首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
White lupin seed imbibition under low temperature conditions (8 °C) and their subsequent effects on embryonic protein composition and synthesis were investigated. The response to low temperatures was accompanied by changes in polypeptide composition and synthesis. The embryonic axes labelled in vivo with (35S)-methionine retained their capacity to synthesize proteins during imbibition at 8 °C. The synthesis of some polypeptides was increased during low temperature treatment as compared to that at 25 °C. These cold-induced polypeptides were essentially detected in a molecular mass range from 15 to 35 kDa and a pI range from 6.3 to 8.7.  相似文献   

2.
Cotton (Gossypium hirsutum L. cv. Deltapine 50) seedlings grown under light-dark cycles of 12:12h at 35°C showed rhythmic daily changes in chilling resistance. Chilling treatment (5°C, 48h) started at the beginning or middle of the daily light period resulted in a substantial growth inhibition of the seedlings upon return to 35°C whereas when chilling was started at the beginning or middle of the dark period the subsequent growth of the seedlings was much less inhibited. This rhythm in chilling resistance persisted under continuous light for three 24-h periods, indicating that it is of an endogenous nature. Seedlings grown under continuous light from germination showed no daily changes in resistance, but a rhythm was initiated by introduction of a dark period of 6h or longer. In 24-h cycles with different light and dark periods, maximal resistance was reached just before the start of dark period. Seedlings grown at 35°C could be acclimated to chilling by exposure to low, non-damaging temperatures (25–15°C). A short-term (6h) exposure to 25°C started at the resistant phase resulted in a large increase in resistance during the following otherwise sensitive phase. The resistance induced by the low temperature matched or slightly exceeded the maximal resistance reached during the resistant phase of the daily rhythm of chilling. The low-temperature-induced resistance and the daily rhythmic increase in resistance were not additive, indicating a common mechanism for the two kinds of resistances. An adaptive advantage of a combination of a rapid temperature-induced acclimation and the daily rhythmic increase in resistance is suggested.  相似文献   

3.
Heterotrophically grown cells ofChlorella protothecoides were transferred to autotrophic medium and allowed to green at 25°C. The protein synthetic activity of the greening cells measured in terms of incorporation of [35S]-methionine showed a maximum around 20 h of greening and thereafter started declining. Similarly, an analysis of densitometric tracings of the fluorographic profile of the polypeptides associated with both total cellular fraction and membrane fractions during different hours of greening revealed that maximum number of polypeptides were getting labelled around 20 h of greening. At 20 h of greening, the cells were shifted to 40°C and the effect of heat shock on protein synthesis was studied. The heat shock treatment caused a definite decrease in the incorporation of [35S]-methionine into proteins. Due to heat shock, the synthesis of total soluble proteins was affected much more than that of the thylakoid membrane bound proteins. When the cells were transferred back to 25°C after a brief period of heat shock at 40°C, there was a considerable recovery in the protein synthesis and this recovery was found to be significant in the case of soluble proteins, while there was no such definite recovery in the synthesis of thylakoid membrane bound proteins.  相似文献   

4.
5.
Artemisia sphaerocephala is widely used for vegetation rehabilitation, but its germination is very low after air seeding of achenes. We explored effects of light, temperature and water stress on germination. Results show that both final percent germination and germination rate were increased by temperature increment, with the highest values occurring at 15: 25°C (night: day) in dark and 20: 30°C under light. Light inhibited germination, especially at lower alternating temperatures (5: 15°C and 10: 20°C). The alternating temperature window for germination was slightly narrower under light than in dark, and germination was slower under light than in dark across the temperature range. Achenes incubated in the dark and at constant temperatures had over 80% germination at 10 to 25°C, with an optimum at 20°C. Under dark and 25μmol m‐2 s‐1 light flux density at 10: 20°C, final percent germination was over 94%, but if the light flux density was increased to 100 and 400 μmol m‐2 s‐1, final percent germination was significantly lower (64% and 38% respectively). However, achenes could keep their germination capacity for a long time (over 50 days) and germinate well after going back to the dark. Germination was also lower under water stress and few achenes germinated at ‐1.4 MPa. This was more pronounced at high and low temperatures. Given these findings and the prevailing climatic characteristics, the most suitable time for air seeding of achenes may be mid‐May.  相似文献   

6.
Temperature and light interact to modify the chemical and biochemical composition of a nitrogen-limited marine diatom, Thalassiosira allenii Takano, grown at a constant dilution rate in continuous culture and under a light:dark cycle.The percent of the total 14C incorporated into protein, polysaccharide and lipid, the N/C ratio and the C/cell varied with temperature in a markedly non-linear manner. The N/cell was negatively correlated to temperature. The Chl aC ratio was positively correlated with temperature under saturating light and non-saturating light for temperatures > 25 °C, but was constant under non-saturating light conditions for temperatures < 25 °C.Productivity index (PI) was negatively correlated to temperature under saturating light conditions, but did not vary under low light. In each case, the variation in PI with temperature was governed by the variation in Chl aC.The dark carbon loss rate was exponentially related to temperature and independent of light. Variation in the percent of the total 14C incorporated into protein and polysaccharide, the NC ratio and C/cell was primarily due to the effects of N-limitation < 20 °C and primarily due to the effects of temperature > 20 °C. Variation in N/cell was primarily due to the effects of temperature over the entire range of temperature studied. Variation in Chl aC was caused by the interaction of temperature and light effects.In most cases, temperature and nutrient effects interacted to govern how a particular parameter varied with temperature while light affected the range of values over which the parameter varied.The percent of the total 14C incorporated into protein exhibited a significant linear relationship with NC.The dark carbon loss rate, NC ratio and Chl aC ratio data were used to test the applicability of a model for the physiological adaptation of unicellular algae. The model, with parameters derived from a non-linear least-squares fit of the dark carbon loss rate data, adequately described the NC ratio between 15 and 25 °C at 290 and 137 μE · m?2 · s?1, but failed to describe the data at 28 °C and at 48 μE · m?2 · s?1. The Chl aC ratio was adequately described by the model under all light and temperature conditions.  相似文献   

7.
Amber mutations are efficiently and specifically suppressed during protein synthesis in vitro in an Su? S-30 extract at 25 °C, but not at 37 °C. Eight different amber mutations in three different genes have been tested, and all are suppressed. The efficiencies of suppression range from 20 to 35%, when protein synthesis is at the Mg2+ concentration optimal for β-galactosidase synthesis at 25 °C. The suppression efficiency increases to approximately 60% at higher Mg2+ concentrations, and is reduced to less than 5% at very low concentrations. Ochre and UGA mutations are not suppressed at all under these conditions. The amber suppression is inhibited by addition of a purified protein synthesis release factor to the reaction, or when the protein synthesis reaction takes place in extracts derived from bacteria which are streptomycin-resistant.  相似文献   

8.
Circadian rhythms are common in eukaryotes, but the several claimed cases in prokaryotes are all open to alternative interpretation. We report here a clearcut circadian rhythm in cell division in a marine Synechococcus sp. strain WH7803, under conditions where the generation time is longer than one day, that is entrained by a light–dark cycle, and that persists for at least four cycles in continuous light (2 μE·m?2·s?1) and constant temperature (22, 20 or 16°C) with a maximum in dividing cells at about 24 h intervals. Thus, the prokaryote, Synechococcus, satisfies the criteria for the possession of a true temperature-compensated circadian clock. Were the existence of such a rhythm confirmed, current hypotheses that intracellular compartments are required for circadian timing may require modification.  相似文献   

9.
Translation of the RNA of LSc type 1 poliovirus was examined in vivo at the restrictive temperature (39 °C). During the first two hours of infection at 39 °C the levels of viral polyribosomes were 50% lower than at 35 °C (permissive temperature). During the third hour of infection at 39 °C, only 4 to 10% of the control levels of polyribosomes were observed. Three experiments indicate that the elongation of viral peptides was not occurring properly at 39 °C. First, cultures incubated at 39 °C during the third hour of infection with both [35S]methionine and [3H]uridine exhibit a fourfold increase in the ratio of viral protein/viral RNA in the polyribosome region of sucrose gradients in comparison to controls kept at 35 °C. However, at both temperatures the relative size distribution of polyribosomes was similar. Second, the ratios of released protein/nascent protein after 90-second and 5-minute pulses with [35S]methionine indicate that elongation of peptide chains was inhibited at 39 °C. Third, when initiation of synthesis of viral protein was blocked with 150 mM-NaCl, the polyribosomes disaggregated four to five times more rapidly at 35 °C than at 39 °C. The data indicate that translation of viral RNA is inhibited at the restrictive temperature because of a reduced rate of elongation of viral proteins. The reduced rate of peptide chain elongation at 39 °C was fully reversible when cultures were shifted to 35 °C in the presence of 150 mm-NaCl. The latter finding indicates a conformational change in viral protein at 39 °C.  相似文献   

10.
The effect of temperature and light conditions (spectral quality, intensity and photoperiod) on germination, development and conidiation of tomato powdery mildew (Oidium neolycopersici) on the highly susceptible tomato cv. Amateur were studied. Conidia germinated across the whole range of tested temperatures (10–35°C); however, at the end‐point temperatures, germination was strongly limited. At temperatures slightly lower than optimum (20–25°C), mycelial development and time of appearance of the first conidiophores was delayed. Conidiation occurred within the range of 15–25°C, however was most intense between 20–25°C. Pathogen development was also markedly influenced by the light conditions. Conidiation and mycelium development was greatest at light intensities of approximately 60 μmol/m2 per second. At lower intensities, pathogen development was delayed, and in the dark, conidiation was completely inhibited. A dark period of 24 h after inoculation had no stimulatory effect on later mycelium development. However, 12 h of light after inoculation, followed by continuous dark, resulted in delayed mycelium development and total restriction of pathogen conidiation (evaluated 8 days postinoculation). When a longer dark period (4 days) was followed by normal photoperiod (12 h/12 h light/dark), mycelium development accelerated and the pathogen sporulated normally. When only inoculated leaf was covered with aluminium foil while whole plant was placed in photoperiod 12 h/12 h, the intensive mycelium development and slight subsequent sporulation on covered leaf was recorded.  相似文献   

11.
Investigations on seeds of Scrophularia marilandica L. were undertaken to determine their germination requirements. Seeds were collected from three naturally occurring sites and one greenhouse-grown population in London, Ontario in September and October of 1997. Some were set to germinate immediately after collection; others were stored in or on soil outside and/or under controlled laboratory conditions before testing. Germination was assessed under two light/temperature regimes (35°C 14 h light, 20°C 10 h dark and 25°C 14 h light, 10°C 10 h dark), in continuous darkness, and in the presence of two germination-promoting chemicals (GA3 and KNO3). Fresh seeds germinated best at 35/20°C, while stored seeds germinated best at 25/10°C. No differences in percent germination were found among three seed-maturity stages. All chemical treatments, except 0.01 M KNO3, increased percent germination. Significant differences were found both among and within sites for most chemical treatments, but exposure to 3 × 10−4 M GA3 caused almost every seed to germinate. When compared to the control, both the gibberellic acid and the soil-storage treatments contributed to faster germination. Exposure of seeds to naturally prevailing conditions on the soil surface followed by testing under the 25/10°C regime produced the highest percent germination. No seeds germinated in the dark. In summary, seeds of S. marilandica exhibit physiological dormancy, which can be alleviated by exposure to light, after-ripening and/or cold stratification. It is probable that the differences in germination response among sites can be attributed to differences in environmental conditions during seed production. These experiments indicate that the seeds of S. marilandica must be buried shortly after dispersal in order to form a persistent seed bank.  相似文献   

12.
Hepatocytes were isolated from fasted rats by a two-step Ca++-free/collagenase perfusion method. The cells were subjected to centrifugation under mild conditions at 12°C in a linear metrizamide gradient (1.075–1.12 gm/cm3). The cells were distributed in the gradient a bell-shaped manner. According to their position in the gradient the cells were divided in five different population. The heaviest population was omitted from the subsequent evaluation because it contained a high proportion of dead cells. The activity of alanine aminotransferase increased with increasing cell density indicating that the lightest cell population was enriched in perivenous cells, whereas the heaviest cell population had an excess of periportal cells. Protein synthesis was more rapid in the light (perivenous) cell population than in the heavy (periportal) cell population as measured by means of incoporation of radioactively labeled valine into protein. The distribution measured in vitro indicated approximately 80% higher rates in perivenous cells. On the other hand, the synthesis and secretion of export proteins were similar in all cell populations regardless of their density. Protein degradation measured as appearance of free valine in cell media was higher in the light (perivenous) cell population than in the other populations. Thus protein metabolism seemed to be faster in the light cell population.  相似文献   

13.
Light intensity and temperature interactions have a complex effect on the physiological process rates of the filamentous bluegreen alga Anabaena variabilis Kütz. The optimum temperature for photosynthesis increased with increasing light intensity from 10°C at 42 μE·m?2·s?1 to 35°C at 562 μE·m?2·s?1. The light saturation parameter, IK, increased with increasing temperatures. The maximum photosynthetic rate (2.0 g C·g dry wt.?1·d?1) occurred at 35°C and 564 μE·m?2·s?1. At 15°C, the maximum rate was 1.25 g C·g dry wt.?1·d?1 at 332 μE·m?2·s?1. The dark respiration rate increased exponentially with temperature. Under favorable conditions of light intensity and temperature the percent of extracellular release of dissolved organic carbon was less than 5% of the total C fixed. This release increased to nearly 40% under combinations of low light intensity and high temperature. A mathematical model was developed to simulate the interaction of light intensity and temperature on photosynthetic rate. The interactive effects were represented by making the light-saturation parameters a function of temperature.  相似文献   

14.
Protein synthesis in the diatom Nitzschia alba Lewin and Lewin was drastically altered when the cells were incubated at a supraoptimal temperaeture. Quantitatively, the overall protein synthesis was greatly suppressed as indicated by teh rate of [35S] methionine incorporation. The extent of suppression of protein synthesis was proportional to the severity of the heat-shock treatment which was a combination of elevated temperature and treatment duration. The in viro synthesized proteins were also qualitativelty anlayzed by two-dimensional gel electrophoresis. Dependeing on the treatment condition, a set of heat-shock proteins (HSPs) were induced. They were best detected when the cells were subjected to shocks of 35°C for 60 min or 40°C for 10 min followed by a 60 min labelling at 30°C. The results revealed 16 HSps which had moluecular weights ranging from 24–94 kD and isoelectric points ranging from 5.50–7.10. Some of the HSps were identical in molelcular weights but with differeentr isoelectric points. The induction and accumulation of HSPs in Nitzschia alba were transitory. Prologned heat-shock treatments resulted in a complete cessation of protein syntehsis and no further induction of HSPs. In all aspects, the heat shock response of diatoms was similar to that in higher plants such as soybean, maize and tobacco but differenet from most animal systems.  相似文献   

15.
Escherichia coli JM83 {F? ara Δ(lac-proAB) rpsL [?80dΔ(lacZ)M15]} in midlog growth phase at 30 °C were exposed to 60 Hz sinusoidal magnetic field of 3 mT of nonuniform diverging flux, inducing a nonuniform electric field with a maximum intensity of 32 μV/cm using an inductor coil. Exposed and unexposed control cells were maintained at 30.8 ± 0.1 °C and 30.5 ± 0.1 °C, respectively. Quadruplicate samples of exposed and unexposed E. coli cells were simultaneously radiolabeled with 35S-L-methionine at 10 min intervals over 2 hr. Radiochemical incorporation into proteins was analyzed via liquid scintillation counting and by denaturing 12.5% polyacrylamide gel electrophoresis. The results showed that E. coli exposed to a 60 Hz magnetic field of 3 mT exhibited no qualitative or quantitative changes in protein synthesis compared to unexposed cells. Thus small prokaryotic cells (less than 2 μm × 0.5 μm) under constant-temperature conditions do not alter their protein synthesis following exposure to 60 Hz magnetic fields at levels at 3 mT. © 1994 Wiley-Liss, Inc.  相似文献   

16.
17.
1. The effect of light intensity on photosynthesis and the fate of newly fixed organic carbon was compared for three characean algae collected at the same depth (10 m) but differing in their depth distributions. For each species we determined photosynthesis–irradiance (P–E) responses, the partitioning of newly fixed carbon into four intracellular pools (low molecular‐weight compounds, polysaccharides, lipids and proteins) and the extracellular organic carbon (EOC) release at a range of photon flux densities (PFD) 0–60 μmol m–2 s–1. 2. The P–E responses differed between the three species, with the light compensation point (Ec) and dark respiration rate highest in the shallowest species (Chara fibrosa), intermediate in the mid‐range species (C. globularis) and lowest in the deepest species (C. corallina). Photosynthetic efficiency (α) and photosynthesis: respiration ratios were lowest in C. fibrosa and highest in C. corallina. 3. In all three species, the low molecular weight pool was the principal photosynthetic product (>60% of fixed C) at 3 μmol m–2 s–1 PFD, but its proportional contribution decreased rapidly with increasing irradiance. Polysaccharide rose to become the major product (>35% of fixed C) at saturating PFD (35 μmol m–2 s–1). 4. Protein synthesis was saturated at 5 μmol m–2 s–1 in all species and was consistently a lower proportion of the fixed carbon in C. corallina than the other species. The fraction incorporated in the lipid pool increased slightly with irradiance but was always less than 10% of fixed C, while the proportion lost as EOC was unaffected by light, being significantly higher in C. fibrosa than the other species. 5. A kinetic experiment with C. fibrosa at 35 μmol m–2 s–1 PFD revealed a continued increase in net polysaccharide, protein and lipid synthesis during a 22.5‐h light period, whereas the net size of the low molecular weight pool remained constant. In a subsequent dark period, protein and lipid synthesis continued at the expense of the polysaccharide and low‐molecular‐weight pools. The EOC release rose to a constant low release in the light, then peaked slightly immediately after the dark–light transition before returning to the same rate as in the light. Extrapolating these data over 24 h suggests that the proportion of fixed carbon lost as EOC may be as high as 10% in this species. 6. The interspecific differences in carbon acquisition between the three species reflected their depth distributions, with the deeper species having more efficient photosynthetic metabolism, lower P:R ratios and less EOC release, although no apparent differences in internal partitioning of photosynthate.  相似文献   

18.
The effects of continuous light exposure (24L:0D) and a 12 h:12 h light/dark regime (12L:12D) were compared on the growth and carotenoid, protein, sugar, lipid, and fatty acid contents in Chlorella vulgaris, Nannochloropsis sp., Isochrysis galbana, and Dunaliella salina cultured in a batchwise facility. These microalgae were grown axenically under a low photon flux density (PFD) of 27 μmol photons m?2 s?1. C. vulgaris, Nannochloropsis sp., and I. galbana exhibited the highest cell densities when cultured under 24L:0D, whereas D. salina grew better under the alternating light/dark regime. I. galbana accumulated high levels of proteins, sugars, and lipids and exhibited the highest carotenoid content under 24L:0D. Protein production was enhanced in C. vulgaris under 24L:0D. The highest total lipid content was recorded for D. salina, reaching 74.6 % of total proteins, sugars, and lipids in cells at the stationary phase when grown under 12L:12D. The light/dark regime at low PFD was sufficient to stimulate the accumulation of monounsaturated and polyunsaturated fatty acids in all four algae. Their levels, like those of saturated fatty acids, did not differ significantly under the two light regimes. D. salina was an important source of tetradecenoic acid 14:1(n-5). Nannochloropsis sp. produced a large amount of the essential eicosapentaenoic acid, which reached 20 % of total fatty acids under 12L:12D, while I. galbana exhibited the highest level of docosahexaenoic acid, which reached 21 % under both light regimes. This study demonstrated the feasibility of culturing microalgae under low PFD in order to produce large quantities of valuable metabolites, especially various lipids with neutraceutical value.  相似文献   

19.
Native species are recommended for use in landscape restoration because they adapt well to the local pedo‐climatic conditions. Despite the high biodiversity in the Mediterranean, the use of native plants is hampered by the limited knowledge of their seed germination. This is particularly true for a number of plants which are appropriate for creating species‐rich herbaceous communities. In this study, seeds of 35 species were collected in different roadside and degraded sites in rural and urban areas. Two experiments were carried out to determine the influence of light and thermal conditions on seed germination. In the first experiment, seeds of 17 species were tested at different temperatures (5, 15, and 25°C). At 15°C, seed germination was tested under both dark and light conditions. In the second experiment, the germination of 30 species was tested under alternating temperatures (25/15°C) and dark/light conditions. The responses of the various species differed in relation to thermal levels and light conditions, e.g., Bartsia trixago did not germinate in the dark at constant temperatures (5, 15, and 25°C), while in the light (15°C) and at alternating temperatures (25/15°C) in light and dark conditions, germination was over 60%. In both experiments, Tragopogon porrifolius and Triticum ovatum showed the highest germination rate (≥88%). With the sole exception of Medicago orbicularis, all members of the Fabaceae showed no or low germination. The definition of the germination requirements of some Mediterranean species, highlighted in these experiments, provides useful information for the creation of low input green areas and environmental restoration using these species.  相似文献   

20.
Optimising sporulation and virulence in Drechslera avenacea   总被引:1,自引:0,他引:1  
Studies were conducted on agar media to optimise sporulation of Drechslera avenacea, a fungal pathogen being evaluated as a biological control agent for Avena species (wild oats). Conidium production was affected by nutrition, pH, temperature and light conditions. Of the agar media tested, Czapek Dox agar (CZA) and half-strength oatmeal agar (½OMA) were the only media where sporulation occurred at all temperatures tested under a 12-h light:12-h dark photoperiod (L/D). The optimum temperature for conidium production was 20°C on ½OMA, whereas there was no optimum temperature on CZA. Under a 12-h near-ultraviolet (NUV):12-h dark photoperiod (NUV/D), similar numbers of conidia were produced on CZA at 6.66, 14.56, and 22.78 W m?2, whereas on ½OMA conidium production was the highest at 14.56 W m?2. When NUV/D and L/D conditions were compared, similar numbers of conidia where produced on CZA, whereas ½OMA conidium production was superior under the NUV/D photoperiod. Considerable variation in sporulation and degree of virulence of D. avenacea was detected among isolates from different geographic areas. The most virulent conidia were obtained on ½OMA at 20°C incubated under continuous illumination NUV light. Therefore, the most suitable conditions for conidium production of D. avenacea were growth for 1 week on ½OMA at 20°C under continuous NUV at an intensity of 14.56 W m?2. Under these conditions, 1.1×105 conidia mL?1 were produced which is the highest sporulation yet reported for any Drechslera spp., which are traditionally poor sporulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号