首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review, issued in two parts, describes the information on the structure and biological activity of animal alkaloids derived from polymethyleneamines and produced by marine organisms, wasps, spiders, and microorganisms. Animal alkaloids are outstanding models for developing methods and drugs for the treatment of many human diseases. In the first part, we consider compounds produced by marine and microbial organisms. Some promising synthetic analogues of these alkaloids are used in developing modern preparations for the chelate therapy of excessive blood iron content and antituberculosis, antiproliferative, and immunosuppressive drugs.  相似文献   

2.
海洋天然产物的研究与开发   总被引:6,自引:1,他引:6  
人们已从海藻、腔肠动物、海绵、海鞘、苔藓虫、软体动物、鱼类等海洋生物中分离到大量化学结构独特、生理活性强烈的物质。这些物质的化学结构可分为:聚醚类、大环内酯、萜类、生物碱、环肽、甾醇、多糖和不饱和脂肪酸等。其中,许多具有抗菌、抗真菌、抗肿瘤、抗病毒和心脑血管活性等作用,有的已进入临床试验阶段,可望发展成新药。  相似文献   

3.
The difficulty of obtaining an antimalarial vaccine along traditional lines, because of the highly adaptive character of the malaria parasite, prompts a ceaseless need for new drugs. To this end, marine organisms have been explored recently, as reviewed in this article within the perspective of clinically available antimalarial drugs and promising candidates. Most promising are tetrahydropyrrolo[1,2-α]pyrimidinium, bis-indole, and C11–N5 alkaloids from sponges; pyridoacridone and decahydroquinoline alkaloids from ascidians; and pyrrole alkaloids from fungi, as well as polycyclic polyketides, norditerpene, and polyketide endoperoxides, terpene isonitriles, and, particularly, mixed-biogenesis α-galactosyl ceramides from sponges. The first and the latter classes of agents best fulfill the requirements for combinatorial synthesis in providing a wide variety of compounds for high-throughput screening and toxicity tests. These results came largely from nonprofit organizations, a trend that we foresee will continue. However, partnership with the pharmaceutical industry was and is needed to bring candidate drugs to the clinic. In any event, success will not be achieved without political plans to make the results of technology easily available to poor populations. In memory of Carlo Floriani  相似文献   

4.
Malaria is a major public health problem mainly due to the development of resistance by the most lethal causative parasitic species, Plasmodium falciparum to the mainstay drugs like chloroquine. New drugs with unique structures and mechanism of action are urgently required to treat sensitive and drug-resistant strains of malaria. Historically, compounds containing novel structure from natural origin represent a major source for the discovery and development of new drugs for several diseases. This review presents recent advances in antimalarial drug discovery from natural sources, including plant extracts, and compounds isolated from plants, bacteria, fungi and marine organisms. These compounds offer new and novel scaffolds for development as antimalarials. The literature from 1998 to October 2008 is reviewed. The review present literature compilation from plant and marine extracts, alkaloids (naphthylisoquinolines, bisbenzylisoquinolines, protoberberines and aporphines, indoles, manzamines, and miscellaneous alkaloids) terpenes (sesquiterpenes, triterpenes, diterpenes, and miscellaneous terpenes) quassinoids, flavonoids, limonoids, chalcones, peptides, xanthones, quinones and coumarines, and miscellaneous antimalarials from nature. The review also provides an outlook to recent semisynthetic approaches to antimalarial drugs discovered from natural sources.  相似文献   

5.
吡咯并[4,3,2-de ]喹啉类生物碱是从蟾蜍以及海洋生物等中提取出来的次级代谢物,具有抗寄生虫、抗病毒、抗肿瘤等多种生物活 性,是一类有成药潜力的天然产物。综述部分吡咯并[4,3,2-de ]喹啉类天然产物的生物活性、生物合成以及化学合成的研究进展,并对其现 存问题和发展方向进行分析和展望。  相似文献   

6.
嵊山岛海洋药用生物资源状况调查   总被引:1,自引:0,他引:1  
对嵊山岛礁生物资源以及邻近海域的微藻资源调查,共发现121种潮间带生物,其中有28种海洋药用生物,包括红条毛肤石鳖(Acanthochiton rubrolineatus)、马粪海胆(Hem icentiotus pulcherrimus)、海萝(Gloiopeltis furcata)等,其中多数是海洋中药或可制成中成药,嵊山岛丰富的海绵资源具有筛选天然活性物质的潜力。嵊山岛邻近海域的产毒藻类包括产麻痹性贝毒(PSP)的链状亚历山大藻(Alexandrium catenatum)、塔玛亚历山大藻(Alexandrium tamarens),产腹泻性贝毒(DSP)的倒卵形鳍藻(D inophysis forti)、具尾鳍藻(D inophysis caudata);产记忆缺失性贝毒(ASP)的尖刺拟菱形藻(Pseudo-Nitzschia pungens)、多列拟菱形藻(Pseudo-Nitzschia multiseries)和多纹拟菱形藻(Pseudo-Nitzschia multistriata);产神经性贝毒(NSP)的短凯伦藻(Kerina breve)以及红色裸甲藻(Gymnodinium sangium)、米氏凯伦藻(Kerina m ikim oto)、环状异甲藻(Heterocapsa circularisqua-ma)等能产生生理活性物质的藻类,其中嵊山岛邻近海域产石房蛤毒素和神经毒素的有毒藻类可能具有药用开发价值。  相似文献   

7.
Pyridoacridines are a class of strictly marine‐derived alkaloids that constitute one of the largest chemical families of marine alkaloids. During the last few years, both natural pyridoacridines and their analogues have constituted excellent targets for synthetic works. They have been the subject of intense study due to their significant biological activities; cytotoxic, antibacterial, antifungal, antiviral, insecticidal, anti‐HIV, and anti‐parasitic activities. In the present review, 95 pyridoacridine alkaloids isolated from marine organisms are discussed in term of their occurrence, biosynthesis, biological activities, and structural assignment.  相似文献   

8.
Bhadury P  Wright PC 《Planta》2004,219(4):561-578
Marine algae are one of the largest producers of biomass in the marine environment. They produce a wide variety of chemically active metabolites in their surroundings, potentially as an aid to protect themselves against other settling organisms. These active metabolites, also known as biogenic compounds, produced by several species of marine macro- and micro-algae, have antibacterial, antialgal, antimacrofouling and antifungal properties, which are effective in the prevention of biofouling, and have other likely uses, e.g. in therapeutics. The isolated substances with potent antifouling activity belong to groups of fatty acids, lipopeptides, amides, alkaloids, terpenoids, lactones, pyrroles and steroids. These biogenic compounds have the potential to be produced commercially using metabolic engineering techniques. Therefore, isolation of biogenic compounds and determination of their structure could provide leads for future development of, for example, environmentally friendly antifouling paints. This paper mainly discusses the successes of such research, and the future applications in the context of understanding the systems biology of micro-algae and cyanobacteria.Abbreviations AHL Acylated homoserine lactone - TBT Tributyl tin  相似文献   

9.
Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of employing them in clinical practice are promising in view of the wealth of these compounds from marine organisms. The compounds may also be used in agriculture and the food industry.  相似文献   

10.
Ergot alkaloids produced by the fungus Claviceps parasitizing on cereals, include three major groups: clavine alkaloids, d-lysergic acid and its derivatives and ergopeptines. These alkaloids are important substances for the pharmatech industry, where they are used for production of anti-migraine drugs, uterotonics, prolactin inhibitors, anti-Parkinson agents, etc. Production of ergot alkaloids is based either on traditional field cultivation of ergot-infected rye or on submerged cultures of the fungus in industrial fermentation plants. In 2010, the total production of these alkaloids in the world was about 20,000 kg, of which field cultivation contributed about 50%. This review covers the recent advances in understanding of the genetics and regulation of biosynthesis of ergot alkaloids, focusing on possible applications of the new knowledge to improve the production yield.  相似文献   

11.
Beta-carboline present in beta-carboline alkaloids from marine organisms was found, for the first time, to cleave DNA at the guanine site upon irradiation with UV light with a long wavelength without any additive, and beta-carboline-carbohydrate hybrid system was effective for DNA cleavage.  相似文献   

12.
Biochemical pathways involved in the production of marine sponge secondary metabolites remain mostly unknown. The physicochemical characteristics of the marine environment and the complex structures encountered in marine sponges can explain the lack of results obtained in the biosynthetic studies on marine organisms. Despite significant structural differences, the question of the similarity between the terrestrial and marine biosynthetic pathways remains. To increase our level of knowledge on the sponge metabolic pathways, we developed an experimental protocol using a relatively simple model. Pyrrole imidazole alkaloids represent a very large and interesting family of sponge alkaloids found in many sponge species worldwide. Using oroidin as our target metabolite and the common Mediterranean sponge Axinella damicornis, we measured the incorporation of radiolabelled amino acids into secondary metabolites by “feeding” experiment. This in vivo protocol based on a highly sensitive radioactive detection allowed the identification of the origin of an entire sponge natural product skeleton for the first time.  相似文献   

13.
海洋真菌抗污损活性天然产物研究   总被引:1,自引:0,他引:1  
黏附于海洋船舶或人工设施表面的污损生物给人类海洋生产活动与生态环境带来诸多不利影响.将具有抗污损活性的化合物开发成防污涂料是目前防治海洋生物污损的最常用手段之一.而大量传统有机金属防污剂因其严重毒副作用被禁用,亟须开发高效、环境友好型抗污损涂料.海洋真菌能够产生大量结构新颖、作用机制独特的高效、低毒/无毒抗污损活性次级...  相似文献   

14.
Gul W  Hamann MT 《Life sciences》2005,78(5):442-453
The marine environment produces natural products from a variety of structural classes exhibiting activity against numerous disease targets. Historically marine natural products have largely been explored as anticancer agents. The indole alkaloids are a class of marine natural products that show unique promise in the development of new drug leads. This report reviews the literature on indole alkaloids of marine origin and also highlights our own research. Specific biological activities of indole alkaloids presented here include: cytotoxicity, antiviral, antiparasitic, anti-inflammatory, serotonin antagonism, Ca-releasing, calmodulin antagonism, and other pharmacological activities.  相似文献   

15.
Aims: To isolate the biologically active fraction of the lipopeptide biosurfactant produced by a marine Bacillus circulans and study its antimicrobial potentials. Methods and Results: The marine isolate B. circulans was cultivated in glucose mineral salts medium and the crude biosurfactant was isolated by chemical isolation method. The crude biosurfactants were solvent extracted with methanol and the methanol extract was subjected to reverse phase high‐performance liquid chromatography (HPLC). The crude biosurfactants resolved into six major fractions in HPLC. The sixth HPLC fraction eluting at a retention time of 27·3 min showed the maximum surface tension‐reducing property and reduced the surface tension of water from 72 mNm?1 to 28 mNm?1. Only this fraction was found to posses bioactivity and showed a pronounced antimicrobial action against a panel of Gram‐positive and Gram‐negative pathogenic and semi‐pathogenic micro‐organisms including a few multidrug‐resistant (MDR) pathogenic clinical isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of this antimicrobial fraction of the biosurfactant were determined for these test organisms. The biosurfactant was found to be active against Gram‐negative bacteria such as Proteus vulgaris and Alcaligens faecalis at a concentration as low as 10 μg ml?1. The biosurfactant was also active against methicillin‐resistant Staphylococcus aureus (MRSA) and other MDR pathogenic strains. The chemical identity of this bioactive biosurfactant fraction was determined by post chromatographic detection using thin layer chromatography (TLC) and also by Fourier transform infrared (FTIR) spectroscopy. The antimicrobial HPLC fraction resolved as a single spot on TLC and showed positive reaction with ninhydrin, iodine and rhodamine‐B reagents, indicating its lipopeptide nature. IR absorption by this fraction also showed similar and overlapping patterns with that of other lipopeptide biosurfactants such as surfactin and lichenysin, proving this biosurfactant fraction to be a lipopeptide. The biosurfactant did not show any haemolytic activity when tested on blood agar plates, unlike the lipopeptide biosurfactant surfactin produced by Bacillus subtilis. Conclusions: The biosurfactant produced by marine B. circulans had a potent antimicrobial activity against Gram‐positive and Gram‐negative pathogenic and semi‐pathogenic microbial strains including MDR strains. Only one of the HPLC fractions of the crude biosurfactants was responsible for its antimicrobial action. The antimicrobial lipopeptide biosurfactant fraction was also found to be nonhaemolytic in nature. Significance and impact of the study: This work presents a nonhaemolytic lipopeptide biosurfactant produced by a marine micro‐organism possessing a pronounced antimicrobial action against a wide range of bacteria. There is a high demand for new antimicrobial agents because of the increased resistance shown by pathogenic micro‐organisms against the existing antimicrobial drugs. This study provides an insight into the search of new bioactive molecules from marine micro‐organisms.  相似文献   

16.
Since early human history, plants have served as the most important source of medicinal natural products, and even in the “synthetic age” the majority of lead compounds for pharmaceutical development remain of plant origin. In the marine realm, algae and seagrasses were amongst the first organisms investigated by marine natural products scientists on their quest for novel pharmaceutical compounds. Forty years after the pioneering work in the field of marine drug discovery began, the biodiversity of marine organisms investigated as potential sources of anticancer, anti-inflammatory, and antibiotic compounds has increased tremendously. Nonetheless, marine plants are still an important source of novel secondary metabolites with interesting biomedical properties. The present review focuses on the antitumour properties of compounds isolated from marine algae, phytoplankton, mangroves, seagrasses, or cordgrasses. Compounds produced by marine epi- or endophytic fungi are also discussed.  相似文献   

17.
托烷类生物碱主要包括阿托品、莨菪碱、山莨菪碱、东莨菪碱和樟柳碱,是主要抗胆碱类药物。解析药用茄科植物托烷类生物碱合成的分子调控机制以及研发高产托烷类生物碱的植物生物反应器一直是近几年的研究热点。该文对近年来国内外有关托烷类生物碱在不同茄科植物中的合成部位、分子调控和利用转基因技术研发高产托烷类生物碱的发根生物反应器的研究进展进行综述,并对可能存在的问题以及应用前景进行了展望。  相似文献   

18.
海洋微生物药物的开发和应用   总被引:2,自引:0,他引:2  
概要介绍了海洋微生物药物的开发和应用现状,海洋微生物药物的研究开发技术和方法,并展望了海洋微生物药物及其资源的开发和应用前景。  相似文献   

19.
Biologists and chemists of the world have been attracted towards marine natural products for the last five decades. Approximately 16,000 marine natural products have been isolated from marine organisms which have been reported in approximately 6,800 publications, proving marine microorganisms to be a invaluable source for the production of novel antibiotic, anti tumor, and anti inflammatory agents. The marine fungi particularly those associated with marine alga, sponge, invertebrates, and sediments appear to be a rich source for secondary metabolites, possessing Antibiotic, antiviral, antifungal and antiyeast activities. Besides, a few growth stimulant properties which may be useful in studies on wound healing, carcinogenic properties, and in the study of cancers are reported. Recent investigations on marine filamentous fungi looking for biologically active secondary metabolites indicate the tremendous potential of them as a source of new medicines. The present study reviews about some important bioactive metabolites reported from marine fungal strains which are anti bacterial, anti tumour and anti inflammatory in action. It highlights the chemistry and biological activity of the major bioactive alkaloids, polyketides, terpenoids, isoprenoid and non-isoprenoid compounds, quinones, isolated from marine fungi.  相似文献   

20.
The newly established genus Pseudoalteromonas contains numerous marine species which synthesize biologically active molecules. The production of a range of compounds which are active against a variety of target organisms appears to be a unique characteristic for this genus and may greatly benefit Pseudoalteromonas cells in their competition for nutrients and colonization of surfaces. Species of Pseudoalteromonas are generally found in association with marine eukaryotes and display anti-bacterial, bacteriolytic, agarolytic and algicidal activities. Moreover, several Pseudoalteromonas isolates specifically prevent the settlement of common fouling organisms. While a wide range of inhibitory extracellular agents are produced, compounds promoting the survival of other marine organisms living in the vicinity of Pseudoalteromonas species have also been found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号