首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Fragment A of diphtheria toxin has been shown to insert into lipid bilayers at low pH (Montecucco, C., Schiavo, G., and Tomasi, M. (1985) Biochem. J. 231, 123-128; Zhao, J.-M., and London, E. (1988) J. Biol. Chem. 263, 15369-15377). In this report, evidence is provided which demonstrates that fragment A, like diphtheria toxin, can also cause the release of a fluorescent dye (calcein) from vesicles under acidic conditions and that this release parallels fragment A insertion into the membrane. Although the permeability changes are not as large as those obtained with whole toxin (Jiang, G.-S., Solow, R., and Hu, V. W. (1989) J. Biol. Chem. 264, 13424-13429), molecular sieving experiments indicate that the lesion induced by fragment A increases in size with decreasing pH and reaches an upper limit of 30 A at pH 4.0. In addition to size differences, the lesion induced by fragment A releases calcein in a graded manner, whereas diphtheria toxin causes an all-or-none release. One possible interpretation of this result is that the fragment A lesion is transient in comparison to that induced by whole toxin. Although the molecular bases for the observed differences are not understood, these data suggest that fragment A interaction with the lipid bilayer may play a significant role in mediating its own translocation across membranes and that fragment B may aid this process by initiating, enlarging, and stabilizing the lesion formed.  相似文献   

2.
The passage by the low endosomal pH is believed to be an essential step of the diphtheria toxin (DT) intoxication process in vivo. Several studies have suggested that this low pH triggers the insertion of DT into the membrane. We demonstrate here that its insertion into large unilamellar vesicles (LUV) is accompanied by a strong destabilization of the vesicles at low pH. The destabilization has been studied by following the release of a fluorescent dye (calcein) encapsulated in the liposomes. The influence of the lipid composition upon this process has been examined. At a given pH, the calcein release is always faster for a negatively charged (asolectin) than for a zwitterionic (egg PC) system. Moreover, the transition pH, which is the pH at which the toxin-induced release becomes significant, is shifted upward for the asolectin LUV as compared to the egg PC LUV. No calcein release is observed for rigid phospholipid vesicles (DPPC and DPPC/DPPA 9/1 mol/mol) below their transition temperature whereas DT induces an important release of the dye in the temperature range corresponding to the phase transition. The transition pH associated to the calcein release from egg PC vesicles is identical with that corresponding to the exposure of the DT hydrophobic domains, as revealed here by the binding of a hydrophobic probe (ANS) to the toxin. This suggests the involvement of these domains in the destabilization process. Both A and B fragments destabilize asolectin and PC vesicles in a pH-dependent manner but to a lesser extent than the entire toxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
To understand the mechanism of diphtheria toxin membrane translocation, the toxin was entrapped within lipid vesicles, and its low pH-induced translocation across the lipid bilayer was measured. Proteolysis and resistance to guanidinium chloride denaturation were used to demonstrate that the toxin molecules were entrapped. Low pH-induced movement of entrapped toxin to the outer (trans) face of the bilayer was assayed by the binding of external streptavidin to biotin-labeled entrapped toxin. Complete translocation was quantified by the amount of protein released into the external medium. Using whole toxin, it was found that the A fragment was efficiently translocated, but the B fragment was not. This was true both in the low temperature (A domain folded) and high temperature (A domain unfolded) toxin conformations previously identified [Jiang J. X., Abrams, F. S., and London, E. (1991) Biochemistry 30, 3857-3864]. Remarkably, even isolated fragment A appeared to self-translocate under some conditions. Toxin-induced translocation may partly result from formation of a nonspecific toxin-induced pore. This idea is supported by the toxin-induced release of fluorescent dextrans coentrapped within the vesicles. However, low pH-induced exposure of entrapped toxin on the outside of the membrane was conformation dependent. Exposure was greatest for the high temperature conformation. This suggests the existence of a more specific translocation process. The nature and relationship of these processes, and their relative roles in translocation in vivo are discussed.  相似文献   

4.
Clostridium difficile toxin B (269 kDa), which is one of the causative agents of antibiotic-associated diarrhea and pseudomembranous colitis, inactivates Rho GTPases by glucosylation. Here we studied the uptake and membrane interaction of the toxin with eukaryotic target cells. Bafilomycin A1, which prevents acidification of endosomal compartments, blocked the cellular uptake of toxin B in Chinese hamster ovary cells cells. Extracellular acidification (pH 相似文献   

5.
Tetanus neurotoxin (TeNT) causes neuroparalytic disease by entering the neuronal soma to block the release of neurotransmitters. However, the mechanism by which TeNT translocates its enzymatic domain (light chain) across endosomal membranes remains unclear. We found that TeNT and a truncated protein devoid of the receptor binding domain (TeNT-LHN) associated with membranes enriched in acidic phospholipids in a pH-dependent manner. Thus, in contrast to diphtheria toxin, the formation of a membrane-competent state of TeNT requires the membrane interface and is modulated by the bilayer composition. Channel formation is further enhanced by tethering of TeNT to the membrane through ganglioside co-receptors prior to acidification. Thus, TeNT channel formation can be resolved into two sequential steps: 1) interaction of the receptor binding domain (heavy chain receptor binding domain) with ganglioside co-receptors orients the translocation domain (heavy chain translocation domain) as the lumen of the endosome is acidified and 2) low pH, in conjunction with acidic lipids within the membrane drives the conformational changes in TeNT necessary for channel formation.  相似文献   

6.
Hayashibara M  London E 《Biochemistry》2005,44(6):2183-2196
The membrane-inserting T domain of diphtheria toxin aids the low-pH-triggered translocation of the catalytic A chain of the toxin across endosomal membranes. To evaluate the role of the isolated A chain in translocation, the topography of isolated A chain inserted into model membrane vesicles was investigated using a mixture either of dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylglycerol (DOPG) or of dimyristoleoylphosphatidylcholine (DMoPC) and DOPG. The latter mixture was previously found to promote deep insertion of the T domain. A series of single Cys mutants along the A chain sequence were labeled with bimane or BODIPY groups. After A chain insertion into model membranes, the location of these groups within the lipid bilayer was determined via bimane fluorescence emission lambda(max), binding of externally added anti-BODIPY antibodies, and a novel technique involving the comparison of the quenching of bimane fluorescence by aqueous iodide and membrane-associated 10-doxylnonadecane. The results show that in both DOPC- and DMoPC-containing bilayers, membrane-inserted residues all along the A chain sequence occupy shallow locations that are relatively exposed to the external solution. There were only small differences between A chain topography in the two different types of lipid mixtures. However, the behavior of the A chain in the two different lipid mixtures was distinct in that it strongly oligomerized in DMoPC-containing vesicles as judged by Trp fluorescence. In addition, A chain selectively induced fusion of the DMoPC-containing vesicles, and this may aid oligomerization by increasing the A chain/vesicle ratio. Fusion may also explain why A chain also selectively induced leakage of the contents of DMoPC-containing vesicles. We propose that isolated A chain is unlikely to be inserted in a transmembrane orientation, and thus its interaction with the T domain is likely to be critical for properly orienting the A chain within the bilayer in a fashion that allows translocation.  相似文献   

7.
Clostridium difficile toxins A and B bind to eukaryotic target cells, are endocytosed and then deliver their N-terminal glucosyltransferase domain after processing into the cytosol. Whereas glucosyltransferase, autoprocessing and cell-binding domains are well defined, structural features involved in toxin delivery are unknown. Here, we studied structural determinants that define membrane insertion, pore formation and translocation of toxin B. Deletion analyses revealed that a large region, covering amino acids 1501-1753 of toxin B, is dispensable for cytotoxicity in Vero cells. Accordingly, a chimeric toxin, consisting of amino acids 1-1550 and the receptor-binding domain of diphtheria toxin, caused cytotoxic effects. A large N-terminal part of toxin B (amino acids 1-829) was not essential for pore formation (measured by (86) Rb(+) release in mammalian cells). Studies using C-terminal truncation fragments of toxin B showed that amino acid residues 1-990 were still capable of inducing fluorescence dye release from large lipid vesicles and led to increased electrical conductance in black lipid membranes. Thereby, we define the minimal pore-forming region of toxin B within amino acid residues 830 and 990. Moreover, we identify within this region a crucial role of the amino acid pair glutamate-970 and glutamate-976 in pore formation of toxin B.  相似文献   

8.
Pore formation and translocation of melittin.   总被引:8,自引:2,他引:6       下载免费PDF全文
Melittin, a bee venom, is a basic amphiphilic peptide, which mainly acts on the lipid matrix of membranes, lysing various cells. To elucidate the molecular mechanism, we investigated its interactions with phospholipid vesicles. The peptide formed a pore with a short lifetime in the membrane, as revealed by the release of an anionic fluorescent dye, calcein, from the liposomes. Our new double-labeling method clarified that the pore size increased with the peptide-to-lipid ratio. Upon the disintegration of the pore, a fraction of the peptides translocated across the bilayer. The pore formation was coupled with the translocation, which was proved by three fluorescence experiments recently developed by our laboratory. A novel model for the melittin pore formation was discussed in comparison with other pore-forming peptides.  相似文献   

9.
The Bordetella pertussis adenylate cyclase toxin-hemolysin (ACT or CyaA) is a multifunctional protein. It forms small cation-selective channels in target cell and lipid bilayer membranes and it delivers into cell cytosol the amino-terminal adenylate cyclase (AC) domain, which catalyzes uncontrolled conversion of ATP to cAMP and causes cell intoxication. Here, we demonstrate that membrane translocation of the AC domain into cells is selectively dissociated from ACT membrane insertion and channel formation when a helix-breaking proline residue is substituted for glutamate 509 (Glu-509) within a predicted transmembrane amphipathic alpha-helix. Neutral substitutions of Glu-509 had little effect on toxin activities. In contrast, charge reversal by lysine substitutions of the Glu-509 or of the adjacent Glu-516 residue reduced the capacity of the toxin to translocate the AC domain across membrane and enhanced significantly its specific hemolytic activity and channel forming capacity in lipid bilayer membranes. Combination of the E509K and E516K mutations in a single molecule further exacerbated hemolytic and channel forming activity and ablated translocation of the AC domain into cells. The lysine substitutions strongly decreased the cation selectivity of the channels, indicating that Glu-509 and Glu-516 are located within or close to the membrane channel. These results suggest that the structure including glutamate residues 509 and 516 is critical for AC membrane translocation and channel forming activity of ACT.  相似文献   

10.
Sticholysin I and II (St I and St II), two basic cytolysins purified from the Caribbean sea anemone Stichodactyla helianthus, efficiently permeabilize lipid vesicles by forming pores in their membranes. A general characteristic of these toxins is their preference for membranes containing sphingomyelin (SM). As a consequence, vesicles formed by equimolar mixtures of SM with phosphatidylcholine (PC) are very good targets for St I and II. To better characterize the lipid dependence of the cytolysin-membrane interaction, we have now evaluated the effect of including different lipids in the composition of the vesicles. We observed that at low doses of either St I or St II vesicles composed of SM and phosphatidic acid (PA) were permeabilized faster and to a higher extent than vesicles of PC and SM. As in the case of PC/SM mixtures, permeabilization was optimal when the molar ratio of PA/SM was ~1. The preference for membranes containing PA was confirmed by inhibition experiments in which the hemolytic activity of St I was diminished by pre-incubation with vesicles of different composition. The inclusion of even small proportions of PA into PC/SM LUVs led to a marked increase in calcein release caused by both St I and St II, reaching maximal effect at ~5 mol % of PA. Inclusion of other negatively charged lipids (phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), or cardiolipin (CL)), all at 5 mol %, also elicited an increase in calcein release, the potency being in the order CL approximately PA > PG approximately PI approximately PS. However, some boosting effect was also obtained, including the zwitterionic lipid phosphatidylethanolamine (PE) or even, albeit to a lesser extent, the positively charged lipid stearylamine (SA). This indicated that the effect was not mediated by electrostatic interactions between the cytolysin and the negative surface of the vesicles. In fact, increasing the ionic strength of the medium had only a small inhibitory effect on the interaction, but this was actually larger with uncharged vesicles than with negatively charged vesicles. A study of the fluidity of the different vesicles, probed by the environment-sensitive fluorescent dye diphenylhexatriene (DPH), showed that toxin activity was also not correlated to the average membrane fluidity. It is suggested that the insertion of the toxin channel could imply the formation in the bilayer of a nonlamellar structure, a toroidal lipid pore. In this case, the presence of lipids favoring a nonlamellar phase, in particular PA and CL, strong inducers of negative curvature in the bilayer, could help in the formation of the pore. This possibility is confirmed by the fact that the formation of toxin pores strongly promotes the rate of transbilayer movement of lipid molecules, which indicates local disruption of the lamellar structure.  相似文献   

11.
The membrane insertion of diphtheria toxin and of its B chain mutants crm 45, crm 228 and crm 1001 has been followed by hydrophobic photolabelling with photoactivatable phosphatidylcholine analogues. It was found that diphtheria toxin binds to the lipid bilayer surface at neutral pH while at low pH both its A and B chains also interact with the hydrocarbon chains of phospholipids. The pH dependence of photolabelling of the two protomers is different: the pKa of fragment B is around 5.9 while that of fragment A is around 5.2. The latter value correlates with the pH of half-maximal intoxication of cells incubated with the toxin in acidic mediums. These results suggest that fragment B penetrates into the bilayer first and assists the insertion of fragment A and that the lipid insertion of fragment B is not the rate-controlling step in the process of membrane translocation of diphtheria toxin. crm 45 behaves as diphtheria toxin in the photolabelling assay but, nonetheless, it is found to be three orders of magnitude less toxic than diphtheria toxin on acid-treated cells, suggesting that the 12-kDa COOH-terminal segment of diphtheria toxin is important not only for its binding to the cell receptor but also for the membrane translocation of the toxin. It is suggested that crm 1001 is non-toxic because of a defect in its membrane translocation which occurs at a lower extent and at a lower pH than that of the native toxin; as a consequence crm 1001 may be unable to escape from the endosome lumen into the cytoplasm before the fusion of the endosome with lysosomes.  相似文献   

12.
The translocation of the enzymatic moiety of diphtheria toxin, fragment A, across the membranes of pure lipid vesicles was demonstrated. A new assay, which employed vesicles made to contain radiolabeled NAD and elongation factor-2, was used to measure the appearance of the enzymatic activity of the A fragment in the vesicles. When the vesicles were exposed to a low-pH medium in the presence of diphtheria toxin, small molecules, such as NAD, escaped into the extravesicular medium, whereas large molecules mostly remained inside the vesicles. The vesicle-entrapped elongation factor-2 became ADP-ribosylated, indicating the entry of fragment A into the vesicle. The translocation of the A fragment depended upon the pH of the medium, being negligible at pH greater than 7.0 and maximal at pH 4.5. The entire toxin molecule was needed for function; neither the A fragment nor the B fragment alone was able to translocate itself across and react with the sequestered substrates. After exposure of the toxin to low pH, the entry of the A fragment was rapid, being virtually complete within 2-3 min at pH 5.5, and within 1 min at pH 4.7. Translocation occurred in the absence of any protein in the vesicle membrane. These results are consistent with the notion that the diphtheria toxin molecule enters the cytoplasm of a cell by escaping from an acidic compartment such as an endocytic vesicle.  相似文献   

13.
Role of channels in the fusion of vesicles with a planar bilayer.   总被引:7,自引:3,他引:7       下载免费PDF全文
Fluorescence microscopy combined with electrical conductance measurements were used to assess fusion of phospholipid vesicles with a planar bilayer. Large unilamellar vesicles (0.5-3 microns diam.) filled with the fluorescent dye, calcein, were made both with or without porin channels. Vesicle-bilayer fusion was induced by increasing the osmolarity of the solution on the side of the bilayer to which the vesicles were added. Fusion was detected optically by the fluorescent flash due to release of vesicular contents. Although both porin-containing and porin-free vesicles give the same kind of flash upon content release, the conditions necessary to induce release are very different. Only 4% of the porin-free vesicles fuse (release their contents) when subjected to 3 M urea. However, the same conditions induce 53% of the porin-containing vesicles to fuse and most of these fusions occur at a lower osmolarity ([urea] less than 400 mM). Thus channels greatly enhance fusion in this model system. A physical model based on the postulate that fusion is induced by an increase in surface tension, predicts that three conditions are necessary for fusion in this system: (a) an open channel in the vesicle membrane, (b) an osmotic gradient across the bilayer, and (c) the vesicle in contact with the planar membrane. These are the conditions that experimentally produce fusion in the model system.  相似文献   

14.
Diphtheria Toxin (DT) is a 535 amino acid exotoxin, whose active form consists of two polypeptide chains linked by an interchain disulphide bond. DT's N-terminal A fragment kills cells by enzymatically inactivating their protein synthetic machinery; its C terminal B chain is required for the binding of toxin to sensitive cells and for the translocation of the A fragment into the cytosol. This B fragment, consisting of its N-terminal T domain (amino acids 191–386) and its C-terminal R domain (amino acids 387–535) is responsible for the ion-conducting channels formed by DT in lipid bilayers and cellular plasma membranes. To further delineate the channel-forming region of DT, we studied channels formed by deletion mutants of DT in lipid bilayer membranes under several pH conditions. Channels formed by mutants containing only the T domain (i.e., lacking the A fragment and/or the R domain), as well as those formed by mutants replacing the R domain with Interleukin-2 (Il–2), have single channel conductances and selectivities essentially identical to those of channels formed by wild-type DT. Furthermore, deleting the N-terminal 118 amino acids of the T domain also has minimal effect on the single channel conductance and selectivity of the mutant channels. Together, these data identify a 61 amino acid stretch of the T domain, corresponding to the region which includes -helices TH8 and TH9 in the crystal structure of DT, as the channel-forming region of the toxin.This work was supported by NIH grants AI22021, AI22848 (R.J.C.), T32 GM07288 (J.A.M.) and GM29210 (A.F.).  相似文献   

15.
The mode of botulinum neurotoxin action involves binding of its heavy chain for internalization into the presynaptic end of a nerve cell through endocytosis. The low-pH conditions of endosomes trigger translocation of the light chain across the endosomal membrane to the cytosol, where the light chain cleaves specific target proteins involved in the docking and fusion of synaptic vesicles for acetylcholine release. In an effort to model the interaction of botulinum neurotoxin and its subunit chains with lipid bilayer at low pH during the translocation process, we have examined type A botulinum neurotoxin-mediated calcein release from asolectin liposomes. At equimolar concentration (0.1 M), the neurotoxin and its heavy and light chains evoked 23%, 58%, and 28% calcein release, respectively. Calcein release was observed only when the cis-side (the side to which neurotoxin samples were added) pH was lowered to 4. Calcein release activity of the heavy chain was mostly blocked (76%) by a polyclonal antibody raised against the neurotoxin. Additionally, two peptide-specific polyclonal antibodies derived from the N-terminal and C-terminal halves of the heavy chain were also able to block the calcein release activity by 15–20%. In summary, these results suggest that calcein release from liposomes is specifically mediated by the heavy chain, and the light chain also integrates into the membrane. Implications of these results for the molecular mode of neurotoxin light-chain translocation across the endosomal membrane are discussed.  相似文献   

16.
Wang J  Rosconi MP  London E 《Biochemistry》2006,45(26):8124-8134
After low pH-triggered membrane insertion, the T domain of diphtheria toxin helps translocate the catalytic domain of the toxin across membranes. In this study, the hydrophilic N-terminal helices of the T domain (TH1-TH3) were studied. The conformation triggered by exposure to low pH and changes in topography upon membrane insertion were studied. These experiments involved bimane or BODIPY labeling of single Cys introduced at various positions, followed by the measurement of bimane emission wavelength, bimane exposure to fluorescence quenchers, and antibody binding to BODIPY groups. Upon exposure of the T domain in solution to low pH, it was found that the hydrophobic face of TH1, which is buried in the native state at neutral pH, became exposed to solution. When the T domain was added externally to lipid vesicles at low pH, the hydrophobic face of TH1 became buried within the lipid bilayer. Helices TH2 and TH3 also inserted into the bilayer after exposure to low pH. However, in contrast to helices TH5-TH9, overall TH1-TH3 insertion was shallow and there was no significant change in TH1-TH3 insertion depth when the T domain switched from the shallowly inserting (P) to deeply inserting (TM) conformation. Binding of streptavidin to biotinylated Cys residues was used to investigate whether solution-exposed residues of membrane-inserted T domain were exposed on the external or internal surface of the bilayer. These experiments showed that when the T domain is externally added to vesicles, the entire TH1-TH3 segment remains on the cis (outer) side of the bilayer. The results of this study suggest that membrane-inserted TH1-TH3 form autonomous segments that neither deeply penetrate the bilayer nor interact tightly with the translocation-promoting structure formed by the hydrophobic TH5-TH9 subdomain. Instead, TH1-TH3 may aid translocation by acting as an A-chain-attached flexible tether.  相似文献   

17.
Protective antigen (PA), the receptor-binding component of anthrax toxin, heptamerizes and inserts into the endosomal membrane at acidic pH, forming a pore that mediates translocation of the enzymic components of the toxin to the cytosol. When the heptameric pre-insertion form of PA (the prepore) is acidified in solution, it rapidly loses the ability to insert into membranes. To maximize insertion into model membranes, we examined two ways to bind the protein to large unilamellar vesicles (LUV). One involved attaching a His tag to the von Willebrand factor A domain of one of the PA receptors, ANTXR2, and using this protein as a bridge to bind PA to LUV containing a nickel-chelating lipid. The other involved using a His tag fused to the C terminus of PA to bind the protein directly to LUV containing the same lipid. Both ways enhanced pore formation at pH 5.0 strongly and about equally, as measured by the release of K+. Controls showed that pore formation in this system faithfully reproduced that in vivo. We also showed that binding unmodified ANTXR2 von Willebrand factor A to the prepore in solution enhanced its pore forming activity by slowing its inactivation at acidic pH. These findings indicate that an important role of PA receptors is to promote partitioning of PA into the bilayer by maintaining the prepore close to the target membrane and presumably in the optimal orientation as it undergoes the acidic pH-dependent conformational transition to the pore.  相似文献   

18.

Background

Protein transport across cellular membranes is an important aspect of toxin biology. Escherichia coli cell killing by nuclease colicins occurs through DNA (DNases) or RNA (RNases) hydrolysis and to this end their cytotoxic domains require transportation across two sets of membranes. In order to begin to unravel the molecular mechanisms underlying the membrane translocation of colicin nuclease domains, we have analysed the membrane association of four DNase domains (E9, a charge reduction E9 mutant, E8, and E7) and one ribosomal RNase domain (E3) using a biomembrane model system.

Principal Results

We demonstrate, through the use of large unilamellar vesicles composed of synthetic and E. coli lipids and a membrane surface potential sensor, that the colicin nuclease domains bind anionic membranes only, with micromolar affinity and via a cooperative binding mechanism. The evaluation of the nuclease bilayer insertion depth, through a fluorescence quenching analysis using brominated lipids, indicates that the nucleases locate to differential regions in the bilayer. Colicin DNases target the interfacial region of the lipid bilayer, with the DNase E7 showing the deepest insertion, whereas the ribosomal RNase E3 penetrates into the hydrophobic core region of the bilayer. Furthermore, the membrane association of the DNase E7 and the ribosomal RNase E3 induces vesicle aggregation, lipid mixing and content leakage to a much larger extent than that of the other DNases analysed.

Conclusions/Significance

Our results show, for the first time, that after the initial electrostatically driven membrane association, the pleiotropic membrane effects induced by colicin nuclease domains relate to their bilayer insertion depth and may be linked to their in vivo membrane translocation.  相似文献   

19.
The insertion of the A domain of diphtheria toxin into model membranes has been shown to be both pH- and temperature-dependent (Hu and Holmes (1984) J. Biol. Chem. 259, 12226-12233). In this report, the insertion behavior of two mutant proteins of diphtheria toxin, CRM197 and CRM9, was studied and compared to that of wild-type toxin. Results indicated that both CRM197 and CRM9 resembled toxin with respect to the pH-dependence of binding to negatively-charged liposomes at room temperature. However, CRM197 differed from toxin with respect to both the pH- and temperature-dependence of fragment A insertion; fragment A197 inserts more readily into the bilayer at 0 degrees C and low pH or at neutral pH and room temperature than does wild type fragment A under these same conditions. This result indicates that the single amino acid substitution in the A domain of CRM197 facilitates entry of fragment A197 into the membrane, suggesting that CRM197 may be conformationally distinct from native toxin. In fact, the fluorescence spectra of CRM197 and wild-type toxin as well as their respective tryptic peptide patterns indicate that, at pH 7, CRM197 more closely resembles the acid form of wild-type toxin than the native form of toxin. These data suggest that CRM197 may be naturally in a more 'insertion-competent' conformation. In contrast, the mutation in the B domain of CRM9 which results in a 1000-fold decrease in binding affinity for plasma membrane receptors apparently does not cause a change in either the insertion of fragment A9 or the lipid-binding properties of CRM9 relative to toxin.  相似文献   

20.
Pseudomonas exotoxin A. Membrane binding, insertion, and traversal   总被引:4,自引:0,他引:4  
Using vesicle targets composed of phosphatidylcholine and cholesterol (1:1 molar ratio), we found that Pseudomonas aeruginosa exotoxin A (PTx) binding and insertion are not only dependent on pH (Zalman, L.S., and Wisnieski, B.J. (1985) Infect. Immun. 50, 630-635) but also on ionic strength, reaching a maximum in pH 4 buffer that contains 150-200 mM NaCl. Insertion was monitored by photolabeling with an intramembranous probe. Higher levels of binding and insertion were attained with vesicles that contained 2.5 mol% dicetylphosphate than with neutral vesicles. Positively charged vesicles (2.7 mol% stearylamine) were the least effective targets. At pH 7.4, all binding levels were depressed. While PTx binding increased with increasing temperature, the relative proportion of the vesicle-associated toxin that was photolabeled decreased. The most likely explanation for the decrease is that the bilayer translocation rates increased with increasing temperature, and hence fewer PTx molecules were accessible at the time of photolabeling. At 37 degrees C, binding and insertion both plateaued within 10 min of lowering the pH to 4. After 10 min, the amount of bound toxin decreased slightly with time but there was a dramatic decrease in photolabeling, indicating that inserted PTx had begun to cross the bilayer. This was verified by the finding that when PTx was incubated with vesicles that contained trypsin, cleavage occurred only in those samples in which the pH was shifted down to pH 4. Entry is triggered by an acid-induced conformational change that promotes productive binding and insertion. After insertion, the kinetics of membrane traversal appear to be regulated by the physical properties of the bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号