首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Matti J. Salmela 《Oikos》2021,130(7):1143-1157
Roots constitute a major segment of plant biomass, and variation in belowground traits in situ correlates with environmental gradients at large spatial scales. Local adaptation of populations maintains intraspecific genetic variation in various shoot traits, but the contribution of genetic factors to adaptation to soil heterogeneity remains poorly known. I established a common-garden experiment with three Norway spruce Picea abies populations sampled between 60° and 67° N in Finland, each represented by 13 or 15 maternal families, to determine whether belowground traits are as genetically differentiated among populations as those in the shoot along a collective latitudinal gradient of temperature and soil heterogeneity. Two growing season simulations enabled testing for among-population differences in phenotypic plasticity. I phenotyped 777 first-year seedlings from shoot to root to capture functional traits that may influence survival in the wild: autumn phenology, shoot growth, root system size, root architecture, root morphology and growth allocation. All traits exhibited within-population genetic diversity, but among-population differentiation ranged from strong in shoot traits to nonexistent in root system architecture and morphology that are scaled to root system size. However, latitudinal trends characterised root-to-shoot ratio and root tip-to-shoot ratio that account for among-population differences in aboveground growth. Overall trait variability was multidimensional with variable among- versus within-population trends: for example, phenology and shoot growth covaried across populations, but their association within individual populations was variable. Shoot growth correlated positively with root system size, but not with root architecture or morphology. Finally, the two higher-latitude populations exhibited greater phenotypic plasticity in shoot traits and growth allocation. The results demonstrate varying patterns of genetic variation in functional traits of Norway spruce in the boreal zone, suggesting simultaneous adaptation to multiple environmental factors. Functional traits that exhibit phenotypic plasticity, genetic diversity and little covariation will promote long-term survival of populations in fluctuating environments.  相似文献   

2.
I examined patterns of covariation of three morphometric blossom characters [gland area (GA), gland–stigma distance (GSD), and bract length (BL)] within genets, among genets, and among populations of the tropical vine, Dalechampia scandens (Euphorbiaceae). Covariance between BL and GA was evenly distributed among the three levels. This observation, coupled with developmental information, indicates that the two characters change size similarly during development, that there is probably genetic covariance between them (apparently caused by pleiotropy), and that the genetic covariance may have constrained (at least proximally) the course of population differentiation with respect to these characters. Most covariance between GSD and GA occurred at the among-population level. This observation, coupled with developmental information, indicates that there is negligible ontogenetic covariance and that within populations there is probably little or no genetic covariance between the two characters. Among-population covariance has probably been caused by natural selection operating in a correlated fashion on characters that functionally interact in pollination.  相似文献   

3.
Theory predicts that genetic and phenotypic correlations among traits may direct the process of short-term evolution by limiting the directions of variation available to natural selection to act on. We studied correlations between 14 skeletal traits in 10 geographically distinct and relatively young greenfinch (Carduelis chloris) populations to unravel whether the divergence among populations has occurred into directions predicted by the within-population correlations (cf. drift/correlated responses models), or whether it is better explained by ‘adaptive’ models, which predict no necessary association between within- and among-population correlations (allometries). We found that the within-population character correlations (or covariances) did not predict character divergence between populations. This was because the first eigenvector of the among-population correlation/covariance matrix, summarizing the major dimension of divergence, was a bipolar body:beak dimension, and distinct from the (≈ isometric) first eigenvector of within-population matrix. Hence, as the divergence among greenfinch populations cannot be satisfactorily accommodated by drift/correlated response models, an adaptive basis for divergence is suggested. The second major axis of within-population variation was a classical ‘group size’ factor revealing that beak size was more or less free to vary independently of body size. Consequently, even if the divergence among populations cannot be simply accommodated to expectations of drift and correlated response models, it is striking that the most pronounced size-independent (nonallometric) changes had occurred along the second largest dimension of variance. This could mean that selection pressures which shape integration within populations are the same as those that cause divergence among populations. A relaxed beak:body integration could also occur as a result of species level selection favouring taxa in which independent evolution of beak and body is made possible.  相似文献   

4.
In heterogeneous environments, selection on life-history traits and flowering time may vary considerably among populations because of differences in the extent to which mortality is related to age or size, and because of differences in the seasonal patterns of resource availability and intensity of biotic interactions. Spatial variation in optimal reproductive effort and flowering time may result in the evolution of genetic differences in life-history traits, but also in the evolution of adaptive phenotypic plasticity. The perennial herb Primula farinosa occurs at sites that differ widely in soil depth and therefore in water-holding capacity, vegetation cover, and frost-induced soil movement in winter. We used data from eight natural populations and a common-garden experiment to test the predictions that reproductive allocation is negatively correlated with soil depth while age at first reproduction and first flowering date among reproductive individuals are positively correlated with soil depth. In the common-garden experiment, maternal families collected in the field were grown from seed and monitored for 5 years. In the field, reproductive effort (number of flowers in relation to rosette area) varied among populations and was negatively related to soil depth. In the common-garden experiment, among-population differences in age at first reproduction, and reproductive effort were statistically significant, but relatively small and not correlated with soil depth at the site of origin. Flowering time varied considerably among populations, but was not related to soil depth at the site of origin. Taken together, the results suggest that among-population variation in reproductive effort observed in the field largely reflects phenotypic plasticity. They further suggest that among-population differentiation in flowering time cannot be attributed to variation in environmental factors correlated with soil depth.  相似文献   

5.
Strong covariation among traits suggests the presence of constraints on their independent evolution due to pleiotropy, to linkage, or to selective forces that maintain particular trait combinations. We examined floral trait covariation among individuals, among maternal families within and across populations, and over time, in greenhouse-raised plants of the autogamous Spergularia marina. We had three aims. First, since the phenotype of traits expressed by modular organs often changes as individuals age, estimates of the degree of genetic covariation between such traits may also change over time. To seek evidence for this, we measured weekly (for five weeks) an array of floral traits among plants representing ~ 10 maternal families from each of four populations. The statistical significance of the phenotypic and among-family correlations among traits changed over time. Second, we compared populations with respect to trait covariation to determine whether populations or traits appear to be evolving independently of one another. Differences observed among populations suggest that they have diverged genetically. Third, we sought correlations that might reflect constraints on the independent evolution of floral traits. Investment in another and ovule production per flower vary independently among maternal families; there was no evidence for a “trade-off” between male and female investment. We propose that in autogamous taxa one should not find a negative correlation between pollen and ovule production per flower, as such taxa cannot evolve sexual specialization and should be under strong selection to maintain an efficient pollen:ovule ratio, preventing the evolution of male-biased or female-biased genotypes. We found that other pairs of floral traits, however, expressed highly signficant correlation coefficients, suggesting the presence of some evolutionary constraints, at least within some populations, although their strength depended on exactly when flowers were sampled.  相似文献   

6.
We document phenotypic and genetic variation within and among populations of the seed heteromorphic species Heterosperma pinnatum Cav. (Compositae) in the production of seed morphs and in a variety of life-history and morphological characteristics that might be correlated with seed and head traits. Each trait is found to have significant genetic variance in most or, usually, all populations. Significant among-population genetic variation exists for all traits except number of achenes per head and seedling shape, although some traits have much less genetic variation among than within populations. Number and percentage of intermediate achenes per head, total number of achenes per head, and lengths of central and peripheral achenes had little among-population genetic variation compared to within-population variation. Most traits had slightly less genetic variation among than within populations; however, some traits (percentage of central achenes, length of awns, date that the first flowering head opened, date that the first fruiting head opened, and death date) had more among-population genetic variation. The proportions of achene morphs produced had high broad-sense heritabilities and high among-population genetic variance, except in the case of intermediate achenes. All phenological variables had high among-population genetic variation. Within-population heritabilities were high for dates of first flowering head and fruiting head but low for death date and reproductive interval. Family and population means measured in the greenhouse for traits having high broad-sense heritability or among-population genetic variance were closely correlated with field means for the corresponding families or populations. The amounts of phenotypic variation were similar for traits that were measured in both the field and the greenhouse. These lines of evidence suggest that greenhouse results provide reasonable estimates of genetic variation in the field for this species. Numerous studies have reported variation in the proportion of seed morphs for different heteromorphic-seeded species and have discussed adaptive scenarios for the evolution of seed proportions; however, our investigation is one of only a few that have documented the amount of phenotypic and genetic variation within and among populations.  相似文献   

7.
Patterns of genetic variation and covariation can influence the rate and direction of phenotypic evolution. We explored the possibility that the parallel morphological evolution seen in threespine stickleback (Gasterosteus aculeatus) populations colonizing freshwater environments is facilitated by patterns of genetic variation and covariation in the ancestral (marine) population. We estimated the genetic (G) and phenotypic (P) covariance matrices and directions of maximum additive genetic (g(max) ) and phenotypic (p(max) ) covariances of body shape and armour traits. Our results suggest a role for the ancestral G in explaining parallel morphological evolution in freshwater populations. We also found evidence of genetic constraints owing to the lack of variance in the ancestral G. Furthermore, strong genetic covariances and correlations among traits revealed that selective factors responsible for threespine stickleback body shape and armour divergence may be difficult to disentangle. The directions of g(max) and p(max) were correlated, but the correlations were not high enough to imply that phenotypic patterns of trait variation and covariation within populations are very informative of underlying genetic patterns.  相似文献   

8.
This study explored genetic variation and co‐variation in multiple functional plant traits. Our goal was to characterize selection, heritabilities and genetic correlations among different types of traits to gain insight into the evolutionary ecology of plant populations and their interactions with insect herbivores. In a field experiment, we detected significant heritable variation for each of 24 traits of Oenothera biennis and extensive genetic covariance among traits. Traits with diverse functions formed several distinct groups that exhibited positive genetic covariation with each other. Genetic variation in life‐history traits and secondary chemistry together explained a large proportion of variation in herbivory (r2 = 0.73). At the same time, selection acted on lifetime biomass, life‐history traits and two secondary compounds of O. biennis, explaining over 95% of the variation in relative fitness among genotypes. The combination of genetic covariances and directional selection acting on multiple traits suggests that adaptive evolution of particular traits is constrained, and that correlated evolution of groups of traits will occur, which is expected to drive the evolution of increased herbivore susceptibility. As a whole, our study indicates that an examination of genetic variation and covariation among many different types of traits can provide greater insight into the evolutionary ecology of plant populations and plant–herbivore interactions.  相似文献   

9.
Abstract Patterns of genetic variation and covariation strongly affect the rate and direction of evolutionary change by limiting the amount and form of genetic variation available to natural selection. We studied evolution of morphological variance-covariance structure among seven populations of house finches (Carpodacus mexicanus) with a known phylogenetic history. We examined the relationship between within- and among-population covariance structure and, in particular, tested the concordance between hierarchical changes in morphological variance-covariance structure and phylogenetic history of this species. We found that among-population morphological divergence in either males or females did not follow the within-population covariance patterns. Hierarchical patterns of similarity in morphological covariance matrices were not congruent with a priori defined historical pattern of population divergence. Both of these results point to the lack of proportionality in morphological covariance structure of finch populations, suggesting that random drift alone is unlikely to account for observed divergence. Furthermore, drift alone cannot explain the sex differences in within- and among-population covariance patterns or sex-specific patterns of evolution of covariance structure. Our results suggest that extensive among-population variation in sexual dimorphism in morphological covariance structure was produced by population differences in local selection pressures acting on each sex.  相似文献   

10.
Proportionality of phenotypic and genetic distance is of crucial importance to adequately focus on population history and structure, and it depends on the proportionality of genetic and phenotypic covariance. Constancy of phenotypic covariances is unlikely without constancy of genetic covariation if the latter is a substantial component of the former. If phenotypic patterns are found to be relatively stable, the most probable explanation is that genetic covariance matrices are also stable. Factors like morphological integration account for such stability. Morphological integration can be studied by analyzing the relationships among morphological traits. We present here a comparison of phenotypic correlation and covariance structure among worldwide human populations. Correlation and covariance matrices between 47 cranial traits were obtained for 28 populations, and compared with design matrices representing functional and developmental constraints. Among-population differences in patterns of correlation and covariation were tested for association with matrices of genetic distances (obtained after an examination of 10 Alu-insertions) and with Mahalanobis distances (computed after craniometrical traits). All matrix correlations were estimated by means of Mantel tests. Results indicate that correlation and covariance structure in our species is stable, and that among-group correlation/covariance similarity is not related to genetic or phenotypic distance. Conversely, genetic and morphological distance matrices were highly correlated. Correlation and covariation patterns were largely associated with functional and developmental factors, which probably account for the stability of covariance patterns.  相似文献   

11.
Behaviors toward heterospecifics and conspecifics may be correlated because of shared mechanisms of expression in both social contexts (nonadaptive covariation) or because correlational selection favors adaptive covariation. We evaluated these hypotheses by comparing behavior toward conspecifics and heterospecifics in brook stickleback (Culaea inconstans) from three populations sympatric with and three allopatric from a competitor, the ninespine stickleback (Pungitius pungitius). Behavioral traits were classified into three multivariate components: overt aggression, sociability, and activity. The correlation of behavior between social contexts for both overt aggression and activity varied among populations in a way unrelated to sympatry with ninespine stickleback, while mean aggression was reduced in sympatry. Correlations in allopatric populations suggest that overt aggression and activity may genetically covary between social contexts for nonadaptive reasons. Sociability was rarely correlated in allopatry but was consistently correlated in sympatry despite reduced mean sociability, suggesting that correlational selection may favor a sociability syndrome in brook stickleback when they coexist with ninespine stickleback. Thus, interspecific competition may impose diversifying selection on behavior among populations, although the causes of correlated behavior toward conspecifics and heterospecifics and whether it can evolve in one social context independent of the other may depend on the type of behavior.  相似文献   

12.
The genetic covariance structure for life-history characters in two populations of cyclically parthenogenetic Daphnia pulex indicates considerable positive correlation among important fitness components, apparently at odds with the expectation if antagonistic pleiotropy is the dominant cause of the maintanence of genetic variation. Although there is no genetic correlation between offspring size and offspring number, present growth and present reproduction are both strongly positively correlated genetically with future reproduction, and early maturity is genetically correlated with larger clutch size. Although the ubiquity of antagonistic pleiotropy has been recently questioned, there are peculiarities of cyclical parthenogenesis that could lead to positive life-history covariance even when negative covariance would be expected in a similar sexual species. These include the influence of nonadditive gene action on evolution in clonally reproducing organisms, and the periodic release of hidden genetic variance within populations of cyclical parthenogens. Examination of matrix similarity, using the bootstrap for distribution-free hypothesis testing, reveals no evidence to suggest that the genetic covariance matrices differ between the populations. However, there is considerable evidence that the phenotypic and environmental covariance matrices differ between populations. These results indicate approximate stability of the genetic covariance matrix within species, an important assumption of many phenotypic evolution models, but should caution against the use of phenotypic in place of genetic covariance matrices.  相似文献   

13.
The genetic covariation among different traits may cause the appearance of correlated response to selection on multivariate phenotypes. Genes responsible for the expression of melanin-based color traits are also involved in other important physiological functions such as immunity and metabolism by pleiotropy, suggesting the possibility of multivariate evolution. However, little is known about the relationship between melanin coloration and these functions at the additive genetic level in wild vertebrates. From a multivariate perspective, we simultaneously explored inheritance and selection of melanin coloration, body mass and phytohemagglutinin (PHA)-mediated immune response by using long-term data over an 18-year period collected in a wild population of the common kestrel Falco tinnunculus. Pedigree-based quantitative genetic analyses showed negative genetic covariance between melanin-based coloration and body mass in male adults and positive genetic covariance between body mass and PHA-mediated immune response in fledglings as predicted by pleiotropic effects of melanocortin receptor activity. Multiple selection analyses showed an increased fitness in male adults with intermediate phenotypic values for melanin color and body mass. In male fledglings, there was evidence for a disruptive selection on rump gray color, but a stabilizing selection on PHA-mediated immune response. Our results provide an insight into the evolution of multivariate traits genetically related with melanin-based coloration. The differences in multivariate inheritance and selection between male and female kestrels might have resulted in sexual dimorphism in size and color. When pleiotropic effects are present, coloration can evolve through a complex pathway involving correlated response to selection on multivariate traits.  相似文献   

14.
An integral assumption of many models of morphometric evolution is the equality of the genetic variance-covariance structure across evolutionary time. To examine this assumption, the quantitative-genetic aspects of morphometric form are examined for eight pelvic traits in laboratory rats (Rattus norvegicus) and random-bred ICR mice (Mus musculus). In both species, all traits are significantly heritable, and there are significant phenotypic and genetic correlations among traits, although environmental correlations among the eight traits are low. The size relations among the pelvic variables are isometric. Three matrix-permutation tests are used to examine similarity of phenotypic, genetic, and environmental covariance and correlation matrices within and between species. Independent patterns of morphometric covariation and correlation arise from genetic and environmental effects within each species and from environmental effects between species. The patterns of phenotypic and genetic covariation and correlation are similar within each species, and the phenotypic and genetic correlations are also similar between these species. However, genetic covariance matrices show no significant statistical association between species. It is suggested that the assumption of equality of genetic variance-covariance structures across divergent taxa should be approached with caution.  相似文献   

15.
The patterns of interspecific variation identified by comparative studies provide valuable hypotheses about the role of physiological traits in evolutionary adaptation. This review covers tests of these hypotheses for photosynthetic traits that have used a microevolutionary perspective to characterize physiological variation among and within populations. Studies of physiological differentiation among populations show that evolutionary divergence in photosynthetic traits is common within species, and has a pattern that supports many adaptive hypotheses. These among-population studies imply that selection has influenced photosynthetic traits in some way, but they are not designed to identify the traits targeted by selection or the environmental agents that cause selection. Analyses of genetic and phenotypic variation within populations address these questions. Studies that have quantified genetic variation within populations show that levels of heritable variation can be adequate for evolutionary change in photosynthetic traits. Other studies have measured phenotypic selection for these traits by analyzing how the variation within populations is correlated with fitness. This work has shown that selection for photosynthetic traits may often operate indirectly via correlations with other traits, and emphasizes the importance of viewing the phenotype as an integrated function of growth, morphology, life-history and physiology. We also outline some methodological problems that may be encountered for ecophysiological traits by these types of studies, provide some potential solutions, and discuss future directions for the field of plant evolutionary ecophysiology.  相似文献   

16.
Genetic correlations caused by pleiotropy or linkage disequilibrium may influence the joint evolution of multiple traits as populations or taxa diverge. The evolutionary transition from outcrossing to selfing has occurred numerous times and is often accompanied by phenotypic and genetic changes in multiple traits such as flower size, pollen-ovule ratio, stigma and anther maturity and the age of reproductive maturity. Determining whether the recurring patterns of multitrait change are because of selection on each trait independently and/or the result of genetic correlations among traits can shed light on the mechanism that accounts for such convergence. Here, we evaluate whether floral traits are genetically correlated with each other and/or with whole-plant traits within- and between-populations and taxa. We report results from a greenhouse study conducted on two pairs of sister taxa with contrasting mating systems: the autogamously selfing Clarkia exilis and its predominantly outcrossing progenitor C. unguiculata and the autogamous Clarkia xantiana ssp. parviflora and its outcrossing progenitor C. xantiana ssp. xantiana. We examined variation within and covariation among maternal families in three populations of each taxon with respect to the age at first flower, the rate of successive flower production and the number of days between bud break and anther dehiscence and stigma receptivity within individual flowers. Based on phenotypic divergence between sister taxa, bivariate regressions, correlations among maternal family means and analysis of covariance (ancova), we did not find unilateral support indicating that genetic constraints govern the joint distribution of floral and whole-plant traits.  相似文献   

17.
It is generally accepted that postcopulatory sexual selection drives rapid divergence of genital morphology among isolated populations. The mode of selection operating upon genitalia can be explored by comparing patterns of population divergence in genetic and genitalic traits. We collected Antichiropus variabilis millipedes from eight localities across the species range. Levels of among-population genetic divergence, at microsatellite loci, and the mitochondrial COI gene were very high. Following geometric morphometric analyses, genital morphology was also found to be highly divergent among the populations surveyed, whereas head morphology had not diverged as markedly. However, pairwise comparisons of F(ST) and P(ST) showed that among-population divergence in both genital and head shape was significantly lower than that experienced by neutral genetic markers. Our results suggest that the genitalia of A. variabilis are currently experiencing a period of stabilizing selection, the mode of selection expected for genitalia that function in species recognition via a "lock-and-key" mechanism. Our results demonstrate that although genital morphology can clearly diverge among genetically isolated populations, divergence is not necessarily as rapid as commonly argued, and continuous directional sexual selection may not always underpin the evolutionary divergence of male genitalia.  相似文献   

18.
The distribution of genetic variation within and among plant populations is influenced by both contemporary and historical factors. I used isozyme analysis of band phenotypes to examine genetic structure in the rare prairie forb Silene regia. Relationships between current-day population size, isolation, and phenotypic variation were assessed for 18 populations in two regions with differing postglacial history. Western populations from unglaciated southern Missouri and Arkansas were more genetically diverse based on the Shannon-Weaver index (H) and a polymorphic index than were more eastern populations. These differences may be due to loss of variation with repeated founding of new populations in previously glaciated sites in Indiana and Ohio. Within the western region, population size was not significantly correlated with genetic variation. In the east, size was correlated with Shannon-Weaver diversity. There was no relationship between variation and isolation in either region, but eastern populations were slightly more differentiated. Greater among-population differentiation and the demonstrated connection between population size and variation in the eastern sites may reflect lower levels of interpopulation gene flow in the fragmented remnant prairies of Indiana and Ohio.  相似文献   

19.
We have investigated phenotypic, environmental, within-population broad-sense genetic correlations and among-population genetic correlations for 17 traits in six populations of Heterosperma pinnatum Cav. (Compositae) grown in the greenhouse. The within-population genetic, environmental, and phenotypic correlations were somewhat similar while the among-population genetic correlations showed little correspondence to these. The different correlation matrices were compared to a hypothesis matrix, which predicted higher correlations for groups of functionally and developmentally related traits. The groups were seed and head traits, size and shape traits, and life history traits, with subgroups predicted to have still higher correlations. The phenotypic and environmental matrices corresponded well to the hypothesis matrix, the within-population broad-sense genetic matrix showed weaker, though still significant, correspondence, and the among-population genetic correlations showed no correspondence. Genetic correlations did not differ significantly among populations, though the power of these comparisons was low. Some particular genetic correlations are discussed as possible examples of adaptive correlations (e.g., a negative correlation between dispersal and dormancy) and as examples of developmental or physiological constraints including life-history tradeoffs.  相似文献   

20.
Some of the strongest examples of a sexual ‘arms race’ come from observations of correlated evolution in sexually antagonistic traits among populations. However, it remains unclear whether these cases truly represent sexually antagonistic coevolution; alternatively, ecological or neutral processes might also drive correlated evolution. To investigate these alternatives, we evaluated the contributions of intersex genetic correlations, ecological context, neutral genetic divergence and sexual coevolution in the correlated evolution of antagonistic traits among populations of Gerris incognitus water striders. We could not detect intersex genetic correlations for these sexually antagonistic traits. Ecological variation was related to population variation in the key female antagonistic trait (spine length, a defence against males), as well as body size. Nevertheless, population covariation between sexually antagonistic traits remained substantial and significant even after accounting for all of these processes. Our results therefore provide strong evidence for a contemporary sexual arms race.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号