首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fine structure of the retinal epithelium has been studied by electron microscopy in the opossum (Didelphis virginiana). The retinal epithelium, over most of the retina, is typical of that in other vertebrates and consists of a single layer of heavily pigmented, cuboidal cells. These cells display extensive basal (scleral) infoldings and numerous apical (vitreal) processes which enclose photoreceptor outer segments. A semicircular area of the retinal epithelium in the superior fundus is further specialized as a tapetum lucidum. The reflecting material consists of a large quantity of lipoidal spheres scattered throughout the epithelial cells. Centrally in the tapetal area very few or no melanosomes are found, indicating a non-occlusible tapetum. Peripherally in the tapetum, the epithelial cells contain both reflecting material and melanosomes. As in the non-tapetal area, the epithelial cells of the tapetum display large amounts of smooth endoplasmic reticulum and numerous mitochondria. Bruch's membrane everywhere displays the usual pentalaminate structure described for most vertebrates. The choriocapillaris is also typical, in that numerous fenestrations are present in the endothelium bordering Bruch's membrane.  相似文献   

2.
The ultrastructural characteristics of ciliary epithelium from bovine, pigmented rabbit, and fetal albino rabbit were studied in cultured explants. The tips of ciliary processes were cultured in plastic dishes with Dulbecco Modified Eagle Medium (DMEM) containing 5% fetal bovine serum. More than half of the explants adhered to the plastic culture dish, and epithelial cells spread as monolayers within a few days. Initially the explant contains two layers, the outer (nonpigmented cells) and the inner (pigmented cells). Later the explant exhibits three layers: 1) outermost lightly pigmented flattened cells, 2) an outer layer of non-pigmented cells, and 3) an inner layer of densely pigmented cuboidal cells. The cells of the outermost layer are continuous with the cells of the inner layer. A narrow space lies between the outermost layer and the outer layer. The columnar cells in the outer layer contain well developed organelles but no pigment granules; they possess a basement membrane, lateral interdigitations, and junctional complexes near their apices. Numerous focal junctions and some ciliary channel-like structures were detected between the columnar cells of the outer layer and the cuboidal cells of the inner layer. The cuboidal cells of the inner layer are filled with pigment granules. These observations suggest that the columnar cells of the outer layer are nonpigmented epithelium, the cuboidal cells of the inner layer are pigmented epithelium, and the flattened cells in the outermost layer are derived from pigmented epithelium.  相似文献   

3.
A A Sologub 《Ontogenez》1975,6(1):39-46
The time was determined when pigmented epithelium acquires stable differentiation and the possibility was investigated for pigmented epithelium to transform in retina at different developmental stages in the Issyk-kul chebatchok Leuciscus bergi (Cyprinidae). By means of implantation of a layer of pigmented epithelium in pericardium it was established that the pigmented epithelium cells acquired stable differentiation rather early. When an already pigmented layer of pigmented epithelium was implanted in the cavity of a lensless eye, its cell transformed in retina under the influence of the whole retina. Conditions of pigmented epithelium metaplasia in retina in teleosteans proved to be similar with those for frogs.  相似文献   

4.
Cellular sources of retinal regeneration and proliferative activity of the cells taking part in retina restoration have been studied in axolotls using 3H-thymidine. The cells of ciliary-terminal zone proved to be the main source of retinal restoration. Besides these cells, the pigmented cells of the iris inner and outer layers and pigment epithelium cells can take part in this process. Morphological stages of retinal regeneration have been established and regular changes in the level of proliferation in different zones of regenerating retina have been found with respect to the stage of retina restoration. The high level of proliferative activity of the pigment epithelium cells found soon after the operation favoured the restoration of disturbed integrity of the pigment epithelium layer, the increase of cell density in it, the elongation of the pigment epithelium layer, the formation of processes, and, sometimes, the replenishment of regenerating retina.  相似文献   

5.
Pigment cells of the iris, pecten, retinal pigment epithelium, and choroid of the wild-type jungle fowl (JF) and the barred Plymouth rock (BPR) breeds of adult chickens were studied at both light and electron microscopic levels. BPR choroidal tissues had 2.8 times fewer melanophores than the JF choroid, and BPR melanophores also contained 2.4 times fewer melanosomes, which tended to clump together in variously sized clusters. The melanosomes were often irregular in shape, smaller in diameter, and less mature (stage III) than those granules in the JF. The retinal pigment epithelium of both JF and BPR breeds contained a single epithelial layer of columnar cells. Rod-shaped melanosomes were present in the more apical regions of this cell type in both breeds. Both JF and BPR irides contained a multilayered posterior pigmented epithelium of columnar shaped cells that were densely filled with large spherical granules. Intercellular spaces with interdigitating cytoplasmic projections were present between pigment cells of both breeds. The pecten melanophores of both breeds were dendritic with melanosomes that were larger and fewer in numbers than those pigment cells of the iris and choroid. Intercellular spaces were present between cells in both breeds, with numerous villous-like pigment cell extensions. Choroid melanophores contained very little, if any, acid phosphatase activity. Approximately one-half of the retinal pigment epithelial cells observed contained small amounts of diffuse acid phosphatase activity in both breeds. The iris and pecten melanophores of both breeds contained profuse acid phosphatase activity scattered throughout their cytoplasms. Sparse tyrosinase activity was seen in iris and pecten pigment cells, whereas no tyrosine activity was observed in choroid melanophores or in retinal pigment epithelial cells in the two breeds, indicating that little new melanogenesis occurs in adult pigmented eye tissues. The results show that the barring gene reduces the number and melanin content of the choroidal melanophores in homozygous male BPR chickens as compared to the wild-type JF chickens. Whether this gene prevents the initial migration of embryonic neural crest cells (future melanophores) to the choroid or whether some of the choroidal melanophores prematurely degenerate in the embryo of young birds is yet to be determined. If the latter is the case, this choroid system may serve as a model for a genetic hypomelanotic disease such as vitiligo.  相似文献   

6.
A A Sologub 《Ontogenez》1976,7(4):362-367
The metaplasia of pigmented epithelium into retina with the formation of nuclear and reticular layers took place in the experiments with wrapping a sheet of pigmented epithelium from tadpoles up in the Bruch's membrane of adult frogs X. laevis. The implant with de novo formed retina resembled the inverted eye. In those experiments where the Bruch's membrane of tadpoles came into contact with that of adults only depigmentation of the pigmented epithelium cells was observed. The pigmented epithelium metaplasia suggests that the Bruch's membrane is permeable not only for low molecular weight substances, but also for inducing agents. The adult Bruch's membrane serves in the process of metaplasia in the experiments described as a new and limiting system which ensures more orderly formation of new retina.  相似文献   

7.
Ultrastructural studies of thin-sectioned and freeze-cleaved materials were performed on developing retinal tissues of 3- to 9-day-old chick embryos to clarify the junctional structures between neural retinal cells and between neural retinal cells and cells of the pigmented epithelium. Frequency, size and position of gap junctions in developing neural retina are different at each stage of development. In 3-day-old embryos, some cells adhere to each other by gap junctions immediately below the outer limiting membrane of neural retinae. The size and number of gap junctions increase remarkably during 5-6 days of incubation. In this period of development, well developed gap junctions consisting of subcompartments of intramembrane particles are found between cell surfaces at both the outer limiting membrane region and the deeper portion of the neural retina. Gap junctions disappear thereafter, and at 7-5 days of incubation, small gap junctions are predominant between cell surfaces at the outer limiting membrane region, while the frequency of gap junctions in the deeper portion is very low. At 9 days of incubation, gap junctions are rarely found. Typical gap junctions are always found between neural retinal cells and those of the pigmented epithelium in embryos up to 7-5 days of incubation. Tight junctions are not found in the neural retina or between neural retina and pigmented epithelium throughout the stages examined.  相似文献   

8.
Summary Gene activity in melanin-synthesising cells of albino periodic (ap) mutants ofXenopus laevis is expressed phenotypically in the framework of the following cycle: a period of complete albinism succeeds the short peak of pigmentation, and melanosomes which have formed disappear. Skin and choroid coat melanophores as well as pigmented epithelium melanocytes are involved in this cycle.Parabiosis experiments allowed hormonal regulation of the melanin-synthesising gene activity to be excluded. Neural fold transplantations have shown that there is no inhibitory action on melanophore differentiation from the side of the ap/ap recipient.Melanin synthesis in pigmented epithelium of ap mutants can be activated to level comparable with that of wild-type animals, if eye vesicles of ap/ap embryos have been brought into contact with endomesodermal derivatives of +/+ embryos at the early tail bud stage. Contact of eye vesicles of +/+ embryos with the endomesoderm of mutants prevents normal melanogenesis in pigmented epithelium of transplanted eyes. Eye transplantations made after the early tail bud stage have shown that gene expression in pigmented epithelium is independent of any external influences.Data obtained here demonstrate a selective induction of a separate cell type (melanocytes) and the stage-specificity of this process. In the ap mutant the abnormal melanin synthesis is apparently predetermined by deficiency in the inducer of melanogenesis. Inhibition of melanogenesis by endomesoderm seems to be less probable. Data are discussed in the light of current ideas on the play of gene activity.  相似文献   

9.
Summary The present study deals with the localization and development of S-100 protein-like immunoreactivity in the retina, ciliary body and iris of human fetuses. In the retina, numerous astrocytes, densely distributed in the nerve-fiber layer and ganglion-cell layer, were stained strongly with the S-100 antiserum. The first immunoreactive astrocytes occurred at the posterior pole of the retina and spread gradually outward and toward the ora serrata with increasing age. Müller cells were not immunoreactive for S-100 during development, except in the retina of the latest fetus examined. S-100 immunoreactivity was also found in the nonpigmented ciliary epithelium and posterior epithelium of the iris, both of which are developed from the inner wall of the optic cup. On the other hand, the pigmented epithelium extending from retina to iris, derived from the outer layer of the optic cup, was free of S-100 immunoreactivity.  相似文献   

10.
The ontogeny of pigment cells in the eyes of rhesus monkeys was studied by electron microscopy and histochemistry.In 60- to 80-day-old fetuses, the pigment epithelium of the iris and retina has already differentiated whereas stromal melanocytes of the uveal tract differentiate much later. The morphological and histochemical difference between melanocytes of the iris stroma and the choroid suggests that during embryonic development melanocytes migrate from the iris toward the ciliary body and choroid.Similarly, melanosomes of pigmented epithelial cells may have their origin in the epithelium of the anterior layer of the iris, which is metabolically more active than both the posterior layer and the pigment epithelium of the ciliary body and retina.  相似文献   

11.
Summary Dissociated embryonic chicken retinal cells regenerate in rotary culture into cellular spheres that consist of subareas expressing all three nuclear layers in an inside-out sequence (rosetted vitroretinae). However, when pigmented cells from the eye margin (peripheral retinal pigment epithelium) are added to the system, the sequence of layers is identical with that of an in-situ retina (laminar vitroretinae). In order to elucidate further the lamina-stabilizing effect exerted by the retinal pigment epithelium, we have compared both systems, laying particular emphasis on the ultrastructure of the basal lamina and of Müller glia processes. Ultrastructurally, in both systems, an outer limiting membrane, inner segments of photoreceptors and the segregation of cell bodies into three cell layers develop properly. Synapses are detectable in a premature state, although only in the inner plexiform layer of laminar vitroretinae. Although present in both systems, radial processes of juvenile Müller glia cells are properly fixed at their endfeet only in laminar vitroretinae, since a basal lamina is only expressed here. Large amounts of laminin are detected immunohistochemically within the retinal pigment epithelium and along a basal stalk that reaches inside the laminar vitroretinae. We conclude that the peripheral retinal pigment epithelium is essential for the expression of a basal lamina in vitro. Moreover, the basal lamina may be responsible both for stabilizing the correct polarity of retinal layers and for the final differentiation of the Müller cells.  相似文献   

12.
A A Sologub 《Ontogenez》1975,6(6):563-571
The pigment epithelium of the tadpoles and adults X. laevis, as well as of other anurans and cyprinids, is not capable of transformation into the retina without the special influences of agents produced by the retina. When implanting a layer of pigmented epithelium of tadpoles with the Bruch's membrane into the cavity of lensless eye of a tadpole, the transformation of pigment epithelium into retina proceeded in 40% of cases and when implanting the pigment epithelium of adults without the Bruch's membrane, the transformation proceeded in 68% of cases. The lens regeneration from the cornea which proceeds simultaneously under the retina influence exerted no effect upon the metaplasia of pigmented epithelium.  相似文献   

13.
Anuran amphibians can regenerate the retina through differentiation of stem cells in the ciliary marginal zone and through transdifferentiation of the retinal pigmented epithelium. By contrast, the regeneration of the lens has been demonstrated only in larvae of species belonging to the Xenopus genus, where the lens regenerates through transdifferentiation of the outer cornea. Retinal pigmented epithelium to neural retina and outer cornea to lens transdifferentiation processes are triggered and sustained by signaling molecules belonging to the family of the fibroblast growth factor. Both during retina and lens regeneration there is a re-activation of many of the genes which are activated during development of the eye, even though the spatial and temporal pattern of gene expression is not a simple repetition of that found in development.  相似文献   

14.
采用组织学方法观察了胭脂鱼(Myxocyprinus asiaticus) 眼的发生过程, 结果显示: 胭脂鱼眼的发育经历了眼原基形成期、眼囊形成期、视杯形成期、晶体板形成期、晶体囊形成期、角膜原基形成期、角膜上皮形成期、视网膜细胞增殖期、晶状体成熟期、眼色素形成期以及眼成型期等11个时期。视网膜发育最早, 起始于眼原基的形成, 直至眼成型期分化完成, 形成了厚度不一的8层细胞, 由内向外依次为神经纤维层、神经细胞层、内网层、内核层、外网层、外核层、视杆视锥层和色素上皮层, 且发育历时最长, 约264h。晶状体的发育在视网膜之后, 始于晶体板的形成, 于出膜前期成熟, 发育历时最短, 约74h。角膜发育最晚, 始于角膜原基的形成, 出膜1 d分化为透明的成熟角膜, 发育历时约96h。出膜4 d仔鱼眼色素沉积明显, 视网膜各层分化明显, 晶状体内部完全纤维化, 眼的形态结构基本发育完全。  相似文献   

15.
The human retina is a complex structure of organised layers of specialised cells that support the transmission of light signals to the visual cortex. The outermost layer of the retina, the retinal pigment epithelium (RPE), forms part of the blood retina barrier and is implicated in many retinal diseases. Lysophosphatidic acid (LPA) is a bioactive lipid exerting pleiotropic effects in various cell types, during development, normal physiology and disease. Its producing enzyme, AUTOTAXIN (ATX), is highly expressed by the pigmented epithelia of the human eye, including the RPE. Using human pluripotent stem cell (hPSC)-derived retinal cells, we interrogated the role of LPA in the human RPE and photoreceptors. hPSC-derived RPE cells express and synthesize functional ATX, which is predominantly secreted apically of the RPE, suggesting it acts in a paracrine manner to regulate photoreceptor function. In RPE cells, LPA regulates tight junctions, in a receptor-dependent mechanism, with an increase in OCCLUDIN and ZONULA OCCLUDENS (ZO)-1 expression at the cell membrane, accompanied by an increase in the transepithelial resistance of the epithelium. High concentration of LPA decreases phagocytosis of photoreceptor outer segments by the RPE. In hPSC-derived photoreceptors, LPA induces morphological rearrangements by modulating the actin myosin cytoskeleton, as evidenced by Myosin Light Chain l membrane relocation. Collectively, our data suggests an important role of LPA in the integrity and functionality of the healthy retina and blood retina barrier.  相似文献   

16.
By the method of indirect immunohistochemistry, distribution of transferrin and of transferrin receptor of the type 1 (TFR1) was studied in the formed rat eye retina at the period of early postnatal ontogenesis (from birth to opening of eyelids). It has been established that the character of distribution of these proteins and intensity of specific staining change dependent on the retina formation stage. Retina of the newborn rat is characterized by diffuse transferrin distribution in nuclear retina layer (in the neuroblast layer-NBL) and in the ganglionic cell layer (GCL) as well as in the eye pigment epithelium (PE); relative immunoreactivity to transferrin is not high. At the 5th postnatal day, immunoreactivity to transferrin is maximal and is revealed both in nuclear and in plexiform layers of retina and in the eye PE, the greatest signal being characteristic of NBL. At the 10th postnatal day the transferrin signal intensity in retina decreases, specific staining is revealed in GCL, PE, and in the area of formed outer segments of photoreceptors. At the 15th postnatal day, transferrin is revealed in GCL, in outer and inner photoreceptor segments and in the eye PE. TFR1 is present in all retina layers at all stages of the retina formation; the relative immunoreactivity to TFR1 sharply rises beginning from the 10th postnatal day; correlation between distribution of transferrin and TFR1 is detected in the entire retina of newborn rats as well as in the external retina area at subsequent stages of its development. A possible role of transferrin at various stages of formation of retina is discussed.  相似文献   

17.
Retinoids have many functions in the eye, including, perhaps, the visual guidance of ocular growth. Therefore, we identified where retinoid receptors, binding proteins, and biosynthetic enzymes are located in the ocular tissues of the chick as a step toward discovering where retinoids are generated and where they act. Using antibodies to interphotoreceptor retinoid binding protein (IRBP), cellular retinol binding protein (CRBP), cellular retinoic acid binding protein (CRABP), cellular retinaldehyde binding protein (CRALBP), retinaldehyde dehydrogenase (RALDH), and retinoic acid receptors (RAR and RXR), we localized these proteins to cells in the retina, retinal pigmented epithelium, choroid and sclera of the chick eye. IRBP was detected in the photoreceptor layer and pigmented epithelium; CRBP was in the pigmented epithelium; CRABP was in amacrine and bipolar cells in the retina; CRALBP was in Müller cells, pigmented epithelium, choroid, and fibrous sclera; RALDH was in retinal amacrine cells, pigmented epithelium, and choroid; RAR was in amacrine cells, choroid, and chondrocytes and fibroblasts in the sclera; and RXR was in amacrine and ganglion cells, bipolar cell nuclei, choroid, and chondrocytes. We also found that the growth-modulating toxins colchicine and quisqualate destroyed selectively different subsets of CRABP-containing amacrine cells. We conclude that the distribution of proteins involved in retinoid metabolism is consistent with a role of retinoids not only in phototransduction, but also in maintenance of cellular phenotype and visual guidance of ocular growth.  相似文献   

18.
The adult mouse retinal stem cell (RSC) is a rare quiescent cell found within the ciliary epithelium (CE) of the mammalian eye1,2,3. The CE is made up of non-pigmented inner and pigmented outer cell layers, and the clonal RSC colonies that arise from a single pigmented cell from the CE are made up of both pigmented and non-pigmented cells which can be differentiated to form all the cell types of the neural retina and the RPE. There is some controversy about whether all the cells within the spheres all contain at least some pigment4; however the cells are still capable of forming the different cell types found within the neural retina1-3. In some species, such as amphibians and fish, their eyes are capable of regeneration after injury5, however; the mammalian eye shows no such regenerative properties. We seek to identify the stem cell in vivo and to understand the mechanisms that keep the mammalian retinal stem cells quiescent6-8, even after injury as well as using them as a potential source of cells to help repair physical or genetic models of eye injury through transplantation9-12. Here we describe how to isolate the ciliary epithelial cells from the mouse eye and grow them in culture in order to form the clonal retinal stem cell spheres. Since there are no known markers of the stem cell in vivo, these spheres are the only known way to prospectively identify the stem cell population within the ciliary epithelium of the eye.  相似文献   

19.
Lecithin-retinol acyltransferase (LRAT), an enzyme present mainly in the retinal pigmented epithelial cells and liver, converts all-trans-retinol into all-trans-retinyl esters. In the retinal pigmented epithelium, LRAT plays a key role in the retinoid cycle, a two-cell recycling system that replenishes the 11-cis-retinal chromophore of rhodopsin and cone pigments. We disrupted mouse Lrat gene expression by targeted recombination and generated a homozygous Lrat knock-out (Lrat-/-) mouse. Despite the expression of LRAT in multiple tissues, the Lrat-/- mouse develops normally. The histological analysis and electron microscopy of the retina for 6-8-week-old Lrat-/- mice revealed that the rod outer segments are approximately 35% shorter than those of Lrat+/+ mice, whereas other neuronal layers appear normal. Lrat-/- mice have trace levels of all-trans-retinyl esters in the liver, lung, eye, and blood, whereas the circulating all-trans-retinol is reduced only slightly. Scotopic and photopic electroretinograms as well as pupillary constriction analyses revealed that rod and cone visual functions are severely attenuated at an early age. We conclude that Lrat-/- mice may serve as an animal model with early onset severe retinal dystrophy and severe retinyl ester deprivation.  相似文献   

20.
Upon morphogenesis, the simple neuroepithelium of the optic vesicle gives rise to four basic tissues in the vertebrate optic cup: pigmented epithelium, sensory neural retina, secretory ciliary body and muscular iris. Pigmented epithelium and neural retina are established through interactions with specific environments and signals: periocular mesenchyme/BMP specifies pigmented epithelium and surface ectoderm/FGF specifies neural retina. The anterior portions (iris and ciliary body) are specified through interactions with lens although the molecular mechanisms of induction have not been deciphered. As lens is a source of FGF, we examined whether this factor was involved in inducing ciliary body. We forced the pigmented epithelium of the embryonic chick eye to express FGF4. Infected cells and their immediate neighbors were transformed into neural retina. At a distance from the FGF signal, the tissue transitioned back into pigmented epithelium. Ciliary body tissue was found in the transitioning zone. The ectopic ciliary body was never in contact with the lens tissue. In order to assess the contribution of the lens on the specification of normal ciliary body, we created optic cups in which the lens had been removed while still pre-lens ectoderm. Ciliary body tissue was identified in the anterior portion of lens-less optic cups. We propose that the ciliary body may be specified at optic vesicle stages, at the same developmental stage when the neural retina and pigmented epithelium are specified and we present a model as to how this could be accomplished through overlapping BMP and FGF signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号