首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
On the origin of modular variation   总被引:9,自引:1,他引:9  
We study the dynamics of modularization in a minimal substrate. A module is a functional unit relatively separable from its surrounding structure. Although it is known that modularity is useful both for robustness and for evolvability (Wagner 1996), there is no quantitative model describing how such modularity might originally emerge. Here we suggest, using simple computer simulations, that modularity arises spontaneously in evolutionary systems in response to variation, and that the amount of modular separation is logarithmically proportional to the rate of variation. Consequently, we predict that modular architectures would appear in correlation with high environmental change rates. Because this quantitative model does not require any special substrate to occur, it may also shed light on the origin of modular variation in nature. This observed relationship also indicates that modular design is a generic phenomenon that might be applicable to other fields, such as engineering: Engineering design methods based on evolutionary simulation would benefit from evolving to variable, rather than stationary, fitness criteria, as a weak and problem-independent method for inducing modularity.  相似文献   

2.
  总被引:3,自引:0,他引:3  
Abstract. In this work we consider the geometrical model of R. A. Fisher, in which individuals are characterized by a number of phenotypic characters under optimizing selection. Recent work on this model by H. A. Orr has demonstrated that as the number of characters increases, there is a significant reduction in the rate of adaptation. Orr has dubbed this a \"cost of complexity.\" Although there is little evidence as to whether such a cost applies in the natural world, we suggest that the prediction is surprising, at least naively. With this in mind, we examine the robustness of Orr's prediction by modifiying the model in various ways that might reduce or remove the cost. In particular, we explore the suggestion that modular pleiotropy, in which mutations affect only a subset of the traits, could play an important role. We conclude that although modifications of the model can mitigate the cost to a limited extent, Orr's finding is robust.  相似文献   

3.
Evolutionary change in New World Monkey (NWM) skulls occurred primarily along the line of least resistance defined by size (including allometric) variation ( gmax ). Although the direction of evolution was aligned with this axis, it was not clear whether this macroevolutionary pattern results from the conservation of within population genetic covariance patterns (long‐term constraint) or long‐term selection along a size dimension, or whether both, constraints and selection, were inextricably involved. Furthermore, G ‐matrix stability can also be a consequence of selection, which implies that both, constraints embodied in gmax and evolutionary changes observed on the trait averages, would be influenced by selection. Here, we describe a combination of approaches that allows one to test whether any particular instance of size evolution is a correlated by‐product due to constraints ( gmax ) or is due to direct selection on size and apply it to NWM lineages as a case study. The approach is based on comparing the direction and amount of evolutionary change produced by two different simulated sets of net‐selection gradients ( β ), a size (isometric and allometric size) and a nonsize set. Using this approach it is possible to distinguish between the two hypotheses (indirect size evolution due to constraints or direct selection on size), because although both may produce an evolutionary response aligned with gmax , the amount of change produced by random selection operating through the variance/covariance patterns (constraints hypothesis) will be much smaller than that produced by selection on size (selection hypothesis). Furthermore, the alignment of simulated evolutionary changes with gmax when selection is not on size is not as tight as when selection is actually on size, allowing a statistical test of whether a particular observed case of evolution along the line of least resistance is the result of selection along it or not. Also, with matrix diagonalization (principal components [PC]) it is possible to calculate directly the net‐selection gradient on size alone (first PC [PC1]) by dividing the amount of phenotypic difference between any two populations by the amount of variation in PC1, which allows one to benchmark whether selection was on size or not.  相似文献   

4.
    
Most biological systems are formed by component parts that are to some degree interrelated. Groups of parts that are more associated among themselves and are relatively autonomous from others are called modules. One of the consequences of modularity is that biological systems usually present an unequal distribution of the genetic variation among traits. Estimating the covariance matrix that describes these systems is a difficult problem due to a number of factors such as poor sample sizes and measurement errors. We show that this problem will be exacerbated whenever matrix inversion is required, as in directional selection reconstruction analysis. We explore the consequences of varying degrees of modularity and signal-to-noise ratio on selection reconstruction. We then present and test the efficiency of available methods for controlling noise in matrix estimates. In our simulations, controlling matrices for noise vastly improves the reconstruction of selection gradients. We also perform an analysis of selection gradients reconstruction over a New World Monkeys skull database to illustrate the impact of noise on such analyses. Noise-controlled estimates render far more plausible interpretations that are in full agreement with previous results.  相似文献   

5.
    
New World monkeys (NWM) display substantial variation (two orders of magnitude) in body size. Despite this, variation in skull size and associated shape show a conserved allometric relationship, both within and between genera. Maximum likelihood estimates of quantitative ancestral states were used to compare the direction of morphological differentiation with the phenotypic (p(max)) and genetic (g(max)) lines of least evolutionary resistance (LLER). Diversification in NWM skulls occurred principally along the LLER defined by size variation. We also obtained measures of morphological amount and pace of change using our skull data together with published genetic distances to test whether the LLER influenced the amount and pace of diversification. Moreover, data on an ecological factor (diet) was obtained from the literature and used to test the association of this niche-related measure with the morphological diversification. Two strategies were used to test the association of LLER with the morphological and dietary amount and pace of change, one focusing on both contemporary genera and maximum likelihood reconstructed ancestors and the other using only the 16 contemporary genera in a phylogenetic comparative analysis. Our results suggest that the LLER influenced the path, amount, and pace of morphological change. Evolution also occurred away from the LLER in some taxa but this occurred at a slower pace and resulted in a relatively low amount of morphological change. We found that longer branch lengths (time) are associated with larger differences in p(max) orientation. However, on a macroevolutionary scale there is no such trend. Diet is consistently associated with both absolute size differences and morphological integration patterns, and we suggest that this ecological factor might be driving adaptive radiation in NWM. Invasion of diet-based adaptive zones involves changes in absolute size, due to metabolic and foraging constraints, resulting in simple allometric skull diversification along the LLER. While it is clear that evolutionary change occurred along the LLER, it is not clear whether this macroevolutionary pattern results from a conservation of within-population genetic covariance patterns or long-term adaptation along a size dimension or whether both constraints and selection were inextricably involved.  相似文献   

6.
The nature and extent of mutational pleiotropy remain largely unknown, despite the central role that pleiotropy plays in many areas of biology, including human disease, agricultural production, and evolution. Here, we investigate the variation in 11,604 gene expression traits among 41 mutation accumulation (MA) lines of Drosophila serrata. We first confirmed that these expression phenotypes were heritable, detecting genetic variation in 96% of them in an outbred, natural population of D. serrata. Among the MA lines, 3385 (29%) of expression traits were variable, with a mean mutational heritability of 0.0005. In most traits, variation was generated by mutations of relatively small phenotypic effect; putative mutations with effects of greater than one phenotypic standard deviation were observed for only 8% of traits. With most (71%) traits unaffected by any mutation, our data provide no support for universal pleiotropy. We further characterized mutational pleiotropy in the 3385 variable traits, using sets of 5, randomly assigned, traits. Covariance among traits chosen at random with respect to their biological function is expected only if pleiotropy is extensive. Taking an analytical approach in which the variance unique to each trait in the random 5-trait sets was partitioned from variance shared among traits, we detected significant (at 5% false discovery rate) mutational covariance in 21% of sets. This frequency of statistically supported covariance implied that at least some mutations must pleiotropically affect a substantial number of traits (>70; 0.6% of all measured traits).  相似文献   

7.
    
Community association populations are composed of phenotypically and genetically diverse accessions. Once these populations are genotyped, the resulting marker data can be reused by different groups investigating the genetic basis of different traits. Because the same genotypes are observed and scored for a wide range of traits in different environments, these populations represent a unique resource to investigate pleiotropy. Here, we assembled a set of 234 separate trait datasets for the Sorghum Association Panel, a group of 406 sorghum genotypes widely employed by the sorghum genetics community. Comparison of genome-wide association studies (GWAS) conducted with two independently generated marker sets for this population demonstrate that existing genetic marker sets do not saturate the genome and likely capture only 35–43% of potentially detectable loci controlling variation for traits scored in this population. While limited evidence for pleiotropy was apparent in cross-GWAS comparisons, a multivariate adaptive shrinkage approach recovered both known pleiotropic effects of existing loci and new pleiotropic effects, particularly significant impacts of known dwarfing genes on root architecture. In addition, we identified new loci with pleiotropic effects consistent with known trade-offs in sorghum development. These results demonstrate the potential for mining existing trait datasets from widely used community association populations to enable new discoveries from existing trait datasets as new, denser genetic marker datasets are generated for existing community association populations.  相似文献   

8.
    
Sexual antagonism (SA) arises when male and female phenotypes are under opposing selection, yet genetically correlated. Until resolved, antagonism limits evolution toward optimal sex‐specific phenotypes. Despite its importance for sex‐specific adaptation and existing theory, the dynamics of SA resolution are not well understood empirically. Here, we present data from Drosophila melanogaster, compatible with a resolution of SA. We compared two independent replicates of the “LHM” population in which SA had previously been described. Both had been maintained under identical, controlled conditions, and separated for around 200 generations. Although heritabilities of male and female fitness were similar, the intersexual genetic correlation differed significantly, being negative in one replicate (indicating SA) but close to zero in the other. Using population sequencing, we show that phenotypic differences were associated with population divergence in allele frequencies at nonrandom loci across the genome. Large frequency changes were more prevalent in the population without SA and were enriched at loci mapping to genes previously shown to have sexually antagonistic relationships between expression and fitness. Our data suggest that rapid evolution toward SA resolution has occurred in one of the populations and open avenues toward studying the genetics of SA and its resolution.  相似文献   

9.
    
Ongoing debate centers on whether certain types of mutations are fixed preferentially during adaptive evolution. Although there has been much discussion, no quantitative framework currently exists to test for these biases. Here, we describe a method for distinguishing between the two processes that likely account for biased rates of substitution: variation in mutation rates and variation in the probability that a mutation becomes fixed once it arises. We then use this approach to examine the type and magnitude of these biases during evolutionary transitions across multiple scales: those involving repeated origins of individual traits (flower color change), and transitions involving broad suites of traits (morphological and physiological trait evolution in plants and animals). We show that fixation biases can be strong at both levels of comparison, likely due to differences in the magnitude of deleterious pleiotropy associated with alternative mutation categories. However, we also show that the scale at which these comparisons are made greatly influences the results, as broad comparisons that simultaneously analyze multiple traits obscure heterogeneity in the direction and magnitude of these biases. We conclude that preferential fixation of mutations likely is common in nature, but should be studied on a trait-by-trait basis.  相似文献   

10.
    
Melanism is an important component of insect cuticle and serves numerous functions that enhance fitness. Despite its importance, there is little information on its genetic basis or its phenotypic and genetic correlation with fitness‐related traits. Here, we examine the heritability of melanism in the wing dimorphic sand cricket and determine its phenotypic and genetic correlation with wing morphology, gonad mass and size of the dorso‐longitudinal muscles (the principle flight muscles). Previously demonstrated trade‐offs among these traits are significant factors in the evolution of life history variation. Using path analysis, we show that melanization is causally related to gonad mass, but not flight muscle mass. Averaged over the sexes, the heritability of melanism was 0.61, the genetic correlation with gonad mass was ?0.36 and with wing morph was 0.51. The path model correctly predicted the ranking of melanization score in lines selected for increased ovary mass, increased flight muscle mass, an index that increased both traits and an unselected control. Our results support the general hypothesis that melanization is costly for insects and negatively impacts investment in early reproduction.  相似文献   

11.
    
Within a population, only phenotypic variation that is influenced by genes will respond to selection. Genes with pleiotropic effects are known to influence numerous traits, complicating our understanding of their evolution through time. Here we use quantitative genetic analyses to identify and estimate the shared genetic effects between molar size and trunk length in a pedigreed, breeding population of baboons housed at the Southwest National Primate Research Center. While crown area has a genetic correlation with trunk length, specific linear measurements yield different results. We find that variation in molar buccolingual width and trunk length is influenced by overlapping additive genetic effects. In contrast, mesiodistal molar length appears to be genetically independent of body size. This is the first study to demonstrate a significant genetic correlation between tooth size and body size in primates. The evolutionary implications are discussed.  相似文献   

12.
    
The term \"differential dominance\" describes the situation in which the dominance effects at a pleiotropic locus vary between traits. Directional selection on the phenotype can lead to balancing selection on differentially dominant pleiotropic loci. Even without any individual overdominant traits, some linear combination of traits will display overdominance at a locus displaying differential dominance. Multivariate overdominance may be responsible, in part, for high levels of heterozygosity found in natural populations. We examine differential dominance of 70 mouse skeletal traits at 92 quantitative trait loci (QTL). Our results indicate moderate to strong additive and dominance effects at pleiotropic loci, low levels of individual-trait overdominance, and universal multivariate overdominance. Multivariate overdominance affects a range of 6% to 81% of morphospace, with a mean of 32%. Multivariate overdominance tends to affect a larger percentage of morphospace at pleiotropic loci with antagonistic effects on multiple traits (42%). We conclude that multivariate overdominance is common and should be considered in models and in empirical studies of the role of genetic variation in evolvability.  相似文献   

13.
    
The study of modularity can provide a foundation for integrating development into studies of phenotypic evolution. The dentition is an ideal phenotype for this as it is developmentally relatively simple, adaptively highly significant, and evolutionarily tractable through the fossil record. Here, we use phenotypic variation in the dentition to test a hypothesis about genetic modularity. Quantitative genetic analysis of size variation in the baboon dentition indicates a genetic modular framework corresponding to tooth type categories. We analyzed covariation within the dentitions of six species of Old World monkeys (OWMs) to assess the macroevolutionary extent of this framework: first by estimating variance–covariance matrices of linear tooth size, and second by performing a geometric morphometric (GM) analysis of tooth row shape. For both size and shape, we observe across OWMs a framework of anterior and postcanine modules, as well as submodularity between the molars and premolars. Our results of modularity by tooth type suggest that adult variation in the OWM dentition is influenced by early developmental processes such as odontogenesis and jaw patterning. This study presents a comparison of genotypic modules to phenotypic modules, which can be used to better understand their action across evolutionary time scales.  相似文献   

14.
    
Predicting the impacts of environmental change on marine organisms, food webs, and biogeochemical cycles presently relies almost exclusively on short‐term physiological studies, while the possibility of adaptive evolution is often ignored. Here, we assess adaptive evolution in the coccolithophore Emiliania huxleyi, a well‐established model species in biological oceanography, in response to ocean acidification. We previously demonstrated that this globally important marine phytoplankton species adapts within 500 generations to elevated CO2. After 750 and 1000 generations, no further fitness increase occurred, and we observed phenotypic convergence between replicate populations. We then exposed adapted populations to two novel environments to investigate whether or not the underlying basis for high CO2‐adaptation involves functional genetic divergence, assuming that different novel mutations become apparent via divergent pleiotropic effects. The novel environment “high light” did not reveal such genetic divergence whereas growth in a low‐salinity environment revealed strong pleiotropic effects in high CO2 adapted populations, indicating divergent genetic bases for adaptation to high CO2. This suggests that pleiotropy plays an important role in adaptation of natural E. huxleyi populations to ocean acidification. Our study highlights the potential mutual benefits for oceanography and evolutionary biology of using ecologically important marine phytoplankton for microbial evolution experiments.  相似文献   

15.
    
We carried out a three‐tiered genetic analysis of egg‐to‐adult development time and viability in ancestral and derived populations of cactophilic Drosophila mojavensis to test the hypothesis that evolution of these life‐history characters has shaped premating reproductive isolation in this species. First, a common garden experiment with 11 populations from Baja California and mainland Mexico and Arizona reared on two host species revealed significant host plant X region and population interactions for viability and development time, evidence for host plant adaptation. Second, replicated line crosses with flies reared on both hosts revealed autosomal, X chromosome, cytoplasmic, and autosome X cactus influences on development time. Viability differences were influenced by host plants, autosomal dominance, and X chromosomal effects. Many of the F1, F2, and backcross generations showed evidence of heterosis for viability. Third, a QTL analysis of male courtship song and epicuticular hydrocarbon variation based on 1688 Baja × mainland F2 males also revealed eight QTL influencing development time differences. Mainland alleles at six of these loci were associated with longer development times, consistent with population‐level differences. Eight G × E interactions were also detected caused by longer development times of mainland alleles expressed on a mainland host with smaller differences among Baja genotypes reared on the Baja host plant. Four QTL influenced both development time and epicuticular hydrocarbon differences associated with courtship success, and there was a significant QTL‐based correlation between development time and cuticular hydrocarbon variation. Thus, the regional shifts in life histories that evolved once D. mojavensis invaded mainland Mexico from Baja California by shifting host plants were genetically correlated with variation in cuticular hydrocarbon‐based mate preferences.  相似文献   

16.
    
Transgenerational effects are broader than only parental relationships. Despite mounting evidence that multigenerational effects alter phenotypic and life‐history traits, our understanding of how they combine to determine fitness is not well developed because of the added complexity necessary to study them. Here, we derive a quantitative genetic model of adaptation to an extraordinary new environment by an additive genetic component, phenotypic plasticity, maternal and grandmaternal effects. We show how, at equilibrium, negative maternal and negative grandmaternal effects maximize expected population mean fitness. We define negative transgenerational effects as those that have a negative effect on trait expression in the subsequent generation, that is, they slow, or potentially reverse, the expected evolutionary dynamic. When maternal effects are positive, negative grandmaternal effects are preferred. As expected under Mendelian inheritance, the grandmaternal effects have a lower impact on fitness than the maternal effects, but this dual inheritance model predicts a more complex relationship between maternal and grandmaternal effects to constrain phenotypic variance and so maximize expected population mean fitness in the offspring.  相似文献   

17.
    
Adaptive evolutionary responses are determined by the strength of selection and amount of genetic variation within traits, however, both are known to vary across environmental conditions. As selection is generally expected to be strongest under stressful conditions, understanding how the expression of genetic variation changes across stressful and benign environmental conditions is crucial for predicting the rate of adaptive change. Although theory generally predicts increased genetic variation under stress, previous syntheses of the field have found limited support for this notion. These studies have focused on heritability, which is dependent on other environmentally sensitive, but nongenetic, sources of variation. Here, we aim to complement these studies with a meta‐analysis in which we examine changes in coefficient of variation (CV) in maternal, genetic, and residual variances across stressful and benign conditions. Confirming previous analyses, we did not find any clear direction in how heritability changes across stressful and benign conditions. However, when analyzing CV, we found higher genetic and residual variance under highly stressful conditions in life‐history traits but not in morphological traits. Our findings are of broad significance to contemporary evolution suggesting that rapid evolutionary adaptive response may be mediated by increased evolutionary potential in stressed populations.  相似文献   

18.
    
Trade‐offs have often been invoked to explain the evolution of ecological specialization. Phytophagous insects have been especially well studied, but there has been little evidence that resource‐based trade‐offs contribute to the evolution of host specialization in this group. Here, we combine experimental evolution and partial genome resequencing of replicate seed beetle selection lines to test the trade‐off hypothesis and measure the repeatability of evolution. Bayesian estimates of selection coefficients suggest that rapid adaptation to a poor host (lentil) was mediated by standing genetic variation at multiple genetic loci and involved many of the same variants in replicate lines. Sublines that were then switched back to the ancestral host (mung bean) showed a more gradual and variable (less repeatable) loss of adaptation to lentil. We were able to obtain estimates of variance effective population sizes from genome‐wide differences in allele frequencies within and between lines. These estimates were relatively large, which suggests that the contribution of genetic drift to the loss of adaptation following reversion was small. Instead, we find that some alleles that were favored on lentil were selected against during reversion on mung bean, consistent with the genetic trade‐off hypothesis.  相似文献   

19.
    
The term ‘phenotypic capacitance’ was introduced nearly 15 years ago to describe the strain‐specific effects of impairing Hsp90, a molecular chaperone, in the fly Drosophila melanogaster (Rutherford & Lindquist 1998 ). In one genetic background, Hsp90 depletion caused deformed eyes, whereas in other genetic backgrounds, the wings or abdomens or other aspects of morphology were affected. Hsp90 was therefore viewed as acting like a capacitor, allowing genetic differences to build up and to be released at a later time. In the years since, it has been debated whether capacitance is a laboratory curiosity or a major force in evolution. In this issue of Molecular Ecology, Takahashi ( 2013 ) presents evidence, from high‐resolution morphometric analysis of fly wings, that a large number of other capacitors exist in D. melanogaster, and that the variation they reveal can be quite subtle. His results advance our understanding of capacitance and contribute to a new view of its role in evolutionary adaptation.  相似文献   

20.
The human gene pool displays exuberant genetic variation; this is normal for a sexual species. Even small isolated populations contain a large percentage of the total variability, emphasizing the basic genetic unity of our species. As modern man spread across the world from its African source, the genetic basis for man's unique mental acuity was retained everywhere. Nevertheless, some geographical genetic variation such as skin color, stature and physiognomy was established. These changes were biologically relatively insignificant. Most of the genetic load in the genome has been carried throughout the history of the species. There is little hope of purging all of these harmful genes; we must accept them and continue to treat their syndromes medically. All populations carry extensive genetic variation due to genes that encode variations in quantitative traits. Of greatest importance among these is ubiquitous polygenic variability in brain function and intelligence. Mental acuity is what sets us apart from the rest of the biological world. Throughout our history, genetic recombination among the many genes involved in brain function has occurred. This has provided a genetic basis for the action of natural selection that favors intelligence in meeting the demands of the environment. As environments change in the future, this type of genetic variability will continue to be a crucial resource.This article is based on a contribution at the Session on Genetic Load chaired by Dr. Henretta Trent Band and presented at a meeting of the International Society for the History, Philosophy and Social Studies of Biology, Northwestern University, Evanston, Illinois in July 1991. The author is indebted to Professor Antonio Brito daCunha of the University of São Paulo, Brazil for his encouragement and comments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号