首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypothesis that levels of gene flow among populations are correlated with dispersal ability has typically been tested by comparing gene flow among species that differ in dispersal abilities, an approach that potentially confounds dispersal ability with other species-specific differences. In this study, we take advantage of geographic variation in the dispersal strategies of two wing-dimorphic planthopper species, Prokelisia marginata and P. dolus, to examine for the first time whether levels of gene flow among populations are correlated with intraspecific variation in dispersal ability. We found that in both of these coastal salt marsh–inhabiting species, population-genetic subdivision, as assessed using allozyme electrophoresis, parallels geographic variation in the proportion of flight-capable adults (macropters) in a population; in regions where levels of macroptery are high, population genetic subdivision is less than in regions where levels of macroptery are low. We found no evidence that geographic variation in dispersal capability influences the degree to which gene flow declines with distance in either species. Thus, both species provided evidence that intraspecific variation in dispersal strategies influences the genetic structure of populations, and that this effect is manifested in population-genetic structure at the scale of large, coastal regions, rather than in genetic isolation by distance within a region. This conclusion was supported by interspecific comparisons revealing that: (1) population-genetic structure (GST) of the two Prokelisia species correlated negatively with the mean proportion of flight-capable adults within a region; and (2) there was no evidence that the degree of isolation by distance increased with decreasing dispersal capability. Populations of the relatively sedentary P. dolus clustered by geographic region (using Nei's distances), but this was not the case for the more mobile P. marginata. Furthermore, gene flow among the two major regions we surveyed (Atlantic and Gulf Coasts) has been substantial in P. marginata, but relatively less in P. dolus. The results for P. marginata suggest that differences in the dispersal strategies of Atlantic and Gulf Coast populations occur despite extensive gene flow. We argue that gene flow is biased from Atlantic to Gulf Coast populations, indicating that selection favoring a reduction in flight capability must be intense along the Gulf. Together, the results of this study provide the first rigorous evidence of a negative relationship within a species between dispersal ability and the genetic structure of populations. Furthermore, regional variation in dispersal ability is apparently maintained by selective differences that outweigh high levels of gene flow among regions.  相似文献   

2.
When the level of gene flow among populations depends upon the geographic distance separating them, genetic differentiation is relatively enhanced. Although the larval dispersal capabilities of marine organisms generally correlate with inferred levels of average gene flow, the effect of different modes of larval development on the association between gene flow and geographic distance remains unknown. In this paper, I examined the relationship between gene flow and distance in two co-occurring solitary corals. Balanophyllia elegans broods large, nonfeeding planulae that generally crawl only short distances from their place of birth before settling. In contrast, Paracyathus stearnsii free-spawns and produces small planktonic larvae presumably capable of broad dispersal by oceanic currents. I calculated F-statistics using genetic variation at six (P. stearnsii) or seven (B. elegans) polymorphic allozyme loci revealed by starch gel electrophoresis, and used these F-statistics to infer levels of gene flow. Average levels of gene flow among twelve Californian localities agreed with previous studies: the species with planktonic, feeding larvae was less genetically subdivided than the brooding species. In addition, geographic isolation between populations appeared to affect gene flow between populations in very different ways in the two species. In the brooding B. elegans, gene flow declined with increasing separation, and distance explained 31% of the variation in gene flow. In the planktonically dispersed P. stearnsii distance of separation between populations at the scale studied (10–1000 km) explained only 1% of the variation in gene flow between populations. The mechanisms generating geographic genetic differentiation in species with different modes of larval development should vary fundamentally as a result of these qualitative differences in the dependence of gene flow on distance.  相似文献   

3.
Four species of philomycid slugs were collected at 13 sites in Tennessee and one site in Virginia. A total of 361 individuals were examined electrophoretically at 11 allozyme loci. Outcrossing was the primary breeding in all populations of all four species. Genetic similarities among demes, among species and among genera are similar to values obtained in studies of other animals with similar vagility and demography and are in good agreement with systematics based on morphological characters. In the species examined in greatest detail, Philomycus carolinianus , there was substantial genetic differentiation among demes. This differentiation appears to result from genetic drift and restricted gene flow. Genetic similarity between P. carolinianus demes did not correlate with the geographic distance between demes and hierarchical F-statistic analysis showed more than half of the differentiation among demes to result from differentiation at the smallest geographic scale. The Tennessee River system also appears to be a major barrier to gene flow among the P. carolinianus demes sampled.  相似文献   

4.
5.
Five samples (30 individuals each) of the Mediterranean cyprinodontid fish, Aphanius fasciatus, were analysed by allozyme electrophoresis for a study concerning genetic structure and gene flow among populations. Forty-three loci, twelve of which were polymorphic at P0.99 level, were analysed. A. fasciatus showed low levels of genetic polymorphism, with expected heterozygosity values ranging from 0.027 (SE = 0.013) to 0.064 (SE = 0.023). The modified Rogers' genetic distances ranged from 0.053 to 0.202. The observed pattern of genetic differentiation among populations, obtained by multidimensional scaling of the modified Rogers' genetic distances, was consistent with geographic distribution. Coancestry coefficient ( = 0.302, SE = 0.045) indicated a very high degree of genetic subdivision among populations and the estimate of gene flow (the effective number of migrants per generation, Nm = 0.445), computed by Wright's method, showed very restricted gene flow among populations. The regression analysis carried out using log-transformed values of geographic distance against M^ (pairwise values of Nm) gave a regression coefficient, b = –1.03, indicating that a restricted migration rate among populations can occur according to the one-dimensional stepping-stone model. The amount and modality of gene flow in A. fasciatus inferred from the results of the present study are consistent with the absence of dispersal stages and with the fragmented nature of brackish-water habitats along the coasts.  相似文献   

6.
River otters (Lontra canadensis) were extirpated from much of their historic distribution because of exposure to pollution and urbanization, resulting in expansive reintroduction programmes that continue today for this and other species of otters worldwide. Bioaccumulation of toxins negatively affects fecundity among mustelids, but high vagility and different dispersal distances between genders may permit otter populations to recover from extirpation caused by localized environmental pollution. Without understanding the influence of factors such as social structure and sex-biased dispersal on genetic variation and gene flow among populations, effects of local extirpation and the potential for natural recolonization (i.e. the need for translocations) cannot be assessed. We studied gene flow among seven study areas for river otters (n = 110 otters) inhabiting marine environments in Prince William Sound, Alaska, USA. Using nine DNA microsatellite markers and assignment tests, we calculated immigration rates and dispersal distances and tested for isolation by distance. In addition, we radiotracked 55 individuals in three areas to determine characteristics of dispersal. Gender differences in sociality and spatial relationships resulted in different dispersal distances. Male river otters had greater gene flow among close populations (within 16-30 km) mostly via breeding dispersal, but both genders exhibited an equal, low probability of natal dispersal; and some females dispersed 60-90 km. These data, obtained in a coastal environment without anthropogenic barriers to dispersal (e.g. habitat fragmentation or urbanization), may serve as baseline data for predicting dispersal under optimal conditions. Our data may indicate that natural recolonization of coastal river otters following local extirpation could be a slow process because of low dispersal among females, and recolonization may be substantially delayed unless viable populations occurred nearby. Because of significant isolation by distance for male otters and low gene flow for females, translocations should be undertaken with caution to help preserve genetic diversity in this species.  相似文献   

7.
Measures of gene flow in the Columbian ground squirrel   总被引:2,自引:0,他引:2  
F. Stephen Dobson 《Oecologia》1994,100(1-2):190-195
From analyses of published data and a review of the literature, I studied indirect and direct measures of gene flow among populations of Columbian ground squirrels, Spermophilus columbianus. New analyses were used to examine an allozyme data set (seven polymorphic loci) that had been collected by Zammuto and Millar (1985a) from six populations of ground squirrels that were spread over 183 km. G-tests indicated significant variation in allele frequencies among populations, but F-statistics revealed relatively little population differentiation (average F ST=0.026). F ST values were used to estimate rates of gene flow indirectly and indicated fairly high rates of gene flow (average N e m=13.5). Recorded dispersal distances of individual ground squirrels were fairly short (most<4 km, maximum recorded distance was 8.5 km), and the minimum distance between populations used to create the allozyme data set was about 25 km. Thus, direct dispersal among the populations in the allozyme data set was highly unlikely. Small genetically effective populations may have experienced high rates of migration over short distances (about 43% of adults in local populations were immigrants), however, resulting in homogeneous allele frequencies over the geographic range. This explanation provides an alternative to invoking gene flow in the recent past to explain discrepancies between dispersal distances in the field and homogenization of allele frequencies over large ranges, Mammalian species that have virtually complete dispersal of subadult males from the natal area might be expected to exhibit relatively high rates of gene flow, regardless of actual dispersal distances. Genetically effective populations may be much smaller than more extensive ecological populations and experience higher rates of gene flow.  相似文献   

8.
Genetic variation and differentiation in six island populations of two species ( Cynopterus brachyotis Müller and Haplonycteris fischeri Lawrence) of Philippine fruit bats (Chiroptera, Pteropodidae) were analysed using allozyme electrophoresis. Cynopterus is eurytopic and widespread in southeast Asia; Haplonycteris is stenotopic and endemic to the Philippines. Genetic variability within populations is consistently higher in Cynopterus , but differentiation between populations is much more pronounced in Haplonycteris. Genetic variation is not significantly correlated with island size in either species, but a positive trend is present in both. Levels of gene flow are sufficiently low to allow differentiation by genetic drift alone in Haplonycteris ( Nm = 0.05), but not in Cynopterus ( Nm = 7.5). There is no significant association between genetic distance and distance between sampling sites; however, between-population differentiation is positively related to degree of geographic isolation during Pleistocene periods of low sea level and to vagility and consequent levels of gene flow among populations. Significant effects of population size on genetic differentiation were not found. Genetic distance matrices for the two species share a common structure that is similar to patterns of mammalian faunal similarity for the Philippines as a whole, suggesting similar effects of geographic and/or environmental factors.  相似文献   

9.
When the dispersal capability of a species is considerably less than its geographic range, genetic differences between populations should increase with the distance separating those populations. This pattern should be most evident in linearly distributed species. The sessile solitary cup coral Balanophyllia elegans lives along nearly the entire Pacific coast of North America, yet its crawling larvae usually settle within 40 cm of their birthplace. In this paper, I document geographic patterns of allozyme differentiation within and among populations of B. elegans and estimate the proportion of observed geographic pattern attributable to gene flow between adjacent populations. Genetic subdivision among localities separated by up to 3000 km was high (FST = 0.283, SE = 0.038). Inferred gene flow between pairs of localities (, individuals per generation) correlated inversely with the geographic distance between those localities, consistent with the pattern expected for a species at equilibrium in which gene flow occurred exclusively between adjacent localities. Within localities, patches separated by 4 to 30 m were also significantly subdivided, but genetic differentiation between patches did not vary significantly with the distance separating them. Simulations revealed that the power to detect genetic pattern expected from gene flow between adjacent populations increased with both the number of loci used to infer gene flow and the heterozygosity of those loci. Simulations also verified that when geographic distance poorly approximated the number of steps between populations, reduced major-axis regression more accurately portrayed the structural relationship between gene flow and separation than did ordinary least-squares regression. Attenuation of gene flow with distance explained 15% of the between-locality pattern of genetic differentiation in B. elegans. The remaining variation appeared to be due to neither natural selection nor a recent rangewide recolonization. Loci from the northern sampled localities, however, had fewer alleles than those from the remainder of the range, suggesting these localities had been recolonized recently following Pleistocene cooling.  相似文献   

10.
Although two cryptic pipistrelle bat species, Pipistrellus pipistrellus and Pipistrellus pygmaeus , belong among the most common bat species in Europe, it is still unclear whether they can migrate over long distances between summer and winter roosts. Long-distance migratory species may be expected to show low levels of genetic structuring in large areas due to regular mixing of the gene pool by mating that occurs during migration and/or hibernation. Conversely, the dispersal of gametes in sedentary species is spatially restricted, populations are more genetically structured, and isolation by relatively short distance is visible. By analysing diversity of highly variable microsatellites within and among summer colonies of both studied species in central Europe, we found that differentiation between populations is very weak. Both classical F ST and Bayesian clustering approach failed to detect genetic structure among colonies and there was no significant isolation-by-distance pattern. The analyses of relatedness, however, revealed that individuals within colonies are more related than random suggesting philopatry of at least one sex. The results were very similar for the two species. The high level of gene flow among central European populations, even on large geographic distances, is discussed in relation with migrations, dispersal, and mating behaviour.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 103–114.  相似文献   

11.
Understanding mating patterns and gene movement in plant populations occupying highly disturbed landscapes is essential for insights into their long-term survival. We used allozyme genetic markers to examine mating patterns and to directly measure pollen flow in the Central American epiphytic orchid, Laelia rubescens. Study populations were located in disturbed, seasonally dry tropical forest in Costa Rica. Every flowering individual within 15 populations and 12-18 seedlings from each maternal individual were genotyped over two reproductive seasons. Strict correlated mating by orchids produces full-sib progeny arrays from which the multilocus diploid genotype of the pollen parent can be inferred. These paternity analyses produced detailed quantitative estimates of pollen movement within and among populations of this species. Although our data illustrate that mating patterns vary spatially and temporally among trees, among pastures, and between years, overall patterns were surprisingly consistent. Thirty-four per cent of the capsules produced in both years resulted from gene flow events. Where pollen parents were identified, pollen moved mean distances of 279 m and 519 m in 1999 and 2000 respectively and a maximum documented distance of 1034 m. A substantially larger floral display in 2000 corresponded to a marked increase in pollen dispersal distances. Smaller populations, which more closely resembled those in undisturbed forest, had higher rates of gene flow than the large populations that characterize disturbed sites. We predict the occurrence of greater gene flow between low-density populations occupying undisturbed habitats.  相似文献   

12.
To determine the effects of dispersal ability and diet breadth on population-genetic structure, we reviewed the allozyme literature and estimated genetic isolation by distance (IBD) for 43 species/host races of phytophagous insects. Subsequently, we tested two opposing hypotheses regarding the influence of dispersal ability on IBD: that IBD slopes do not vary with mobility, but that intercepts increase with mobility, and, alternatively, that IBD slopes vary with dispersal ability. We found that from tens of kilometers to more than 1,000 km, IBD is weak in sedentary and highly mobile species but pronounced in moderately mobile species. We attribute the weak IBD in strong dispersers to the homogenizing effects of gene flow, whereas in sedentary species, limited gene flow allows nearly all populations to diverge. In intermediate dispersers, genetic homogeneity is achieved at small spatial scales, but limited dispersal promotes genetic divergence over long distances. We also tested the hypothesis that IBD increases with decreasing diet breadth. We discovered no such pattern, casting doubt on the supposition that specialization promotes speciation by influencing population-genetic subdivision. Finally, we found that the number of populations is a more important consideration than the number of polymorphic loci in studies of IBD.  相似文献   

13.
In this study, we analysed spatial genetic structure (SGS) patterns and estimated dispersal distances in Milicia excelsa (Welw.) C.C. Berg (Moraceae), a threatened wind-pollinated dioecious African tree, with typically low density (∼10 adults/km2). Eight microsatellite markers were used to type 287 individuals in four Cameroonian populations characterized by different habitats and tree densities. Differentiation among populations was very low. Two populations in more open habitat did not display any correlation between genetic relatedness and spatial distance between individuals, whereas significant SGS was detected in two populations situated under continuous forest cover. SGS was weak with a maximum S p-statistic of 0.006, a value in the lower quartile of SGS estimates for trees in the literature. Using a stepwise approach with Bayesian clustering methods, we demonstrated that SGS resulted from isolation by distance and not colonization by different gene pools. Indirect estimates of gene dispersal distances ranged from σ g = 1 to 7.1 km, one order of magnitude higher than most estimates found in the literature for tropical tree species. This result can largely be explained by life-history traits of the species. Milicia excelsa exhibits a potentially wide-ranging wind-mediated pollen dispersal mechanism as well as very efficient seed dispersal mediated by large frugivorous bats. Estimations of gene flow suggested no major risk of inbreeding because of reduction in population density by exploitation. Different strategy of seed collection may be required for reforestation programmes among populations with different extent of SGS.  相似文献   

14.
Genetic isolation by distance (IBD) has rarely been described in marine species with high potential for dispersal at both the larval and adult life-history stages. Here, we report significant relationships between inferred levels of gene flow and geographic distance in the Atlantic cod, Gadus morhua, at 10 nuclear restriction-fragment-length-polymorphism (RFLP) loci at small regional scales in the western north Atlantic region (< 1,600 km) that mirror those previously detected over its entire geographic range (up to 7,300 km). Highly significant allele frequency differences were observed among eight northwestern Atlantic populations, although the mean FST for all 10 loci was only 0.014. Despite this weak population structuring, the distance separating populations explained between 54% and 62% of the variation in gene flow depending on whether nine or 10 loci were used to estimate Nm. Across the species' entire geographic range, highly significant differences were observed among six regional populations at nine of the 10 loci (mean FST = 0.068) and seven loci exhibited significant negative relationships between gene flow and distance. At this large geographic scale, natural selection acting in the vicinity of one RFLP locus (GM798) had a significant effect on the correlation between gene flow and distance, and eliminating it from the analysis caused the coefficient of determination to increase from 17% to 62%. The role of vicariance was assessed by sequentially removing populations from the analysis and was found to play a minor role in contributing to the relationship between gene flow and distance at either geographic scale. The correlation between gene flow and distance detected in G. morhua at small and large spatial scales suggests that dispersal distances and effective population sizes are much smaller than predicted for the species and that the recent age of populations, rather than extensive gene flow, may be responsible for its weak population structure. Our results suggest that interpreting limited genetic differences among populations as reflecting high levels of ongoing gene flow should be made with caution.  相似文献   

15.
Australian magpies (Gymnorhina tibicen) are group-living birds found across much of mainland Australia. Adults commonly remain in a breeding territory until death. Young of the year either remain on the natal (birth) site or are forced by their parents to disperse. Observational studies in south-eastern Australia suggest that most dispersing juveniles settle within 7 km of their natal territory. Therefore, despite potential for considerable gene flow (via flight), social organization predisposes magpies towards local population structuring. In this study, we measured genetic variation at both nuclear (allozyme) and mitochondrial loci and found evidence of substantial gene flow over very large distances (up to 1599 km). Thus, some juvenile magpies may disperse much greater distances than was previously thought. For mtDNA, geographic and genetic distance were strongly correlated, consistent with a pattern of isolation by distance. Therefore, although female gene flow is substantial it is apparently geographically restricted over large distances, in approximately a stepping-stone fashion. We conclude that a strong relationship between gene flow and geographic distance can develop even over large distances if populations have experienced no major historical disturbances to gene flow.  相似文献   

16.
Bellamya aeruginosa is a widely distributed Chinese freshwater snail that is heavily harvested, and its natural habitats are under severe threat due to fragmentation and loss. We were interested whether the large geographic distances between populations and habitat fragmentation have led to population differentiation and reduced genetic diversity in the species. To estimate the genetic diversity and population structure of B. aeruginosa, 277 individuals from 12 populations throughout its distribution range across China were sampled: two populations were sampled from the Yellow River system, eight populations from the Yangtze River system, and two populations from isolated plateau lakes. We used seven microsatellite loci and mitochondrial cytochrome oxidase I sequences to estimate population genetic parameters and test for demographic fluctuations. Our results showed that (1) the genetic diversity of B. aeruginosa was high for both markers in most of the studied populations and effective population sizes appear to be large, (2) only very low and mostly nonsignificant levels of genetic differentiation existed among the 12 populations, gene flow was generally high, and (3) relatively weak geographic structure was detected despite large geographic distances between populations. Further, no isolation by linear or stream distance was found among populations within the Yangtze River system and no signs of population bottlenecks were detected. Gene flow occurred even between far distant populations, possibly as a result of passive dispersal during flooding events, zoochoric dispersal, and/or anthropogenic translocations explaining the lack of stronger differentiation across large geographic distances. The high genetic diversity of B. aeruginosa and the weak population differentiation are likely the results of strong gene flow facilitated by passive dispersal and large population sizes suggesting that the species currently is not of conservation concern.  相似文献   

17.
1. To determine whether dispersal biology can predict the pattern of population‐genetic variation among insect populations accurately, allozyme variation was assayed for populations of a saltmarsh planthopper, Tumidagena minuta, in which > 99% of the adults are flightless. 2. The pattern of genetic isolation by distance in T. minuta was compared with that in other insects, to determine whether it was similar to isolation by distance in other sedentary insects. 3. In contrast to predictions, the pattern of isolation by distance in T. minuta was most similar to that seen in the most mobile insects in a recent review of population‐genetic variation in insects. Furthermore, population‐genetic subdivision over a spatial scale of > 400 km was weak. 4. Possible causes of the apparent contradiction between dispersal biology and population‐genetic structure in this species are discussed. The results for T. minuta highlight the fact that although mobility is generally correlated with gene flow in insects, studies of population‐genetic variation must be combined with direct studies of dispersal to understand fully the degree to which populations exchange individuals.  相似文献   

18.
Mitochondrial and autosomal short tandem-repeat (STR) genetic distances among 28 Pacific Island and Asian populations are significantly correlated (r=.25, P<.01) but describe distinct patterns of relationships. Maternally inherited-mtDNA data suggest that Remote Oceanic Islanders originated in island Southeast Asia. In contrast, biparental STR data reveal substantial genetic affinities between Remote Oceanic Islanders and Near Oceanic populations from highland Papua New Guinea and Australia. The low correlation between maternal and biparental genetic markers from the same individuals may reflect differences in genome-effective population sizes or in sex-biased gene flow. To explore these possibilities, we have examined genetic diversity, gene flow, and correlations among genetic, linguistic, and geographic distances within four sets of populations representing potential geographic and cultural spheres of interaction. GST estimates (a measure of genetic differentiation inversely proportional to gene flow) from mtDNA sequences vary between 0.13 and 0.39 and are typically five times greater than GST estimates from STR loci (0.05-0.08). Significant correlations (r>.5, P<.05) between maternal genetic and linguistic distances are coincident with high mtDNA GST estimates (>0.38). Thus, genetic and linguistic distances may coevolve, and their correspondence may be preserved under conditions of genetic isolation. A significant correlation (r=.65, P<.01) between biparental genetic and geographic distances is coincident with a low STR GST estimate (0.05), indicating that isolation by distance is observed under conditions of high nuclear-gene flow. These results are consistent with an initial settlement of Remote Oceania from island Southeast Asia and with extensive postcolonization male-biased gene flow with Near Oceania.  相似文献   

19.
Dispersal is a key demographic process, ultimately responsible for genetic connectivity among populations. Despite its importance, quantifying dispersal within and between populations has proven difficult for many taxa. Even in passerines, which are among the most intensely studied, individual movement and its relation to gene flow remains poorly understood. In this study we used two parallel genetic approaches to quantify natal dispersal distances in a Neotropical migratory passerine, the black-capped vireo. First, we employed a strategy of sampling evenly across the landscape coupled with parentage assignment to map the genealogical relationships of individuals across the landscape, and estimate dispersal distances; next, we calculated Wright’s neighborhood size to estimate gene dispersal distances. We found that a high percentage of captured individuals were assigned at short distances within the natal population, and males were assigned to the natal population more often than females, confirming sex-biased dispersal. Parentage-based dispersal estimates averaged 2400m, whereas gene dispersal estimates indicated dispersal distances ranging from 1600–4200 m. Our study was successful in quantifying natal dispersal distances, linking individual movement to gene dispersal distances, while also providing a detailed look into the dispersal biology of Neotropical passerines. The high-resolution information was obtained with much reduced effort (sampling only 20% of breeding population) compared to mark-resight approaches, demonstrating the potential applicability of parentage-based approaches for quantifying dispersal in other vagile passerine species.  相似文献   

20.
Comparisons of cytoplasmic and nuclear diversity within and among natural plant populations have the potential to distinguish the relative influences of seed and pollen dispersal on contemporary gene flow, or alternatively, may permit inferences of the colonization history of a species via seed. We examined patterns of cpDNA and allozyme variation in Senecio gallicus, a diploid, annual plant that occurs in both coastal and ruderal inland areas of the Iberian Peninsula and southern France. The species appears to have a strong propensity for long-distance seed dispersal. Five cpDNA haplotypes were found by RFLP analysis among a sample of 111 individuals derived from 11 populations. Differences in haplotype frequencies across populations were most evident with respect to a dramatic increase in the frequency of a derived haplotype from coastal to inland localities. The level of cpDNA differentiation among populations within the inland group (θ0 = 0.07) was significantly less than that seen within the coastal group (θ0 = 0.41). In contrast, for allozymes, no significant difference in population structure was evident between collections from coastal and inland habitats. At the rangewide geographic scale, there was only a very weak association between inferred levels of gene flow and geographic distance for cpDNA, and no such association was found for allozymes. It appears that while seed movement in the species might be sufficiently great to disturb the pattern of isolation by distance for cpDNA, it cannot fully account for the nearly randomized spatial structure at polymorphic allozyme loci. It is suggested that isolation of populations in Atlantic-Mediterranean coastal refugia during previous glacial maxima, and the effects of subsequent colonization events in inland areas, have had an important effect on molding the present genetic structure of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号