首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When NH4 + or NO3 ? was supplied to NO3 ? ‐stressed cells of the microalga Dunaliella tertiolecta Butcher, immediate transient changes in chl a fluorescence were observed over several minutes that were not seen in N‐replete cells. These changes were predominantly due to nonphotochemical fluorescence quenching. Fluorescence changes were accompanied by changes in photosynthetic oxygen evolution, indicating interactions between photosynthesis and N assimilation. The magnitude of the fluorescence change showed a Michaelis‐Menten relationship with half‐saturation concentration of 0.5 μM for NO3 ? and 10 μM for NH4 + . Changes in fluorescence responses were characterized in D. tertiolecta both over 5 days of N starvation and in cells cultured at a range of NO3 ? ‐limited growth rates. Variation in responses was more marked in starved than in limited cells. During N starvation, the timing and onset of the fluorescence responses were different for NO3 ? versus NH4 + and were correlated with changes in maximum N uptake rate during N starvation. In severely N‐starved cells, the major fluorescence response to NO3 ? disappeared, whereas the response to NH4 + persisted. N‐starved cells previously grown with NH4 + alone showed fluorescence responses with NH4 + but not NO3 ? additions. The distinct responses to NO3 ? and NH4 + may be due to the differences between regulation of the uptake mechanisms for the two N sources during N starvation. This method offers potential for assessing the importance of NO3 ? or NH4 + as an N source to phytoplankton populations and as a diagnostic tool for N limitation.  相似文献   

2.
In N-starved (?N) fronds of Lemna gibba L. G 1, NH4+ uptake rates were several-fold those of NO3?-supplied (+N) fronds. NO3?, uptake in +N-plants was slow and not inhibited by addition of NH4+. However, in ?N-plants with higher NO3? and still higher NH4+ uptake rates, addition of NH4+ immediately reduced the NO3? uptake rates to about one third until the NH4+ was consumed. The membrane potential (Em) decreased immediately upon addition of NH4+ in all fronds, but whereas depolarisation was moderate and transient in +N-plants, it was strong, up to 150 mV, in N-starved plants, where Em remained at the level of the K+ diffusion potential (ED) until NH4+ was removed. In N-starved plants NH4+ uptake and membrane depolarisation showed the same concentration dependence, except for an apparent linear component for uptake. Phosphate uptake was inhibited by NH4+ similarly to NO3? uptake, but only in P- and N-starved plants, not after mere P starvation. Influx of NO3? and H2PO 4? into the negatively charged cells of Lemna is mediated by anion/H+ cotransport, but NH4+ influx can follow the electrochemical gradient. Its saturating component may reflect a carrier-mediated NH4+ uniport, the linear component diffusion of NH4+ or NH3. Inhibition of anion/H+ cotransport by high NH4+ influx rates may be due to loss of the proton-driving force, Δμ?H+, across the plasmalemma. Reversible inhibition by NH4+ of the H+ extrusion pump may contribute to the finding that Δμ?H+ cannot be reconstituted in the presence of higher NH4+ concentrations.  相似文献   

3.
A planktonic alga similar in general morphology and pigments to Aureococcus anophagefferens Hargraves and Sieburth has caused persistent and ecologically damaging blooms along the south Texas coast. Experiments using 100 μM NO3?, NO2?, and NH4+ demonstrated that the alga could not use NO3? for growth but could use NO2? and NH4+. Doubling iron or trace metal concentrations did not permit growth on NO3?. Chemical composition data for cultures grown in excess NO3? or NH4+, respectively, were as follows: N·cell?1 (0.88 vs. 1.3 pg), C:N ratio (25:1 vs. 6.4:1), C:chlorophyll a (chl a) (560:1 vs. 44:1), and chl a·cell?1 (0.033 vs. 0.16 pg). These data imply that cells supplied with NO3? were N-starved. Culture addition of 10 mM final concentration chlorate (a nitrate analog) did not affect the Texas isolate while NO3? utilizing A. anophagefferens was lysed, suggesting that the NO3? reductase of the Texas isolate is nonfunctional. Rates of primary productivity determined during a dense bloom indicated that light-saturated growth rates were ca. 0.45 d?1, which is similar to maximum rates determined in laboratory experiments (0.58 d?1± 0.16). However, chemical composition data were consistent with the growth rate of these cells being limited by N availability (C:N 28, C:chl a 176, chl a·cell?1 0.019). Calculations based on a mass balance for nitrogen suggest that the bloom was triggered by an input of ca. 69 μM NH4+ that resulted from an extensive die-off of benthos and fish.  相似文献   

4.
Nitrogen uptake rates were measured as a function of time following saturating additions (15 μMg-at N·?1) of 15N-labelid ammonium, urea, and nitrate to N-starved cultures of the picoflagellate Micromonas pusilla Butcher. Uptake rates were estimated from both the accumulation of 15N into the cells and the disappearance of nitrogen from the medium. Transient elevated (surge) uptake rates of NH4+ and urea were observed after enrichment. During the first 5 min the initial urea and NH4+ uptake rates were 2- and 4-fold greater than the maximum growth rate (μMmax)observed prior to No3? depletion in the cultures. The elevated urea uptake rates declined quickly to a relatively constant value, whereas the initial rates of NH4+ uptake declined rapidly but were followed by a subsequent increase prior to remaining roughly constant. Nitrate was not taken up as readily by N-starved M. pusilla as the reduced N forms. Although NO3+ uptake commenced immediately after enrichment (i.e. no lag period) the N-Specific rate over the next 6 h averaged half the μMmax observed during NO3? replete conditions.  相似文献   

5.
We examined the energetic dependency of the biochemical and physiological responses of Thalassiosira pseudonana Hasle and Heimdal. Chaetoceros gracilis Schütt, Dunaliella tertiolecta Butcher, and Gymnodinium sanguineum Hirasaka to NH4+, NO3?, and urea by growing them at subsaturating and saturating photon flux (PF). At subsaturating PF, when energy was limiting, NO3? and NH4+ grown cells had similar growth rates and C and X quotas. Therefore, NO3? grown cells used up to 48% more energy than NH4+ grown cells to assimilate carbon and nitrogen. Based on our measurements of pigments, chlorophyll-a-specific in vivo absorption cross-section, and fluorescence-chlorophyll a?1, we suggest that NO3?, grown cells do not compensate for the greater energy requirements of NO3? reduction by trapping more light energy. At saturating PF, when energy is not limiting, the utilization of NO3?, compared to NH4+ resulted in lower growth rates and N quotas in Thalassiosira pseudonana and lower N quotas in Chaetoceros gracilis, suggesting enzymatic rather than energetic limitations to growth. The utilization of urea compared to Nh4+ resulted in lower growth rates in Chaetoceros gracilis and Gymnodinium sanguineum (saturating PF) and in lower N quotas in all species tested at both subsaturating and saturating PF. The high C:N ratios observed in all urea-grown species suggest that nitrogen assimilation may be limited by urea uptake or deamination and that symptoms of N limitation in microalgae may be induced by the nature of the N source in addition to the N supply rate. Our results provide new eridence that the maximum growth rates of microalgae may be limited by enzymatic processes associated with the assimilation of NO3?, or urea.  相似文献   

6.
The complex interplay between photosynthesis and the uptake of nitrogen was investigated in samples from five lakes of different size and trophic state. When enriched with 15NH4+, the photosynthetic rate was often reduced for 4–5 h in samples believed to be nitrogen deficient. This implies that energy was reallocated from photosynthesis to the uptake and assimilation of N. Stimulation in C uptake at low levels of NH4+ enrichment was followed by a progressive decline with further NH4+ enrichment. On other occasions when ambient NH4+ was undetectable, nutrient regeneration by zooplankton supplied a significant fraction of the required nitrogen. At these times and when the plankton had sufficient available N, there usually was no change in photosynthetic rate with either NH4+ or NO3?enrichment. Typically, little NO3? was taken up and no photosynthetic response was observed. On two occasions, however, the uptake of NO3? was significant due to high NO3? and low NH4+ levels early in the season. At one of these times there was a reduction in photosynthesis with NO3? enrichment. A further complication was observed when photosynthesis decreased with NH4+ enrichment but increased with NO3? enrichment despite negligible NO3? uptake. These observations illustrate that the complex metabolism of these two nitrogen sources is not fully understood. At optimum light intensity, C:N uptake ratios, even under NH4+ enrichment, are only sufficient to maintain the cellular C:N ratio unless much of the fixed C is respired or excreted. Three observations suggest that photosynthesis and N uptake are not coupled, (i) Photoinhibition of C uptake, but not N uptake was observed when low light adapted populations are exposed to high light conditions, (ii) The light intensity for maximum N uptake was slightly less than that for carbon. (iii) Dark N uptake was always near 50% of the maximum rate in the light whereas the C uptake was near 2% of Popt. Certainly, there is an interconnection because dark C uptake was enhanced by NH4+ enrichment.  相似文献   

7.
The effect of NO2 fumigation on root N uptake and metabolism was investigated in 3-month-old spruce (Picea abics L. Karst) seedlings. In a first experiment, the contribution of NO2 to the plant N budget was measured during a 48 h fumigation with 100mm3m?3 NO2. Plants were pre-treated with various nutrient solutions containing NO2 and NH4+, NO3? only or no nitrogen source for 1 week prior to the beginning of fumigation. Absence of NH4+ in the solution for 6d led to an increased capacity for NO3? uptake, whereas the absence of both ions caused a decrease in the plant N concentration, with no change in NO3? uptake. In fumigated plants, NO2 uptake accounted for 20–40% of NO3? uptake. Root NO3? uptake in plants supplied with NH4+plus NO3? solutions was decreased by NO2 fumigation, whereas it was not significantly altered in the other treatments. In a second experiment, spruce seedlings were grown on a solution containing both NO2 and NH4+ and were fumigated or not with 100mm3m?3 NO2 for 7 weeks. Fumigated plants accumulated less dry matter, especially in the roots. Fluxes of the two N species were estimated from their accumulations in shoots and roots, xylem exudate analysis and 15N labelling. Root NH4+ uptake was approximately three times higher than NO3? uptake. Nitrogen dioxide uptake represented 10–15% of the total N budget of the plants. In control plants, N assimilation occurred mainly in the roots and organic nitrogen was the main form of N transported to the shoot. Phloem transport of organic nitrogen accounted for 17% of its xylem transport. In fumigated plants, neither NO3? nor NH4+ accumulated in the shoot, showing that all the absorbed NO2 was assimilated. Root NO3? reduction was reduced whereas organic nitrogen transport in the phloem increased by a factor of 3 in NO2-fimugated as compared with control plants. The significance of the results for the regulation of whole-plant N utilization is discussed.  相似文献   

8.
The effect of ectomycorrhizal association of Pinus pinaster with Hebeloma cylindrosporum was investigated in relation to the nitrogen source supplied as mineral (NH4+ or NO3?) or organic N (L ‐glutamate) and at 5 mol m?3. Plants were grown for 14 and 16 weeks with mineral and organic N, respectively, and samples were collected during the last 6 weeks of culture. Total fungal biomass was estimated using glucosamine amount and its viability was assessed using the glucosamine to ergosterol ratio. Non‐mycorrhizal plants grew better with NH4+ than with NO3? and grew very slowly when supplied with L ‐glutamate. The presence of the fungus decreased the growth of the host plant with mineral N whereas it increased it with L ‐glutamate. Whatever the N source, most of the living fungal biomass was associated with the roots, whereas the main part of the total biomass was assayed outside the root. The form of mineral N did not significantly affect N accumulation rates over the 42 d in control plants. In mycorrhizal plants grown on either N source, the fungal tissues developing outside of the root were always the main N sink. The ectomycorrhizal association did not change 15NH4+ uptake rate by roots, suggesting that the growth decrease of the host‐plant was related to the carbon cost for fungal growth and N assimilation rather than to a direct effect on NH4+ acquisition. In contrast, in NO3?‐grown plants, in addition to draining carbon for NO3? reduction the fungus competed with the root for NO3? uptake. With NH4+ or NO3? feeding, although mycorrhizal association improved N accumulation in shoots, we concluded that it was unlikely that the fungus had supplied the plant with N. In L ‐glutamate‐grown plants, the presence of the fungus increased the proportion of glutamine in the xylem sap and improved both N nutrition and the growth rate of the host plant.  相似文献   

9.
The use of macroalgae as biological indicators of dissolved nutrient source and availability in the water column was investigated. Total tissue nitrogen (N) content, pigments, and amino acids of the red alga Gracilaria edulis (Gmelin) Silva were compared to N source and availability in laboratory and field incubations to identify responses that would serve as bioindicators of N. Field-collected algae were preincubated (6–8 wk) in low-nutrient seawater to deplete their luxury reserves ofN. Incubations were then conducted for periods of 3 d in laboratory aquaria (N-spiked seawater) and in the field using macroalgal incubation chambers. After incubation in different N sources (NH4+, NO3?, and urea) in laboratory aquaria, photosynthetic pigments (phycoerythrin and chlorophyll a) and total tissue N increased, in response to increasing [NH4+] but not to [NO3?] or [urea]. Incubation in two ranges of [NH4+], one from 0 to 80 μM and the other from 0 to 800 μM, in laboratory aquaria increased the total amino acid pool. Citrulline concentrations were the most responsive to [NH4+] (r2= 0. 84). NH4+ source treatments produced increases in citrulline, phenylalanine, serine, and free NH4+ and decreases in alanine; NO3? treatments produced increases in glutamic acid, citrulline, and alanine; and urea treatments produced increases in free NH4+ and decreases in phenylalanine and serine. The observed variations in amino acid content facilitated the development of an index for each N source based on relative concentrations of various amino acids (i. e. metabolic profiling). Gracilaria edulis was incubated along a field N gradient in the Brisbane River (three sites) and Moreton Bay (four sites), Queensland, Australia. Both phycoerythrin and tissue N appeared to respond equally to NH4+ and NO3? availability in the field. N source indices, based on amino acid concentration, were effective predictors of both [NH4+] and [NO3?] over a wide range of concentrations along the field gradient. Macroalgal physiological responses, particularly amino acid content, to changes in source and availability of N appear to be useful as sensitive bioindicators of N.  相似文献   

10.
The effect of nitrogen starvation on the NO3-dependent induction of nitrate reductase (NR) and nitrite reductases (NIR) has been investigated in the halophilic alga Dunaliella salina. When D. salina cells previously grown in a medium with NH 4 + as the only nitrogen source (NH 4 + -cells) were transferred into NO 3 ? medium, NR was induced in the light. In contrast, when cells previously grown in N-free medium were transferred into a medium containing NO 3 ? , NR was induced in light or in darkness. Nitrate-dependent NR induction, in darkness, in D. salina cells previously grown at a photon flux density of 500 umol · m?2 s?1 was observed after 4 h preculture in N-free medium, whilst in cells grown at 100 umol · m?2 s?1 NR induction was observed after 7–8 h. An inhibitor of mRNA synthesis (6-methylpurine) did not inhibit NO 3 ? -induced NR synthesis when the cells, previously grown in NH 4 + medium, were transferred into NO 3 ? medium (at time 0 h) after 4-h-N starvation. However, when 6-methylpurine was added simultaneously with the transfer of the cells from NH 4 + to NO 3 ? medium (at time 0 h), NO 3 ? induced NR synthesis was completely inhibited. The activity of NIR decreased in N-starved cells and the addition of NO 3 ? to those cells greatly stimulated NIR activity in the light. The ability to induce NR in darkness was observed when glutamine synthetase activity reached its maximal level during N starvation. Although cells grown in NO 3 ? medium exhibited high NR activity, only 0.33% of the total NR was found in intact chloroplasts. We suggest that the ability, to induce NR in darkness is dependent on the level of N starvation, and that NR in D. salina is located in the cytosol. Light seems to play an indirect regulatory role on NO 3 ? uptake and NR induction due to the expression of NR and NO 3 ? -transporter mRNAs.  相似文献   

11.
The assimilation of N‐NO3? requires more energy than that of N‐NH4+. This becomes relevant when energy is limiting and may impinge differently on cell energy budget depending on depth, time of the day and season. We hypothesize that N‐limited and energy‐limited cells of the oceanic cyanobacterium Synechococcus sp. differ in their response to the N source with respect to growth, elemental stoichiometry and carbon allocation. Under N limitation, cells retained almost absolute homeostasis of elemental and organic composition, and the use of NH4+ did not stimulate growth. When energy was limiting, however, Synechococcus grew faster in NH4+ than in NO3? and had higher C (20%), N (38%) and S (30%) cell quotas. Furthermore, more C was allocated to protein, whereas the carbohydrate and lipid pool size did not change appreciably. Energy limitation also led to a higher photosynthetic rate relative to N limitation. We interpret these results as an indication that, under energy limitation, the use of the least expensive N source allowed a spillover of the energy saved from N assimilation to the assimilation of other nutrients. The change in elemental stoichiometry influenced C allocation, inducing an increase in cell protein, which resulted in a stimulation of photosynthesis and growth.  相似文献   

12.
Changes in the size of intracellular nitrogen pools and the potential feedback by these pools on maximum N uptake (NH4+ and NO3?) rates were determined for Chaetomorpha linum (Müller) Kützing grown sequentially under nutrient-saturating and nutrient-limiting conditions. The size of individual pools in N-sufficient algae could be ranked as residual organic N (RON) comprised mainly of amino acids and amino compounds > protein N > NO3? > NH4+ > chlorophyll N. When the external N supply was removed, growth rates remained high and individual N pools were depleted at exponential rates that reflected both dilution of existing pools by the addition of new biomass from growth and movement between the pools. Calculated fluxes between the tissue N pools showed that the protein pool increased throughout the N depletion period and thus did not serve a storage function. RON was the largest storage reserve; nitrate was the second largest, but more temporary, storage pool that was depleted within 10 days. Upon N resupply, the RON pool increased 3 × faster than either the inorganic or protein pools, suggesting that protein synthesis was the rate-limiting step in N assimilation and caused a buildup of intermediate storage compounds. Maximum uptake rates for both NH4+ and NO3? varied inversely with macroalgal N status and appeared to be controlled by changes in small intracellular N pools. Uptake of NO3? showed an initial lag phase, but the initial uptake of NH4+ was enhanced and was present only when the intracellular NH4+ pool was depleted in the absence of an external N supply. A strong negative correlation between the RON pool size and maximum assimilation uptake rates for both NH4+ and NO3? suggested a feedback control on assimilation uptake by the buildup and depletion of organic compounds. Enhanced uptake and the accumulation of N as simple organic compounds or nitrate both provide a temporary mechanism to buffer against the asynchrony of N supply and demand in C. linum.  相似文献   

13.
14.
The impact of photoperiod on the rate and magnitude of N remobilization relative to uptake of inorganic N during the recovery of shoot growth after a severe defoliation was compared over 18 days in two temperate grass species, timothy (Phleum pratense L. cv. Bodin) and meadow fescue (Festuca pratensis Huds. cv. Salten). Plants were grown in flowing solution culture with N supplied as 20 mM NH4NO3 and pre-treated by extending the 11 h photosynthetically significant light period either by 1 h (short-day or SD plants) or 7 h (long-day or LD plants) of very low light intensity, during the 10 days prior to defoliation. Following a single severe defoliation, 15N-labelled NH4+ or NH4++ NO3? was supplied over a 20-day recovery period under the same SD and LD conditions. Changes in the relative contributions of remobilized N and newly acquired mineral N to shoot regrowth were assessed by sequential harvests. Both absolute and relative rates of N remobilization from root and stubble fractions were higher in LD than SD plants of both species, with the enhancement more acute but of shorter duration in timothy than fescue. Remobilized N was the predominant source of N for shoot regrowth in all treatments between days 0 and 8 after cutting; on average more so for fescue than timothy, because the presence of NO3? reduced the proportional contribution of remobilized N to the regrowth of timothy but not of fescue. Net uptake of mineral N began to recover between days 4 and 6 after cutting, with NO3? uptake restarting 1 or 2 days earlier than NH4+ uptake, even when NH4+ was the only form of N supply. LD timothy plants supplied solely with NH4+ were slowest to resume uptake of mineral N. Supplying NO3? in addition to NH4+ after defoliation promoted shoot regrowth rate but not remobilization of N. Rates of regrowth (shoot dry weight production per plant) were not correlated with rates of N remobilization from stubble either over the short-term (days 0–8) or longer term (days 0–18), interpreted as evidence against a causal dependence of regrowth rate on N remobilization under these conditions. The results are discussed in relation to hypotheses for source/sink-driven rates of N remobilization and their interactions with mineral N uptake following defoliation.  相似文献   

15.
Root NO3 ? and NH4 + influx systems of two early‐successional species of temperate (trembling aspen: Populus tremuloides Michx.) and boreal (lodgepole pine: Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forest ecosystems were characterized. NO3 ? and NH4 + influxes were biphasic, consisting of saturable high‐affinity (HATS) and constitutive non‐saturable low‐affinity transport systems (LATS) that were evident at low and relatively high N concentrations, respectively. NO3 ? influx via HATS was inducible (IHATS); nitrate pre‐treatment resulted in 8–10‐fold increases in the Vmax for influx in both species. By contrast, HATS for NH4 + were entirely constitutive. In both species, Vmax values for NH4 + influx were higher than those for NO3 ? uptake; the differences were larger in pine (6‐fold) than aspen (1·8‐fold). In aspen, the Km for NH4 + influx by HATS was approximately 3‐fold higher than for IHATS NO3 ? influx, while in pine the Km for IHATS NO3 ? influx was approximately 3‐fold higher than for NH4 + influx. The aspen IHATS for NO3 ? influx appeared to be more efficient than that of pine (Vmax values for aspen being approximately 10‐fold higher and Km values being approximately 13‐fold lower than for pine). By contrast, only small differences in values for the NH4 + HATS were evident between the two species. The kinetic parameters observed here probably result from adaptations to the N availabilities in their respective natural habitats; these may contribute to the distribution and niche separation of these species.  相似文献   

16.
The effect of NH4+ addition to NO3?-growing cells of the non-N2-fixing cyanobacterium Phormidium laminosum (Agardh) Gomont (strain OH-1-pCl1) on photo-synthetic and respiratory electron transport as well as on the intracellular levels of amino acids and some organic acids was studied. Addition of ammonium to nitrate-growing cells resulted in substantial increases in the pool size of most amino acids and a transient decrease in the pool size of organic acids. The high demand for organic acids was partially overcome by degradation of stored carbohydrates, more than by newly fixed carbon, as indicated by the large stimulation of the respiration rate upon ammonium addition. Following ammonium addition, the photosynthetic yield of the in vivo noncyclic electron transport decreased, and the sensitivity of photosystem II to photodamage increased. Results indicate that cells balance their photosynthetic and respiratory activities depending on nitrogen availability and point to an important involvement of respiration in providing energy for ammonium assimilation until adaptation of bioenergetic processes to the new nitrogen source is complete.  相似文献   

17.
Alfalfa (Medicago sativa L.) N-sufficient plants were fed 1·5 mM N in the form of NO3, NH4+ or NO3 in conjunction with NH4+, or were N-deprived for 2 weeks. The specific activity of phosphoenolpyruvate carboxylase (PEPC) from the non-nodulated roots of N-sufficient plants was increased in comparison with that of N-deprived plants. The PEPC value was highest with NO3 nutrition, lowest with NH4+ and intermediate in plants that were fed mixed salts. The protein was more abundant in NO3-fed plants than in either NH4+- or N mixed-fed plants. Nitrogen starvation decreased the level of PEPC mRNA, and nitrate was the N form that most stimulated PEPC gene expression. The malate content was significantly lower in NO3-deprived than in NO3-sufficient plants. Root malate accumulation was high in NO3-fed plants, but decreased significantly in plants that were fed with NH4+. The effect of malate on the desalted enzyme was also investigated. Root PEPC was not very sensitive to malate and PEPC activity was inhibited only by very high concentrations of malate. Asparagine and glutamine enhanced PEPC activity markedly in NO3-fed plants, but failed to affect plants that were either treated with other N types or N starved. Glutamate and citrate inhibited PEPC activity only at optimal pH. N-nutrition also influenced root nitrate and ammonium accumulation. Nitrate accumulated in the roots of NO3- and (NO3 + NH4+)-fed plants, but was undetectable in those administered NH4+. Both the nitrate and the ammonium contents were significantly reduced in NO3- and (NO3 + NH4+)-starved plants. Root accumulation of free amino acids was strongly influenced by the type of N administered. It was highest in NH4+-fed plants and the most abundant amides were asparagine and glutamine. It was concluded that root PEPC from alfalfa plants is N regulated and that nitrate exerts a strong influence on the PEPC enzyme by enhancing both PEPC gene expression and activity.  相似文献   

18.
Phytoplankton can be exposed to periods of N starvation with episodic N resupply. N starvation in Dunaliella tertiolecta (Butcher) measured over 4 days was characterized by slow reduction in cell chl and protein content and chl/carotenoid ratio and a decline in photosynthetic capacity and maximum quantum yield of photosynthesis (Fv/Fm). In the early stages of N starvation, cell division was maintained despite reduction in cellular chl. Chl content was more sensitive than carotenoids to N deprivation, and cellular chl a was maintained preferentially over chl b under N starvation. NO3? resupply stimulated rapid and complete recovery of Fv/Fm (from 0.4 to 0.7) within 24 h and commencement of cell division after 10 h, although N‐replete levels of cell chl and protein were not reestablished within 24 h. Recovery of Fv/Fm was correlated with increases in cell chl and protein and was more related to increases in Fm than to changes in F0. Recovery of Fv/Fm was biphasic with a second phase of recovery commencing 4–6 h after resupply of NO3?. Uptake of NO3? from the external medium and the recovery of Fv/Fm, cell chl, and protein were inhibited when either cytosolic or chloroplastic protein synthesis was inhibited by cycloheximide or lincomycin, respectively; a time lag observed before maximum NO3? uptake was consistent with synthesis of NO3? transporters and assimilation enzymes. When both chloroplastic and cytosolic translation was inhibited, Fv/Fm declined dramatically. Dunaliella tertiolecta demonstrated a capacity to rapidly reestablish photosynthetic function and initiate cell division after N resupply, an important strategy in competing for limiting inorganic N resources.  相似文献   

19.
The influence of seawater velocity (1.5–12 cm · s?1) on inorganic nitrogen (N) uptake by the soft‐sediment perennial macroalga Adamsiella chauvinii (Harv.) L. E. Phillips et W. A. Nelson (Rhodophyta) was determined seasonally by measuring uptake rate in a laboratory flume. Regardless of N tissue content, water velocity had no influence on NO3? uptake in either winter or summer, indicating that NO3?‐uptake rate was biologically limited. However, when thalli were N limited, increasing water velocity increased NH4+ uptake, suggesting that mass‐transfer limitation of NH4+ is likely during summer for natural populations. Uptake kinetics (Vmax, Ks) were similar among three populations of A. chauvinii at sites with different mean flow speeds; however, uptake rates of NO3? and NH4+ were lower in summer (when N status was generally low) than in winter. Our results highlight how N uptake can be affected by seasonal changes in the physiology of a macroalga and that further investigation of N uptake of different macroalgae (red, brown, and green) during different seasons is important in determining the relative influence of water velocity on nutrient uptake.  相似文献   

20.
The toxigenic diatom Pseudo‐nitzschia cuspidata, isolated from the U.S. Pacific Northwest, was examined in unialgal batch cultures to evaluate domoic acid (DA) toxicity and growth as a function of light, N substrate, and growth phase. Experiments conducted at saturating (120 μmol photons · m?2 · s?1) and subsaturating (40 μmol photons · m?2 · s?1) photosynthetic photon flux density (PPFD), demonstrate that P. cuspidata grows significantly faster at the higher PPFD on all three N substrates tested [nitrate (NO3?), ammonium (NH4+), and urea], but neither cellular toxicity nor exponential growth rates were strongly associated with one N source over the other at high PPFD. However, at the lower PPFD, the exponential growth rates were approximately halved, and the cells were significantly more toxic regardless of N substrate. Urea supported significantly faster growth rates, and cellular toxicity varied as a function of N substrate with NO3?‐supported cells being significantly more toxic than both NH4+‐ and urea‐supported cells at the low PPFD. Kinetic uptake parameters were determined for another member of the P. pseudodelicatissima complex, P. fryxelliana. After growth of these cells on NO3? they exhibited maximum specific uptake rates (Vmax) of 22.7, 29.9, 8.98 × 10?3 · h?1, half‐saturation constants (Ks) of 1.34, 2.14, 0.28 μg‐at N · L?1, and affinity values (α) of 17.0, 14.7, 32.5 × 10?3 · h?1/(μg‐at N · L?1) for NO3?, NH4+ and urea, respectively. These labo‐ratory results demonstrate the capability of P. cuspidata to grow and produce DA on both oxidized and reduced N substrates during both exponential and stationary growth phases, and the uptake kinetic results for the pseudo‐cryptic species, P. fryxelliana suggest that reduced N sources from coastal runoff could be important for maintenance of these small pennate diatoms in U.S. west coast blooms, especially during times of low ambient N concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号