pools and sulfur fluxes. Transformation decreased the rate of sulfate uptake in nitrate-grown plants and root sulfate and total sulfur contents in root biomass, irrespective of N nutrition. Nevertheless, glutathione levels were enhanced in the roots of transformed plants. This may be a consequence of enhanced APR activity in the leaves that also resulted in enhanced organic sulfur content in the leaves of the tranformants. The lack of nitrate reductase in the roots in the transformants caused regulatory changes in sulfur metabolism that resembled those observed under nitrogen deficiency. Nitrate nutrition reduced total sulfur content and all the major fractions analysed in the leaves, but not in the roots, compared to ammonium nitrate supply. The enhanced organic sulfur and glutathione levels in ammonium nitrate-fed plants corresponded well to elevated APR activity. But foliar sulfate contents also increased due to decreased re-allocation of sulfate into the phloem of ammonium nitrate-fed plants. Further studies will elucidate whether this decrease is achieved by downregulation of a specific sulfate transporter in vascular tissues.  相似文献   

20.
Current global nitrogen fertilizer use has reached approximately one hundred billion kg per annum. In many agricultural systems, a very substantial portion of this applied nitrogen fertilizer is lost from soil to groundwaters, rivers and oceans. While soil physicochemical properties play a significant part in these losses, there are several characteristic features of plant nitrogen transporter function that facilitate N losses. Nitrate and ammonium efflux from roots result in a reduction of net nitrogen uptake. As external nitrate and ammonium concentrations, respectively, are increased, particularly into the range of concentrations that are typical of agricultural soils, elevated rates of nitrate and ammonium efflux result. The rapid down-regulation of high-affinity influx as plants become nitrogen replete further reduces the root's capacity to acquire external nitrogen; only nitrogen-starved roots absorb with both high capacity and high affinity. The results of studies using molecular biology methods demonstrate that genes encoding nitrate and ammonium transporters are rapidly down-regulated when nitrogen is resupplied to nitrogen-starved plants. Provision of ammonium to roots of plants actively absorbing nitrate imposes a block on nitrate uptake, the extent of which depends on the ammonium concentration, thus further reducing the efficient utilization of soil nitrate. During the daily variation of incoming light and during periods of low incident irradiation (i.e. heavy cloud cover) the expression levels of genes encoding nitrate and ammonium transporters, and rates of nitrate and ammonium uptake, are substantially reduced. Low temperatures reduce growth and nitrogen demand, and appear to discriminate against high-affinity nitrogen influx. In sum, these several factors conspire to limit rates of plant nitrogen uptake to values that are well below capacity. These characteristics of the plant's nitrogen uptake systems facilitate nitrogen losses from soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号