共查询到20条相似文献,搜索用时 0 毫秒
1.
Michael H. Graham 《Journal of phycology》1996,32(6):903-906
Laboratory and field experiments were done hi Still-water Cove, Carmel Bay, California, and Monterey Harbor, California, to determine the effect of photosynthetically active radiation (PAR) on the shallow (upper) limit of giant kelp, Macrocystis pyrifera (L.) C. Agardh. At shallow depths, M. pyrifera did not recruit or grow to macroscopic size from gametophytes or embryonic sporophytes transplanted to vertical buoy lines; sharp decreases in PAR with depth coincided with observed recruitment and sporophyte distributions. Shade manipulations indicated that settlement of M. pyrifera zoospores was decreased, but not prohibited, by high PAR. Postsettlement stages (gametophytes and embryonic sporophytes), however, survived only under shade. These results suggest that high PAR can inhibit the recruitment of M. pyrifera to shallow water by killing its postsettlement stages; whether or not ultraviolet (UV) radiation also inhibits recruitment was not tested. In either case, however, it appears that high irradiance (PAR and/or UV) regulates the shallow limit of M. pyrifera prior to temperature and desiccation stresses inherent to intertidal regions. In an additional experiment, recruitment or growth of transplanted gametophytes or embryonic sporophytes of Macrocystis integrifolia Bory also did not occur at shallow depths, suggesting that this shallow water species accesses high irradiance regions via a method other than sexual reproduction. 相似文献
2.
A method for extracting DNA from laminarialean algae resulting in DNA of sufficient quantity and purity for DNA fingerprints is presented. The method both eliminates the use of liquid N2 and delays the use of toxic chemicals in the initial extraction steps; thus, it is appropriate for use in remote field locations. The algal samples were ground in a solution of hexadecyltrimethylammonium bromide (CTAB) and polyvinylpyrrolidone (PVPP) at room temperature and then stored for 1 week in the CTAB-PVPP solution at room temperature before extraction with chloroform-isoamyl alcohol and purification by cesium chloride ultracentrifugation. No degradation of DNA was observed. Hybridization of RsaI-digested Macrocystis pyrifera (L.) C. Ag. DNA with the M13repeat probe yielded a DNA fingerprint with 12 discrete bands 4–19 kb in molecular size. 相似文献
3.
Multi-locus DNA fingerprints using an M13 probe were obtained for eight individuals of giant kelp Macrocystis pyrifera (L.) C. Ag. collected from Monterey Bay, California. For each individual, DNA was extracted from a diploid blade and from ca. 109 haploid spores that were released from four to Jive sporophylls. Viable or swimming spores from one individual were pooled and referred to as a spore group. A total of 34 bands (4–19 kb) was detected in DNA fingerprints from the eight blades and eight spore groups, with individual blade or spore groups exhibiting 7–18 bands (mean = 12.6). One band (4.5 kb) was present in all 16 samples. Eight bands were detected in 11–14 of the 16 samples. Similarity indices were calculated for all pairwise comparisons of fingerprint bands among all possible combinations of blades and spore groups. Mean similarity indices for the eight blades (0.51, SE = 0.032) and spore groups (0.56, SE = 0.031) were significantly lower than for the eight comparisons of the blade and spore groups from a single individual (0.86, SE = 0.052). The data indicate that DNA fingerprints can be used to measure genetic variation within populations of M. pyrifera because variation of DNA fingerprints associated with meiotic products (spores) of a given individual is small relative to variation observed among individuals within the population. Additionally, fingerprint variation between diploid vegetative tissue and haploid meiotic products may be a measure of genetic change due to recombination or DNA turnover mechanisms. 相似文献
4.
Photosynthetic rates measured in protoplasts isolated from the broivn alga Macrocystis pyrifera (L.) Ag. were compared to those for intact tissue. Both 14C incorporation and O2 evolution gave similar rates of light-saturated protoplast photosynthesis (approximately 0.4 mmol-g chl a?1· min?1). Light saturated photosynthetic rates (Pmax) and light harvesting efficiencies (α) of protoplasts were approximately 40% those of intact tissue. In contrast, protoplasts had a greater substrate affinity for photosynthetic HCO3 uptake (lower K0.5) than intact tissue (0.87 and 4.1 mMolar, respectively), presumably because of a reduction in the thickness of the unstirred boundary layer in the absence of the cell wall. Overall, the data suggest that protoplasts isolated from Macrocystis pyrifera are of valur in the study of photosynthesis. However, experiments with intact tissue are necessary as controls to aid interpretation of protoplast data. 相似文献
5.
The seasonal photosynthetic performances of three age classes of blades of Macrocystis integrifolia Bory were estimated by studying their photosynthetic rate vs. irradiance curves and pigment contents for 15 months. All blade types were irradiance-saturated between 25 and 70 μE · m?2· S?1. Young and mature blade tissues had higher photosynthetic maxima and initial slopes on an area basis than older blade tissue. The latter, however, had pigment concentrations similar to those in mature blade tissues. All these parameters varied on a seasonal basis. The photosynthetic maxima ranged from 0.1–0.8 μmol · C · cm?2· h?t and showed two peaks, one in late summer-early fall and the other in late winter. Changes in initial slope and pigment concentrations in the blade tissues suggest that, changes in the size or efficiency of electron transfer in the photosynthetic unit occur. These data are discussed in relation to changes in seawater temperature and nitrate concentrations. 相似文献
6.
Juvenile sporophytes of the giant kelp, Macrocystis pyrifera (L.) C. A. Agardh, were transplanted from local kelp beds to stations located various distances from the outfall from an electrical generating station that was known to cause an increase in the settlement of fouling organisms. Plants near the outfall became heavily fouled by the encrusting bryozoan, Membranipora membranacea (L.), and lost about one-third of their blades during the course of the experiment. Blade loss was significantly correlated with amount of fouling. To test the hypothesis that fouling causes blade loss, we paired fouled and unfouled plants of about the same age, overall length, and number of fronds and placed them at stations in nearby kelp beds and near the outfall. At the stations in the kelp beds, the fouled plants lost blades more rapidly than the unfouled controls. However, at the station near the outfall the “control” plants quickly became fouled so there was little difference in treatments and there was no significant difference in blade loss. Plants fouled by Membranipora suffered greater blade loss than clean plants probably because fouled blades are fragile and break off easily and because fish bite off chunks of blade while foraging on the attached bryozoans. 相似文献
7.
Lydia B. Ladah José A. Zertuche-González Gustavo Hernández-Carmona 《Journal of phycology》1999,35(6):1106-1112
During the ENSO event of 1997–1998, density and population structure were evaluated in a Macrocystis pyrifera forest located in Bahía Tortugas, Baja California, Mexico, near the southern limit of the species' distribution in the Northern Hemisphere. Observations in Bahía Tortugas were made quarterly from January 1997 to September 1998 using SCUBA diving surveys. No macroscopic plants were found in the Bahía Tortugas area from October 1997 to April 1998, a local absence of at least 7 months. Aerial surveys further suggest regional disappearance along most of the Baja California coast during the event. Unexpectedly, plants were found in Bahía Tortugas again in July 1998, in spite of the widespread disappearance of the species less than a year earlier. Long-distance spore dispersal was an unlikely cause of the recruitment because: 1) the nearest spore source was more than 100 km away; 2) recruitment appeared to be simultaneous at many sites and occurred rapidly after the cessation of the ENSO event; and 3) the recruits occurred in the same areas as before disappearance. We suggest that a microscopic stage that was not visible during dive surveys survived the stressful conditions of ENSO and caused the recruitment event, supporting the hypothesis that a bank of microscopic forms can survive conditions stressful to macroscopic algae. 相似文献
8.
Radioactive bicarbonate was pulse fed to blades of Macrocystis pyrifera (L.) C. A. Ag. and the movement of the 11C-labelled photoassimilates was monitored in vivo using an externally mounted array of Geiger-Müller detectors. Results of experiments conducted in August 1982 and February 1983 showed kinetic transport profiles composed of short pulses of 11C (periods of two to three minutes and six to eight minutes) and a mass flow component travelling with a speed of 6–22 cm · h?1. The pulse-like movement of 11C-photoassimilates, revealed for the first time in a kelp, may be driven by an energy-assisted transport mechanism. Light microscopy revealed a putative symplastic transport pathway from the photo synthetic meristoderm to the medullary sieve cells in the M. pyrifera blade. Of particular importance were the connections between the inner cortical cells and thin-walled medullary sieve cells. Electron microscopy showed sieve plate pore diameters ranging between 35–60 nm in the cortex and ca. 40 nm in the end walls of the thin-walled sieve cells. 相似文献
9.
Multi-locus DNA fingerprints using an M13 probe were obtained for two individuals of Macrocystis pyrifera (L.) C. Ag. collected from Monterey Bay, California, and their laboratory-reared offspring. DNA was extracted from each of two field-collected individuals (= parents), their self-fertilized diploid offspring (three and seven individuals), and one diploid individual resulting from spores of the two parents. A total of 20 bands (4–19 kb) was detected among all individuals, ranging from 7 to 14 bands for any one individual. Two bands were present in all individuals, and three bands were unique to one parent and its three progeny. Ten bands were observed in the out-crossed individual, of which three were inherited from one parent, two from the other parent, and five were present in both parents. Genetic similarity between each parent and their self-fertilized offspring was significantly higher than similarity between the two self-fertilized groups. The data show that multi-locus DNA fingerprints can be used to assess parentage in the giant kelp and that there is consistent agreement between genetic similarity and known genetic relatedness among parents and offspring. 相似文献
10.
Laboratory studies were used to examine how variation in the density of spore settlement influences gametophyte growth, reproduction, and subsequent sporophyte production in the kelps Pterygophora californica Ruprecht and Macrocystis pyrifera (L.) C. Ag. In still (non-aerated) cultures, egg maturation in both species was delayed when spores were seeded at densities 300 · mm?2. Although the density at which this inhibition was first observed was similar for both species, the age at which their eggs matured was not. P. californica females reached sexual maturity an average of 4 days (or ~ 30%) sooner than did M, pyrifera. As observed previously in field experiments, per capita sporophyte production was negatively density dependent for both species when seeded at spore densities of 10 · mm?2. Total sporophyte production (i.e. number · cm?2) for both species, however, was greatest at intermediate densities of spore settlement (~ 50 spores · mm?2). In contrast, total sporophyte production by P. californica steadily increased with increasing spore density in aerated cultures; highest sporophyte density was observed on slides seeded at a density of 1000 spores · mm?2. Preliminary experiments with P. californica involving manipulation of aeration and nutrients indicate that inhibition of gametophyte growth and reproduction at higher densities of spore settlement in non-aerated cultures was probably caused by nutrient limitation. 相似文献
11.
Gametophytes of Macrocystis pyrifera (L.) C. Ag. were cultured under a series of quantum irradiances in three photoperiod regimes. The quantum irradiances in each photoperiod were adjusted to provide equal daily irradiation dosages between photoperiods which allowed a critical examination of the interactions between quantum irradiance and quantum dose in determining gametophyte fertility. The lowest quantum irradiance which stimulated gametogenesis in more than 50% of the female gametophytes was 5 μE·m?2·s?1. The saturating irradiance was ca. 10 μE·m?2·s?1 at photoperiods of 12 h or greater. In terms of daily quantum dose, the lowest dose at which greater than 50% gametogenesis occurred was 0.2 E·m?2·d?1. However, this critical quantum dose was higher (0.4 E·m?2·d?1) when instantaneous irradiances were less than 5 μE·m?2·s?1. The saturation quantum dose was also affected by the rate at which the quantum dose was received and varied from 0.4 to 0.8 E·m?2·d?1. Gametophytes in all three photoperiods reached 100% fertility at quantum irradiances above 5 μE·m?2·s?1. Photoperiod effects were small and could be accounted for by quantum dosage effects. 相似文献
12.
Recently released spores of the kelps Macrocystis pyrifera (L.) C. Ag., Nereocystis luetkeana (Mert.) Post. and Rupr., Laminaria farlowii Setch., and Pterygophora californica Rupr. had different levels of net photosynthesis. Spore-specific photosynthesis–irradiance relationships were similar in many respects for M. pyrifera, N. luetkeana, and L. farlowii spores. All three species had low rates of net light-saturated photosynthesis. In contrast, spores of P. californica had higher photosynthetic potential and overall net photosynthesis than the other three species. On a cell carbon basis, however, photosynthetic rates in N. luetkeana spores were similar to those of P. californica spores and higher than those of M. pyrifera spores. Chlorophyll a content of spores varied 10-fold among species. The rank order of significant differences in chlorophyll a content was P. californica > L. farlowii > N. luetkeana > M. pyrifera. As a result, chlorophyll-specific measurements suggest M. pyrifera and N. luetkeana spores had much higher quantum efficiency and photosynthetic potential than either P. californica or L. farlowii spores. Maternal carbon and nitrogen investment significantly differed in spores of M. pyrifera, N. luetkeana, and P. californica with P. californica > M. pyrifera > N. luetkeana. Carbon content in spores of each of these three species increased by about 30% during 12 h of saturating irradiance. We suggest that the photosynthetic capabilities of and maternal investment in spores may be related to the spore as a unit of dispersal, to the reproductive ecology of the parental sporophytic stages, and to the growth and physiology of the germling gametophyte stages. 相似文献
13.
James S. Kuwabara 《Journal of phycology》1981,17(4):417-419
Batch culturing experiments were conducted to examine effects on Macrocystis pyrifera (L.) C. A. Agardh gametophytic growth of various iron and zinc concentrations in the chemically defined, artificial seawater medium, Aquil. A least squares fit of experimental data represented the relative importance of these micronutrient effects. Optimal iron and zinc concentrations in Aquil were estimated at 340 nM (7 × 10?11 nM as [Fe3+]) and 135 nM (6 × 10?2 nM as [Zn2+]), respectively. 相似文献
14.
Chlamydomonas reinhardtii was grown at photon flux densities (PFDs) ranging from 47 to 400 μE.m-2 s-1. The total cellular content of chlorophyll (Chl) was twice as high in the low light (LL) versus high light (HL) grown cells. On an equal Chl basis, photosystem II (PSII) and cytochrome f (Cyt f) content was higher in HL cells, but photosystem I (PSI) concentration displayed little variation with the light intensity during cell growth. Consequently, there was a shift in the ratio of PSII / PSI and Cyt / PSI from near unity in LL cells to greater than two in HL cells. The functional Chl antenna size of PSII and PSI ranged from 460 and 170 Chl (a + b)in HL-grown cells to 620 and 370 Chl (a+ b)in LL-grown cells, respectively. The initial slope of the Chl-specific photosyn-thesis-irradiance (P-I) curve was similar in LL- and HL-grown cells, but the light saturated rate of photosynthesis was lower under LL. The response to low light was beneficial at the cellular level, since there was an enhancement of photosynthesis in LL. The PFD for the onset of light saturation, 1 was a factor of 2 lower in LL- relative to HL-grown photosythetic membranes. Since growth PFD varied by a factor of ten, photosynthesis shifted from being light-limited in the LL regime to light-saturated in the HL regime. The requirement for balanced absorption of light by the two photosystems constrains the PSII / PSI ratio to near unity when growth is light-limited, but such a constraint does not apply in HL conditions. Instead the concentration of individual electron transport complexes way be related to the pool size necessary for maximum rates of steady-state electron transport. Thus the stoichiometry of electron transport complexes changes in response to growth PFD and this change is correlated with the response flexlbility of algal photosynthesis in diverse light environments. 相似文献
15.
Steven L. Manley 《Journal of phycology》1983,19(1):118-121
A quantitative accounting of the solids in the sieve tube sap from Macrocystis pyrifera (L.) e. Ag. was performed. The major organic compounds (mannitol, amino acids, and protein) and inorganic cations (K+, Na+, Mg2+ and Ca2+) were present near previously reported levels. The anions, until now unreported (except for iodide), included chloride as the major inorganic ion, bromide, phosphate, nitrate, and bicarbonate as the major inorganic carbon species. Sulfate and ammonium were below the detection limits of 1.5 ppm and 2 ppm, respectively. The elements B and As were also present although their speciation was not determined. 相似文献
16.
Hybridization was attempted by combining gametophytes between intergeneric pairs among the following taxa in the Lessoniaceae: Macrocystis pyrifera ( L.) C. Agardh , M. integrifolia Bory, M. angustifolia Bory , Pelagophycus porra ( Leman) Setch ., Nereocystis luetkeana ( Mert.) Post & Rupr ., Dictyoneurum californicum Rupr ., and Dictyoneuropsis reticulata ( Saud.) Smith. Hybrid sporophytes were produced in some combinations involving Macrocystis × Pelagophycus and Macrocystis × Dictyoneurum, and in all combinations of Dictyoneuropsis × Dictyoneurum. This is the first report of intergeneric hybrids involving Dictyoneurum. Gametophytes of P. porra had 16–24 chromosomes. Gametophytes from a fertile Macrocystis-Pelagophycus hybrid were crossed with Macrocystis and Pelagophycus gametophytes. Hybrid male gametophytes and Pelagophycus female gametophytes produced sporophyte progeny, but hybrid males with Macrocystis females did not. A single hybrid female gametophyte did not produce gametophytes in combination with hybrid males , Pelagophycus males or Macrocystis males. The hybrid gametophytes had approximately 30 chromosomes. It is hypothesized that the hybrid is an alloploid, containing a complete set of Macrocystis and Pelagophycus chromosomes, which may have allowed meiosis and sporogenesis to proceed normally in the hybrid sporophyte found in the sea. Thus, reproductive isolating mechanisms appear to operate at both pre- and postzygotic stages, and both can be overcome in intergeneric hybrids . 相似文献
17.
Stephen C. Schroeter Thomas A. Dean Karl Thies John D. Dixon 《Journal of phycology》1995,31(5):697-702
The effect of shading by an adult canopy on blade-stage Macrocystis pyrifera (L.) C. A. Agardh was estimated by comparing the average growth rate of individuals under a canopy to that of individuals in a canopy gap. This comparison was made in 1983 during a strong El Niño and again in 1986 after the El Niño. Estimated nutrient concentrations in 1983 were two orders of magnitude below those in 1986, whereas ambient light levels were over 3 times higher. The kelp canopy caused similar proportional light reductions (20–30%) during both years. Blades grew 18% slower under the canopy than in the clearing in 1983 and about 77% slower under the canopy in 1986. Blade-stage individuals grew at the same rates in clearings in 1983 and 1986. Regardless of shading, the average growth rate of blade-stage kelp under the ambient, low-nutrient conditions of 1983 was higher than that later observed for multifronded juveniles during the same El Niño. The growth of blade-stage kelp was more like that of larger juveniles growing under high-nutrient conditions. The difference may be due to greater concentrations of nutrients very near the sea floor where single blades are growing compared to concentrations higher in the water column where larger kelp have most of their tissues. 相似文献
18.
Alison Butler Helena S. Soedjak Meiram Polne-Fuller Aharon Gibor Catherine Boyen Bernard Kloareg 《Journal of phycology》1990,26(3):589-592
Aqueous Tri-SO4 buffer (pH 8.3) extracts of cortical and surface protoplasts of Macrocystis pyrifera (L.) C. Ag. Catalyzed the bromination of monochlorodimedone (2-chloro-5, 5-dimethyl-1, 3-dimedone, MCD) in the presence of hydrogen peroxide and bromide. The apparent bromo-peroxidase activity as measured by the bromination of MCD was inhibited by the presence of endogenous compounds which are probably polyphenolics compounds (i.e. polymers of phloroglucinol) or other inhibitors. The bromoperoxidase activity of the protoplast extracts increased substantially when the extracts were washed extensively with Tris-SO4 buffer (pH 8.3) by ultrafiltration. The bromoperoxidase activity of both surface and cortical protoplast extracts was dependent on the presence of vanadium, indicating that the bromoperoxidase present in cortical and surface cells of M. pyrifera is vanadium-bromoperoxidase. Halogenated compounds constitute one of the most significant classes of marine natural products. Since bromoperoxidases are assumed to be involved in the biosynthesis of these compounds, elucidation of the location of BrPO with in the algal tissue is important. 相似文献
19.
Valrie A. Gerard 《Journal of phycology》1997,33(5):800-810
Mechanisms of high-temperature tolerance in the kelp Laminaria saccharina (L.) Lamour. were examined by comparing a heat-tolerant ecotype from Long Island Sound (LIS), New York, and a population from the Atlantic (ATL) coast of Maine. Greater heat tolerance was not attributable to greater thermal stability of the photosynthetic apparatus: LIS and ATL plants exhibited similar short-term effects of high temperature on photosynthetic capacity (Pmax) and quantum yield (estimated as the ratio of variable to maximum chlorophyll fluorescence, Fv/Fm. As LIS plants had consistently higher N and protein content than ATL plants, the interaction between nitrogen nutrition and high-temperature tolerance was examined. When grown under high N supply and optimal temperature (12° C), LIS plants had a higher density of photosystem II reaction centers (RCII), higher activity of two Calvin cycle enzymes (ribulose bisphosphate carboxylase oxygenase [RUBISCO] and NADP-dependent glyceraldehyde-3-phosphate dehydrogenase [G3PDH]), and higher Pmax and Fv/Fm than ATL plants. Individual ATL plants, furthermore, exhibited close correlations of RCII density and enzyme activity with N and/or protein content. Variation in RCII density and enzyme activity, in turn, largely accounted for plant-to-plant differences in Pmax and Fv/Fm. Relationships among these parameters were generally weak or lacking among individual LIS plants grown under optimal conditions, apparently because luxury N consumption resulted in excess reserves of photosynthetic apparatus components. Exposure of N-replete LIS and ATL plants to a superoptimal temperature (22° C) for 4 days caused an increase in the minimum turnover time of the photosynthetic apparatus (tau) and a decrease in Pmax, but had no consistent effect on Fv/Fm RCII density, PSU size (chlorophyll a/RCII), or enzyme activities. When plants were subjected to concurrent N limitation and heat stress, however, LIS and ATL populations exhibited quite different responses. All photosynthetic parameters of N-limited ATL plants declined sharply in response to high temperature, resulting in a negative rate of daily net C fixation. In contrast, LIS plants showed a reduction in PSU size, but maintained other parameters, including daily C fixation, at levels similar to those of N-limited plants at optimal temperature. Overall, the ability of LIS plants to accumulate and maintain high N reserves appears to be critical for heat tolerance and, therefore, for survival during summer periods of simultaneous low N supply and superoptimal temperature. ATL plants, which also experience low summer N supply but not superoptimal temperatures, do not accumulate large reserves of nitrogenous components and are unable to tolerate the combined stress. Because low N supply often co-occurs with high temperatures in temperate marine systems, large-scale declines in algal productivity, such as during El Niño events, are probably due to the interactive effect of N limitation and heat stress. 相似文献
20.
The influence of chronic exposure to UV-B and UV-A radiation on growth and photosynthesis of two polar marine diatoms (Pseudonitzschia seriata and Nitzschia sp.) was investigated in cultures exposed to moderate photon fluences for 3–7 days. Population growth rates were diminished 50% by UV-B. Fluorescence induction kinetics of photo-system II (PSII) revealed that UV-B caused lower Fv/Fm ratios and half-rise times, indicating damage to the reaction center of PSII and to related elements of the photosynthetic electron transport chain. Carbon assimilation rates per cell and per chlorophyll a were nonetheless highest for UV-B—exposed populations, which also had the highest chlorophyll a content per cell. The UV-B—exposed cells were, however, more vulnerable to visible light-induced photoinhibition. Exposure to UV-A in the absence of UV-B had little effect on growth, fluorescence induction of PSII, or chlorophyll a contents but did have some inhibitory effects on carbon assimilation per chlorophyll a and per cell. The increased photosynthetic capacity of UV-B-exposed cells suggested some ability to compensate for damage to the photosynthetic apparatus. 相似文献