首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns of overwinter mortality in the sexually dimorphic red-winged blackbird (Agelaius phoeniceus) were examined to test the predictions of the sexual-selection hypothesis that male size is limited by directional selection favoring small males and that female size is maintained by stabilizing selection wherein extreme phenotypes experience higher mortality. Museum specimens collected from Ontario over a 95-yr period were used to compare the sizes of males and females collected in fall and spring. In a separate field study, body sizes of returning and nonreturning male and female red-winged blackbirds were compared over a 6-yr period. Overall, there was no evidence of higher overwinter mortality among larger males. Among adult (ASY) males, large individuals appeared to have higher survival than small individuals, although among subadult (SY) males, large size may have been disadvantageous. Weak evidence of stabilizing selection on female body size was found. Among adults, sexual size dimorphism seemed more pronounced after winter than before winter. Our results do not support the hypothesis that body size in male red-winged blackbirds is limited by selective mortality outside the breeding season. It is possible that size selection occurs earlier in life, when males are still in the nest. Our results suggest that caution should be exercised when interpreting interspecific evidence showing higher adult male than female mortality in sexually dimorphic species. Such patterns could arise as a cost to males of sexual selection and yet provide no insight into how natural selection opposes sexual selection for increased male size.  相似文献   

2.
3.
Although sexual selection is widely accepted as a primary functional cause of sexual size dimorphism in birds and mammals, results from some comparative studies have cast doubt on this conclusion. Chief among these contradictory results is the widespread association between body size and size dimorphism—large species tend to be more dimorphic than small species. This correlation is not directly predicted by the normal sexual selection scenario, and many hypotheses have been advanced to explain it. This paper reviews these hypotheses and evaluates them using data for the New World blackbirds (Icterinae). In this avian subfamily, (1) body size correlates with the intensity of sexual selection (as measured by mean harem size), and (2) size does not correlate with dimorphism if the effects of mating system are removed. Similar results are obtained when controlling for the confounding influence of phylogeny. Further, body size and mating system are associated with nesting dispersion. These results strongly argue that sexual dimorphism is a product of sexual selection in this subfamily, and suggest that either: (1) large body size itself, or the ecology of large species, promotes the development of coloniality and a polygynous mating system; or (2) polygyny and/or coloniality lead to the evolution of large size in both males and females. None of the other hypotheses examined predict an association between size and mating system, and all predict that size will correlate with dimorphism after the effects of mating system are removed. Thus, none of the other hypotheses seem applicable in this case. These results are compared to those obtained for other avian and mammalian taxa. Difficulties of analysis present in previous studies are discussed. I argue that it is inappropriate to assume that associations between a trait and body size or phylogeny are evidence of nonadaptive evolutionary “constraints.”  相似文献   

4.
5.
Fully unraveling the mechanisms of sexual selection requiresan understanding of the variation in secondary sexual traitsacross species in a monophyletic assemblage and an understandingof the evolutionary relationships between those species. Therole of red and yellow male plumage coloration in territorydefense and sexual selection has been well studied in the red-winged blackbird (Agelaius phoeniceus), and males of many other close relatives of this species also have what appear to be carotenoid-pigmented patches in their plumage. We explored variation in male plumagecoloration across species of New World blackbirds (family Icteridae):traits known to be involved in sexual selection in this group.We document that blackbird lineages in which extant speciesbreed in marshes tend to have evolved from an all-black ancestralplumage to one exhibiting carotenoid plumage patches. The twomost likely hypotheses to explain this pattern are (1) increasedsexual selection intensity in marshes because of increasedvariance in territory quality and (2) increased frequency ofmale-male territorial interactions because of an increaseddensity of territories in marshes, but other hypotheses cannotbe ruled out. This pattern is consistent with either intersexualor intrasexual selection and warrants further investigation.  相似文献   

6.
7.
Body size is often assumed to represent the outcome of conflicting selection pressures of natural and sexual selection. Marine iguana (Amblyrhynchus cristatus) populations in the Galápagos exhibit 10-fold differences in body mass between island populations. There is also strong sexual size dimorphism, with males being about twice as heavy as females. To understand the evolutionary processes shaping body size in marine iguanas, we analyzed the selection differentials on body size in two island populations (max. male mass 900 g in Genovesa, 3500 g in Santa Fé). Factors that usually confound any evolutionary analysis of body sizes—predation, interspecific food competition, reproductive role division—are ruled out for marine iguanas. We show that, above hatchlings, mortality rates increased with body size in both sexes to the same extent. This effect was independent of individual age. The largest animals (males) of each island were the first to die once environmental conditions deteriorated (e.g., during El Niños). This sex-biased mortality was the result of sexual size dimorphism, but at the same time caused sexual size dimorphism to fluctuate. Mortality differed between seasons (selection differentials as low as –1.4) and acted on different absolute body sizes between islands. Both males and females did not cease growth when an optimal body size for survival was reached, as demonstrated by the fact that individual adult body size phenotypically increased in each population under favorable environmental conditions beyond naturally selected limits. But why did marine iguanas grow “too large” for survival? Due to lek mating, sexual selection constantly favored large body size in males (selection differentials up to +0.77). Females only need to reach a body size sufficient to produce surviving offspring. Thereafter, large body size of females was less favored by fertility selection than large size in males. Resulting from these different selection pressures on male and female size, sexual size dimorphism was mechanistically caused by the fact that females matured at an earlier age and size than males, whereafter they constantly allocated resources into eggs, which slowed growth. The observed allometric increase in sexual size dimorphism is explained by the fact that the difference between these selective processes becomes larger as energy abundance in the environment increases. Because body size is generally highly heritable, these selective processes are expected to lead to genetic differences in body size between islands. We propose a common-garden experiment to determine the influence of genetic factors and phenotypic reaction norms of final body size.  相似文献   

8.
Sexual size dimorphism (SSD) is often attributed to sexual selection, particularly when males are the larger sex. However, sexual selection favoring large males is common even in taxa where females are the larger sex, and is therefore not a sufficient explanation of patterns of SSD. As part of a more extensive study of the evolution of SSD in water striders (Heteroptera, Gerridae), we examine patterns of sexual selection and SSD in 12 populations of Aquarius remigis. We calculate univariate and multivariate selection gradients from samples of mating and single males, for two sexually dimorphic traits (total length and profemoral width) and two sexually monomorphic traits (mesofemoral length and wing form). The multivariate analyses reveal strong selection favoring larger males, in spite of the female-biased SSD for this trait, and weaker selection favoring aptery and reduced mesofemoral length. Selection is weakest on the most dimorphic trait, profemoral width, and is stabilizing rather than directional. The pattern of sexual selection on morphological traits is therefore not concordant with the pattern of SSD. The univariate selection gradients reveal little net selection (direct + indirect) on any of the traits, and suggest that evolution away from the plesiomorphic pattern of SSD is constrained by antagonistic patterns of selection acting on this suite of positively correlated morphological traits. We hypothesize that SSD in A. remigis is not in equilibrium, a hypothesis that is consistent with both theoretical models of the evolution of SSD and our previous studies of allometry for SSD. A negative interpopulation correlation between the intensity of sexual selection and the operational sex ratio supports the hypothesis that, as in several other water strider species, sexual selection in A. remigis occurs through generalized female reluctance rather than active female choice. The implications of this for patterns of sexual selection are discussed.  相似文献   

9.
We artificially selected for body size in Drosophila melanogaster to test Lande's quantitative genetic model for the evolution of sexual size dimorphism. Thorax width was used as an estimator of body size. Selection was maintained for 21 generations in both directions on males only, females only, or both sexes simultaneously. The correlated response of sexual size dimorphism in each selection regime was compared to the response predicted by four variants of the model, each of which differed only in assumptions about input parameters. Body size responded well to selection, but the correlated response of sexual size dimorphism was weaker than that predicted by any of the variants. Dimorphism decreased in most selection lines, contrary to the model predictions. We suggest that selection on body size acts primarily on growth trajectories. Changes in dimorphism are caused by the fact that male and female growth trajectories are not parallel and termination of growth at different points along the curves results in dimorphism levels that are difficult to predict without detailed knowledge of growth parameters. This may also explain many of the inconsistent results in dimorphism changes seen in earlier selection experiments.  相似文献   

10.
Females are often believed to actively choose highly ornamented males (males with extravagant morphological signals or intense sexual display), and ornaments should be honest signals of male viability. However, this belief is relying only on some pieces of empirical evidence from birds. Our study reports active female choice on sexual display that indicates male viability in spiders. We established trials in which we studied female choice in relation to male courtship drumming activity and body size. Females chose the most actively drumming males as mating partners, but the body size of the males did not seem to be selected. Male drumming activity turned out to be a good predictor of male viability, whereas male viability was independent of male body mass. Our results suggest that by actively choosing mates according to male drumming performance, but independently of male body mass, females are preferring viable males as mates. Because Hygrolycosa rubrofasciata males do not provide obvious direct benefits to their offspring, females may gain some indirect benefits; offspring may have higher chance of survival, or the offspring may inherit the attractiveness of their father.  相似文献   

11.
We measured in the field the intensity and mode (i.e., directional, stabilizing) of sexual selection acting jointly on body size and time of sexual maturity in the univoltine, polygamous grasshopper Sphenarium purpurascens. Statistical analyses indicated that selection favored large and protandrous males in terms of a higher mating success. At the same time, evidence of correlational selection acting simultaneously on body size and time to sexual maturity was found. Thus, selection should strengthen the relationship between body size and the time of sexual maturity. Theoretical work suggests the existence of a trade-off between reaching a large size and early sexual maturation in insects. The present study does not support the existence of this kind of trade-off. Recent theoretical and empirical work like the one reported here suggests that such a trade-off may not be necessarily expected if growth rates (which are often assumed to be invariable) are affected by environmental and genetic factors.  相似文献   

12.
13.
A classical data set is used to predict the effect of selection on sexual dimorphism and on the population means of three characters—stature, span, and cubit—in humans. Given selection of equal intensity, the population means of stature and of cubit should respond more than 60 times as fast as dimorphism in these characters. The population mean of span should also respond far more rapidly than dimorphism, but no numerical estimate of the ratio of these rates was possible. These results imply that sexual dimorphism in these characters can evolve only very slowly. Consequently, hypotheses about the causes of sexual dimorphism cannot be tested by comparing the dimorphism of different human societies. It has been suggested that primate sexual dimorphism may be an allometric response to selection for larger body size. We show that such selection can indeed generate sexual dimorphism, but that this effect is too weak to account for the observed relationship between dimorphism and body size in primates.  相似文献   

14.
Sexual selection can act through variation in the number of social mates obtained, variation in mate quality, or variation in success at obtaining extra-pair fertilizations. Because within-pair fertilizations (WPF) and extra-pair fertilizations (EPF) are alternate routes of reproduction, they are additive, rather than multiplicative, components of fitness. We present a method for partitioning total variance in reproductive success (a measure of the opportunity for selection) when fitness components are both additive and multiplicative and use it to partition the variance into components that correspond to each mechanism of sexual selection. Computer simulations show that extra-pair fertilizations can either increase or decrease total variance, depending on the covariance between within-pair and extra-pair success. Simulations also suggest that for socially monogamous species, extra-pair fertilizations have a greater effect than variation in mate quality or pairing status on the opportunity for selection. Application of our model to data gathered for a population of red-winged blackbirds (Agelaius phoeniceus) indicates that most of the variance in male reproductive success was attributable to within-pair sources of variance. Nevertheless, extra-pair copulations increased the opportunity for selection because males varied both in the proportion of their social young that they sired and in the number of extra-pair mates that they obtained. Furthermore, large and positive covariances existed between the number of extra-pair mates a male obtained and both social pairing success and within-pair paternity, indicating that, in this population, males preferred as social mates also were preferred as extra-pair mates.  相似文献   

15.
Mating in social insects has generally been studied in relation to reproductive allocation and relatedness. Despite the tremendous morphological diversity in social insects, little is known about how individual morphology affects mating success. We examined the correlation of male size and shape with mating success in the western harvester ant, Pogonomyrmex occidentalis. Larger males had significantly higher mating success in two independent collections of males at mating aggregations. We also detected significant linear and nonlinear selection on aspects of male shape that were consistent across years. These shape components are independent of size, suggesting that male mating success is a complex function of size and shape. Successful males had elongate thoraxes and short mandibles relative to males collected at random at the lek. Overall, mated males also had longer postpetioles relative to body size, but there was also evidence of nonlinear selection on relative postpetiole length in both years. We found no evidence of assortative mating based on size or multivariate shape measures in either year, but in one year we found weak assortative mating based on some univariate traits.  相似文献   

16.
A fundamental assumption of sexual selection theory is that the reproductive advantage of large size is balanced by a survival disadvantage. Previous studies of the sexually size-dimorphic red-winged blackbird ( Agelaius phoeniceus ) have indicated that the largest adult males have a survival advantage, suggesting that the limit to male size may be the cost of getting big rather than the cost of being big. If the cost of getting big limits male size, then starvation rates for male nestlings should exceed those of female nestlings. In addition, given high heritability of body size, larger parents should lose more nestlings, particularly males, to starvation. We tested these predictions for red-winged blackbirds using data on the sex of 1356 fledglings from 465 nests collected over 10 years. We found no disadvantage for male nestlings relative to females – 49% of fledglings were male and previous research had shown that 48% of hatchlings are male. We also found no disadvantage for male nestlings that would become large adults (i.e. those with larger parents) – partial brood loss and fledging sex ratios did not vary with mid-parent size. Given no apparent disadvantage to large size for males either as adults or as nestlings, this leaves only the period between fledging and adulthood during which natural selection might limit sexual size dimorphism, although other mechanisms might explain the failure to find a limit to male size.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 353–361.  相似文献   

17.
There is little evidence from nature that divergent natural selection is crucial to speciation. However, divergent selection is implicated if traits conferring adaptation to alternative environments also form the basis of reproductive isolation. We tested the importance of body size differences to premating isolation between two sympatric sticklebacks. The species differ greatly in size, and several lines of evidence indicate that this difference is an adaptation to alternative foraging habitats. Strong assortative mating was evident in laboratory trials, but a few hybridization events occurred. Probability of interspecific mating was strongly correlated with body size: interspecific spawning occurred only between the largest individuals of the smaller species and the smallest individuals of the larger species. Probability of spawning between similar-sized individuals from different species was comparable to spawning rates within species. Disruption of mating between individuals from different species can be traced to increased levels of male aggression and decreased levels of male courtship as size differences increased between paired individuals. Interspecific mate preferences in sympatric sticklebacks appears to be dominated by body size, implicating natural selection in the origin of species.  相似文献   

18.
Extreme morphologies of many insular taxa suggest that islands have unusual properties that influence the tempo and mode of evolution. Yet whether insularity per se promotes rapid phenotypic evolution remains largely untested. We extend a phylogenetic comparative approach to test the influence of novel environments versus insularity on rates of body size and sexual size dimorphism diversification in Anolis . Rates of body size diversification among small-island and mainland species were similar to those of anole species on the Greater Antilles. However, the Greater Antilles taxa that colonized small islands and the mainland are ecologically nonrandom: rates of body size diversification among small-island and mainland species are high compared to their large-island sister taxa. Furthermore, rates of diversification in sexual size dimorphism on small islands are high compared to all large-island and mainland lineages. We suggest that elevated diversifying selection, particularly as a result of ecological release, may drive high rates of body size diversification in both small-island and mainland novel environments. In contrast, high abundance (prevalent among small-island lizard communities) mediating intraspecific resource competition and male–male competition may explain why sexual size dimorphism diversifies faster among small-island lineages than among their mainland and large-island relatives.  相似文献   

19.
20.
Drosophila melanogaster populations subjected to extreme larval crowding (CU lines) in our laboratory have evolved higher larval feeding rates than their corresponding controls (UU lines). It has been suggested that this genetically based behavior may involve an energetic cost, which precludes natural selection in a density-regulated population to simultaneously maximize food acquisition and food conversion into biomass. If true, this stands against some basic predictions of the general theory of density-dependent natural selection. Here we investigate the evolutionary consequences of density-dependent natural selection on growth rate and body size in D. melanogaster. The CU populations showed a higher growth rate during the postcritical period of larval life than UU populations, but the sustained differences in weight did not translate into the adult stage. The simplest explanation for these findings (that natural selection in a crowded larval environment favors a faster food acquisition for the individual to attain the same final body size in a shorter period of time) was tested and rejected by looking at the larva-to-adult development times. Larvae of CU populations starved for different periods of time develop into comparatively smaller adults, suggesting that food seeking behavior in a food depleted environment carries a higher cost to these larvae than to their UU counterparts. The results have important implications for understanding the evolution of body size in natural populations of Drosophila, and stand against some widespread beliefs that body size may represent a compromise between the conflicting effects of genetic variation in larval and adult performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号