首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are several bacterial polysaccharides (PSs) which contain a terminal lipid moiety. It has been postulated that these terminal lipid moieties anchor the PSs to the outer membrane of the bacteria. Our studies have shown that incubation of native PS from group C Neisseria meningitidis or Haemophilus influenzae type b with isolated outer membrane vesicles results in association of a portion of the PS with the vesicles. Removal of the terminal lipid from the PS by treatment with phospholipase A2 or phospholipase D eliminates this association. In other studies, it was shown that delipidated PSs are not suitable as solid-phase antigens in a currently used enzyme-linked immunosorbent assay (ELISA). Measurement of antibody units in the reference sera by using delipidated PSs as antigens in an ELISA yielded negligible absorbance compared with native PSs when methylated human serum albumin was used to coat the PSs to the plate. Nevertheless, phospholipase A2 and phospholipase D treatment did not noticeably affect antigenic epitopes, since soluble group C PS without the terminal lipid bound antibody as effectively as the native PS did, as measured by a competitive inhibition assay. Both hydrophobic and electrostatic interactions are important for the binding of group C N. meningitidis PS to the ELISA plate, while charge interactions seem to be sufficient for binding the more negatively charged H. influenzae type b PS.  相似文献   

2.
Each of five monoclonal antibodies (mAbs) prepared against the type 1 fimbriae of Actinomyces viscosus T14V reacted with a 54 kDa cloned protein previously identified as a fimbrial subunit. This purified protein completely inhibited the reaction of a specific anti-type-1-fimbria rabbit antibody with A. viscosus whole cells. Maximum values for the number of antibody molecules bound per bacterial cell ranged from 7 x 10(3) to 1.2 x 10(4) for the different 125I-labelled mAbs and was approximately 7 x 10(4) for 125I-labelled rabbit IgG or Fab against either type 1 fimbriae or the 54 kDa cloned protein. Although the different mAbs, either individually or as a mixture, failed to inhibit the type-1-fimbria-mediated adherence of A. viscosus T14V to saliva-treated hydroxyapatite, each rabbit antibody gave 50% inhibition of adherence when approximately 5 x 10(4) molecules of IgG were bound per cell. However, binding of each corresponding rabbit Fab had no significant effect on bacterial attachment unless much higher concentrations were used. These findings suggest that antibodies directed solely against the 54 kDa fimbrial subunit do not react with the putative receptor binding sites of A. viscosus T14V type 1 fimbriae. Instead, inhibition of attachment by the polyclonal antibodies may depend on an indirect effect of antibody binding that prevents the fimbria-receptor interaction.  相似文献   

3.
Influenza A viruses, including H1N1 and H5N1 subtypes, pose a serious threat to public health. Neuraminidase (NA)-related immunity contributes to protection against influenza virus infection. Antibodies to the N1 subtype provide protection against homologous and heterologous H1N1 as well as H5N1 virus challenge. Since neither the strain-specific nor conserved epitopes of N1 have been identified, we generated a panel of mouse monoclonal antibodies (MAbs) that exhibit different reactivity spectra with H1N1 and H5N1 viruses and used these MAbs to map N1 antigenic domains. We identified 12 amino acids essential for MAb binding to the NA of a recent seasonal H1N1 virus, A/Brisbane/59/2007. Of these, residues 248, 249, 250, 341, and 343 are recognized by strain-specific group A MAbs, while residues 273, 338, and 339 are within conserved epitope(s), which allows cross-reactive group B MAbs to bind the NAs of seasonal H1N1 and the 1918 and 2009 pandemic (09pdm) H1N1 as well as H5N1 viruses. A single dose of group B MAbs administered prophylactically fully protected mice against lethal challenge with seasonal and 09pdm H1N1 viruses and resulted in significant protection against the highly pathogenic wild-type H5N1 virus. Another three N1 residues (at positions 396, 397, and 456) are essential for binding of cross-reactive group E MAbs, which differ from group B MAbs in that they do not bind 09pdm H1N1 viruses. The identification of conserved N1 epitopes reveals the molecular basis for NA-mediated immunity between H1N1 and H5N1 viruses and demonstrates the potential for developing broadly protective NA-specific antibody treatments for influenza.  相似文献   

4.
Streptococcus pneumoniae group 9 includes four capsular polysaccharide types: 9A, 9L, 9N and 9V. We have generated four mouse monoclonal antibodies against group 9 polysaccharide using heat-treated S. pneumoniae strains of different capsular polysaccharides types as immunogens. The specificities of the monoclonal antibodies were determined by ELISA using capsular polysaccharide directly coated to the wells as antigens and by dot blotting with heat-treated bacteria. Two groups of monoclonal antibodies were found. The first group included two monoclonal antibodies which were found to be capsular type specific. The second group was monoclonal antibodies that bound to epitopes shared by two or three pneumococcal group 9 types. The monoclonal antibody 204,A-4 (IgM) was found to be specific for S. pneumoniae type 9N. The binding of the type 9V specific monoclonal antibody 206,F-5 (IgG1) was found to be dependent upon O-acetyl groups. Monoclonal antibody 205,F-3 (IgM) reacted also with type 9V, but was found to cross-react with types 9A and 9L. The binding of this monoclonal antibody to polysaccharide 9V was not dependent upon O-acetyl moieties. The fourth monoclonal antibody (214,G-5, isotype IgM) did not show any correlation between reactivity with isolated polysaccharides and dot blotting with relevant bacteria. The monoclonal antibody reacted with polysaccharides 9A and 9L in ELISA, but not with the homologous bacteria.  相似文献   

5.
Immunity to influenza A H9N2 viruses induced by infection and vaccination   总被引:8,自引:0,他引:8  
Avian influenza A H9N2 viruses are widespread among domestic poultry and were recently isolated from humans with respiratory illness in China. Two antigenically and genetically distinct groups of H9N2 viruses (G1 and G9) are prevalent in China. To evaluate a strategy for vaccination, we compared G1 and G9 viruses for their relative immunogenicity and cross-protective efficacy. Infection of BALB/c mice with representative viruses of either group protected against subsequent challenge with the homologous or heterologous H9N2 virus in the absence of detectable cross-reactive serum hemagglutination inhibition antibody. Mice injected intramuscularly with inactivated G1 whole virus vaccine were completely protected from challenge with either H9N2 virus. In contrast, mice administered inactivated G9 vaccine were only partially protected against heterologous challenge with the G1 virus. These results have implications for the development of human vaccines against H9N2 viruses, a priority for pandemic preparedness.  相似文献   

6.
We have generated four mouse monoclonal antibodies (MAbs) to bovine papillomavirus virions that bound type-specific, adjacent, and conformationally dependent epitopes on the L1 major capsid protein. All four MAbs were neutralizing at ratios of 1 MAb molecule per 5 to 25 L1 molecules, but only three effectively blocked binding of the virus to the cell surface. Therefore, antibodies can prevent papillomavirus infection by at least two mechanisms: inhibition of cell surface receptor binding and a subsequent step in the infectious pathway. The neutralizing epitopes of the bovine papillomavirus L2 minor capsid protein were mapped to the N-terminal half of L2 by blocking the neutralizing activity of full-length L2 antiserum with bacterially expressed peptides of L2. In addition, rabbit antiserum raised against amino acids 45 to 173 of L2 had a neutralizing titer of 1,000, confirming that at least part of the N terminus of L2 is exposed on the virion surface.  相似文献   

7.
Hyperimmune and high-titered polyclonal pneumococcal antisera, specific for cross-reactive types within groups, were produced in adult rabbits. Purified capsular polysaccharide was injected intravenously into adult rabbits. One week later, these rabbits were given multiple intravenous injections of formalin-inactivated pneumococci of the cross-reactive type by an established method. Each of the resultant antisera were specific for the cross-reactive type indicating that the previous injection of the polysaccharide had induced epitope-specific tolerance. This method was successful for production of antisera against pneumococcal types 6A, 6B, 9N, 9V, 19F and 19A. Polyclonal rabbit pneumococcal antisera have some advantages over murine monoclonal antibodies for serologic studies and this method should be applicable for producing type-specific antibodies to cross-reactive polysaccharides of clinical interest. Further, this method is simpler and generally produces higher titered monovalent (factor) reagents than absorbed antisera.  相似文献   

8.
Chi Jen Lee 《Biologicals》2002,30(2):97-103
A nephelometric method was used for quantitative analysis of individual polysaccharides (PSs) in a polyvalent pneumococcal conjugate vaccine using CRM(197) as carrier protein. Using this method, the individual types 4, 6B, 9V, 14, 18C, 19F and 23F PSs were found to range between 82.3 to 119% of the manufacturer's indicated values.During conjugation using reductive amination, pneumococcal PS was first oxidized to introduce aldehyde groups. Higher or lower levels of antigen-antibody reaction were observed in periodate activated and then reduced PS of some serotypes compared to non-treated PS. Use of oxidized and reduced PS may provide an early indication of change in conjugation process. Furthermore, since the final monovalent and polyvalent conjugate vaccines gradually change during the storage period, the nephelometry provides an useful analytical method for stability study of these vaccines.  相似文献   

9.
Frequent mutations in hypervariable region 1 (HVR1) of the main envelope protein of hepatitis C virus (HCV) is a major mechanism of persistence by escaping the host immune recognition. HVR1 contains an epitope eliciting neutralizing antibodies. This study was aimed to prepare broadly cross-reacting, high-affinity, monoclonal antibodies (MAb) to the HVR1 C terminus of HCV with potential therapeutic neutralizing capacity. A conserved amino residue group of glycine (G) at position 23 and glutamic acid (Q) at position 26 in HVR1 was confirmed as a key epitope against which two MAbs were selected and characterized. MAbs 2P24 and 15H4 were immunoglobulin G1 kappa chain [IgG1(kappa)], cross-reacted with 32 and 30 of 39 random C-terminal HVR1 peptides, respectively, and did not react with other HCV peptides. The V(H) of 2P24 and 15H4 heavy chains originated from Igh germ line v gene family 1 and 8, respectively. In contrast, the V(L) kappa sequences were highly homologous. The affinity (K(d)) of 2P24 and 15H4 (10(-9) or 10(-8) M with two immunizing peptides and 10(-8) M with two nonimmunizing HVR1 peptides) paralleled the reactivity obtained with peptide enzyme immunoassay. MAbs 2P24 and 15H4 captured 25 of 31 (81%) HCV in unselected patients' plasmas. These antibodies also blocked HCV binding to Molt-4 cells in a dose-dependent fashion. The data presented suggest that broadly cross-reactive MAbs to a conserved epitope within HCV HVR1 can be produced. Clinical application for passive immunization in HCV-related chronic liver disease and after liver transplantation is considered.  相似文献   

10.
In a previous study [Pantophlet, R., Brade, L., Dijkshoorn, L., and Brade, H. (1998) J. Clin. Microbiol. 36, 1245-1250] the O-polysaccharide of the lipopolysaccharides (LPS) from Acinetobacter haemolyticus strains 57 and 61 exhibited indistinguishable banding-patterns following Western blot and immunostaining with homologous or heterologous rabbit antiserum. In this report, the molecular basis for the observed cross-reactivity was elucidated, by determining the chemical structure of the polysaccharides by compositional analysis and NMR spectroscopy. The structures are: [sequence: see text] for strain 61 [GulpNAcA, 2-acetamido-2-deoxy-gulopyranosyluronic acid; ManpNAcA, 2-acetamido-2-deoxy-mannopyranosyluronic acid; QuipN4N, 2,4-diamino-2,4,6-trideoxy-glucopyranose; acyl (S)-3-hydroxybutyryl], thus, differing only in the anomeric configuration of the QuipN4N residue. The antigenic structures were determined by generating murine monoclonal antibodies, which were characterized by Western blot using LPS as antigen, by ELISA using LPS and de-O-acylated LPS as solid-phase antigens, and by ELISA inhibition studies using LPS, polysaccharide, and de-O-acylated LPS as inhibitors. Of the four antibodies selected, two were specific for the respective LPS moieties and two were cross-reactive. All antibodies were found to require the presence of the O-acetyl group for reactivity.  相似文献   

11.
Monoclonal antibodies (MAb) reactive with the glycoprotein of vesicular stomatitis virus (VSV) serotypes Indiana (VSV-Ind) and New Jersey (VSV-NJ) were used to protect mice against lethal infection. MAb which reacted with a number of distinct epitopes and which could neutralize the virus in vitro could also protect against infection in vivo. MAb which could not neutralize the virus in vitro but which were specific for the glycoprotein of a single serotype were also able to protect mice against lethal VSV challenge. Interestingly, a group of MAb which cross-reacted with the glycoproteins of VSV-Ind and VSV-NJ could passively protect against challenge with either serotype. It was shown that as early as 2 h after infection, neither neutralizing nor nonneutralizing MAb could protect. Nonneutralizing MAb were found to be less effective at in vivo protection than neutralizing MAb. Furthermore, nonneutralizing MAb demonstrated a much lower binding efficiency to intact virions than did neutralizing MAb. These observations, plus the fact that the nonneutralizing MAb could lyse virus-infected cells in the presence of complement, suggested that in vivo protection by these antibodies may involve cell-associated viral determinants. To compare the mechanisms by which neutralizing and nonneutralizing MAb protected in vivo, F(ab')2 fragments were used in protection experiments. Although the F(ab')2 of a neutralizing MAb was still able to protect animals lethal virus challenge, the F(ab')2 of a cross-reactive nonneutralizing MAb was unable to do so. The reactivity of nonneutralizing MAb with virions and the apparent necessity of an intact Fc portion for protection further distinguish these antibodies from those MAb that are able to neutralize VSV solely by binding to the glycoprotein.  相似文献   

12.
Neutralizing antibody protection against HIV-1 may require broad and potent antibodies targeting multiple epitopes. We tested 7 monoclonal antibodies (MAbs) against 45 viruses of diverse subtypes from early infection. The CD4 binding site MAb NIH45-46W was most broad and potent (91% coverage; geometric mean 50% inhibitory concentration [IC(50)], 0.09 μg/ml). Combining NIH45-46W and a V3-specific MAb, PGT128, neutralized 96% of viruses, while PGT121, another V3-specific MAb, neutralized the remainder. Thus, 2 or 3 antibody specificities may prevent infection by most HIV-1 variants.  相似文献   

13.
Monoclonal antibodies TKH2 and B72.3, which react with the mucin-associated sialyl-Tn(STn) antigen, preferentially bind to cancerous but not normal colonic tissues. If O-acetyl groups are removed by saponification of tissues, MAb TKH2 will react with normal colonocytes, whereas MAb B72.3 remains non-reactive. To explain this difference in binding specificity, we tested both MAbs against synthetic constructs of single (monomeric) or clustered (trimeric) STn epitopes by enzyme immunoassay. Both MAb TKH2 and MAb B72.3 reacted with trimeric STn, but MAb TKH2 demonstrated greater binding than MAb B72.3 to monomeric STn. This suggests that normal colonic mucosa expresses monomeric STn epitopes, but that with transformation to malignancy, clustered STn epitopes appear. The appearance of clustered STn epitopes during colonic carcinogenesis represents a novel pattern of carbohydrate antigen expression and implicates alterations at the level of apomucins and/or glycosyltransferases responsible for cluster epitope formation.  相似文献   

14.
The cross-reactivity and chemical characterization of the nongroupable streptococcal and pneumococcal group 19 polysaccharides (PS) have been studied. Extensive cross-reactions were observed between capsular PSs of streptococcal strains 14636/74, 4907, 4731 and pneumococcal type 19F and 19A antisera. Streptococcal 14636/74 PS had an identical composition to that of pneumococcal 19F PS. Type 19F and 14636/74 PS were composed of equimolar amounts of rhamnose, glucose, N-acetyl mannosamine, and phosphorus. The capsular PS of strains 4731 and 4907 contained rhamnose, glucose, ribose, N-acetyl mannosamine, and N-acetyl glucosamine in different molar ratios. Extensive immunologic reactivity was observed between the 19F and 14636/74 PS, as determined by light scattering rate nephelometry, passive immune hemolysis, and precipitin reaction. There was an identity reaction by immunodiffusion between type 19F and 14636/74 PS when reacted with rabbit antiserum against either organism. Biochemical studies showed that strain 14636/74 was not a pneumococcus, because it was optochin resistant, was bile insoluble, did not possess the C-carbohydrate antigen common to all pneumococci, and produced neither pneumolysin nor IgA protease. Furthermore, it grew in comparatively simple media in contrast to the complex nutritional requirements of pneumococci. The 13C-NMR spectra of the 19F and 14636/74 PS were identical. These two capsular PS can, therefore, be considered identical.  相似文献   

15.
Noroviruses are major pathogens associated with acute gastroenteritis. They are diverse viruses, with at least six genogroups (GI-GVI) and multiple genotypes defined by differences in the major capsid protein, VP1. This diversity has challenged the development of broadly cross-reactive vaccines as well as efficient detection methods. Here, we report the characterization of a broadly cross-reactive monoclonal antibody (MAb) raised against the capsid protein of a GII.3 norovirus strain. The MAb reacted with VLPs and denatured VP1 protein from GI, GII, GIV and GV noroviruses, and mapped to a linear epitope located in the inner shell domain. An alignment of all available VP1 sequences showed that the putative epitope (residues 52–56) is highly conserved across the genus Norovirus. This broadly cross-reactive MAb thus constitutes a valuable reagent for the diagnosis and study of these diverse viruses.  相似文献   

16.
Three cross-reactive idiotopes(Id), termed IdX, IdI-1, and Id5, that are present on free L chains from murine anti-group A streptococcal carbohydrate antibodies have been mapped; these Id distinguish between products of three homologous V kappa genes. For each determinant, sequence analysis of anti-streptococcal group A carbohydrate antibody V domains yielded small numbers of amino acids invariably associated with Id expression. Flow micro-fluorimetry was used to isolate three IdI-1- spontaneous mutants of the IdI-1+ hybridoma GAC 39; all had single amino acid changes in the L chain at position 60 and 77, all retained other Id, and all bound group A carbohydrate. Computer modeling was used to examine spatial relationships between Id. A number of the conserved Id5 and IdX residues cluster in the L chain framework region 1 around the first back loop connecting strands of the beta pleated sheets, and overlap at residue 15 (Id5, proline; IdX, leucine). This overlap accords with the mutually exclusive expression of Id5 and IdX. The IdI-1 loss variants have mutations of residues 60 or 77 on adjacent back loops, approximately 7.5 and 14 A from residue 15. Competitive inhibition of anti-IdX and anti-IdI-1 binding to antibodies expressing both Id can be attributed to steric hindrance. The framework back loops may be favored sites for cross-reactive Id expressed by products of a single V region gene. IdI-3a, an individual Id not associated with use of a particular gene segment, has been localized in part to residue 31 (hypervariable region 1) of the H chain.  相似文献   

17.
The present study disclosed the cross-reactivity between Bermuda grass pollen (BGP) and other grass pollens using monoclonal antibodies (MAbs) and polyclonal antiserum. MAb 9–13, directed against a group of minor allergens of BGP (Cyn d Bd68K, 48K, 38K) was found to cross-react with extracts of ten other grass pollens. Immunoblotting assays illustrated that MAb 9–13 cross-reacted with multiple components of most of these pollens, and the major cross-reactive components had molecular weights of 29–36 kD. The cross-reactivity between BGP andLol pI, the group I allergen of rye grass pollen, was further evaluated;Lol pI was recognized by MAb 9–13, but not by our MAbs/polyclonal antiserum againstCyn dI, the major allergen of BGP. These results suggest that the epitope recognized by MAb 9–13 is a common (C) epitope shared byLol pI andCyn d Bd68K, 48K, 38K, andCyn dI does not share significant antigenicity withLol pI. In a modified radio-allergosorbent test, IgE antibodies in the serum of BGP-allergic patients reacted mildly with C-epitope-bearing components of both BGP and rye grass pollens, and this binding could be blocked specifically by MAb 9–13. This suggests that in addition to an antigenic cross-reaction, the C epitope can also lead to an allergenic cross-reaction.  相似文献   

18.
Antibodies prepared in rabbits against Escherichia coli ribosomal proteins L7/L12 are reported to be immunologically cross-reactive with some ribosomal proteins on the 60 S subunit of eukaryote ribosomes (Wool & Stöffler, 1974; Stöffler et al., 1974). We have confirmed these reports and extended this finding to a detailed study of the functional properties of eukaryote ribosomes which are affected by these cross-reacting antibodies. We report here the partial reactions in protein synthesis that are inhibited by the anti-L7/L12 IgG (immunoglobulin G) preparations using a chicken liver system. The following reactions were inhibited: EF-1 (elongation factor 1) dependent binding of aminoacyl-tRNA to ribosomes and GTP hydrolysis; EF-2 dependent binding of nucleotide to ribosomes and GTP hydrolysis; binding of [14C]ADP-ribosyl · EF-2 to ribosomes. This last reaction is more sensitive to the antibody inhibition than the corresponding nucleotide binding reaction. We show that the inhibitions were not simply non-specific precipitation of ribosomes by IgG, in that monovalent Fabs were also inhibitory, and peptidyl transferase activity was not inhibited. The functions inhibited with the IgG preparations in the chicken liver system are analogous to those inhibited in the homologous E. coli system. Thus the cross-reacting protein is functionally as well as immunologically conserved.  相似文献   

19.
Serotypes O2, O5, and O16 of Pseudomonas aeruginosa are chemically related, and the O antigens of their lipopolysaccharides share a similar trisaccharide repeat backbone structure. Serotype-specific monoclonal antibodies (MAbs) MF71-3, MF15-4, and MF47-4 against the O2, O5, and O16 serotypes, respectively, were isolated. MAb 18-19, which is cross-reactive with all strains of this chemically related serogroup, was also produced. When column chromatography or sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated lipopolysaccharide (LPS) samples from each of the serotypes were probed with the MAbs in Western immunoblots, each of the serotype-specific MAbs interacted only with high-molecular-weight bands of the homologous LPS, with a minimum O-antigen chain length of at least 6 to 10 repeats. In contrast, cross-reactive MAb 18-19 was shown to interact in Western immunoblots with the entire LPS banding pattern except the fastest-running band, which lacks O antigen. Chemical modification of P. aeruginosa LPS by alkali treatment and carboxyl reduction abolished reactions between LPS and MAb 18-19, while reactions of modified LPS with serotype-specific MAbs were not affected. Therefore, cross-reactive MAb 18-19 likely recognizes the chemical backbone structure of the O repeat that is common to all three serotypes of the O2-O5-O16 group, while the O-specific MAbs appeared to recognize LPS epitopes that could be presented when 6 to 10 or more O-antigen repeat units are present on the LPS molecule. Thus, the O-specific LPS epitopes likely involve unique chemical structures, glycosidic linkages, and some order of folding of the O side chains.  相似文献   

20.
We describe the use of four monoclonal antibodies (MAbs) to the rabbit liver growth hormone (GH) receptor and one raised against purified rat liver GH receptor to characterize liver receptor subtypes which differ in their hormone-binding regions. The anti-(rat liver GH receptor) MAb both inhibited and precipitated rat and rabbit GH receptors, but only one-half of 125I-oGH (ovine GH) binding to liver microsomes could be inhibited by excess antibody. Conversely, only one-half of 125I-anti-(rat GH receptor) MAb binding was inhibited by excess oGH and Scatchard plots for this MAb exhibited two components. Although only 50% of 125I-oGH binding to membranes was inhibited by this MAb, all solubilized receptor could be immunoprecipitated. We postulate two epitopes for the anti-(rat GH receptor) MAb, one located at the hormone-binding site (inhibitory site) and one elsewhere (immunoprecipitating site). A second, rabbit-specific antibody (MAb 7) inhibited 85% of hormone binding but only 30% of 125I-anti-(rat GH receptor) MAb binding to rabbit liver microsomes. A combination of this MAb with the anti-(rat GH receptor) MAb totally inhibited 125I-oGH binding. MAb 7 alone totally inhibited 125I-rat GH binding to rabbit liver microsomes, as it did with 125I-oGH binding to purified receptor. On the basis of these results and others we postulate three types of GH receptor in rabbit liver membranes and ascribe approximate extents of 125I-oGH binding to each. A cytosolic 'GH receptor' which is not poly(ethylene glycol)-precipitable is shown to share five epitopes with 'type 2' microsomal receptors. Purified plasma membrane and endoplasmic reticulum fractions derived from a rabbit liver microsomal preparation have identical antigenic characteristics with respect to the GH-binding region, indicating that the heterogeneity we describe is not related to receptor processing. Of the three types of GH receptor in the plasma membrane of the rabbit (and possibly rat) we postulate that one (type 1) corresponds to the GH receptor involved in stimulating growth and possesses all of the epitopes studied here. A second (type 2) appears to be identical with the cytosolic 'GH receptor' and lacks the epitope for the anti-(rat GH receptor) MAb in the hormone binding site region. A third (type 3) does not possess the epitope for the inhibitory anti-(rabbit GH receptor) MAb, appears not to bind rat GH and is lost during purification. The availability of type-specific MAbs will facilitate assignment of specific functions to liver receptor subtypes which mediate the multiple functions of GH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号