首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Modulation of the cytochrome P450 (CYP) monooxygenase system (P450) by arsenite was investigated in male, adult Sprague-Dawley rats treated with a single dose (75 micromol/kg, sc) of sodium arsenite (As3+). Total CYP content and P450-dependent 7-pentoxyresorufin O-pentylation (PROD) and 7-ethoxyresorufin O-deethylation (EROD) activities of liver microsomes decreased maximally (33, 35, and 50% of control, respectively) 1 day after As3+ treatment. Maximum decreases of CYP content and P450 catalytic activities corresponded with maximum increases of microsomal heme oxygenase (HO) activity and with increased total plasma bilirubin concentrations. EROD activity increased maximally in lung (300%) 5 days after a single dose of As3+. Lung CYP1A1 mRNA and protein levels also increased maximally 5 days after treatment. A small but significant increase in EROD activity (65%) was observed in lung microsomes 24 h following a 1 h infusion of bilirubin (7.5 mg/kg) into rats. However, administration of bilirubin to the lung via intratracheal injection (0.25 and 2.5 mg/kg) did not increase CYP1A1 monooxygenase activity or mRNA. This study demonstrates that P450 is modulated in an isozyme (CYP1A1 vs CYP2B1/2) selective manner in rat lung after acute As3+ administration. Administration of bilirubin, a potential aryl hydrocarbon receptor (AHR) ligand, by infusion or intratracheal instillation did not upregulate pulmonary CYP1A1 at the mRNA level under our treatment conditions.  相似文献   

3.
4.
Hepatic CYP1A expression in fish can be modulated by the female sex hormone, 17beta-estradiol (E2), however neither the mechanism of E2 suppression of CYP1A nor the capacity for hormonal regulation to overcome CYP1A induction by xenobiotics are known. The present study investigates for the first time in fish if the estrogen receptor (ER) is involved in the suppressive action of E2 on CYP1A gene expression. The study further examines, if the E2 effect is able to overcome xenobiotic induction of CYP1A. As experimental model, in vitro cultures of rainbow trout, Oncorhynchus mykiss, hepatocytes were used. The effect of E2 on CYP1A was assessed by measuring the CYP1A-associated 7-ethoxyresorufin-O-deethylase (EROD) enzyme activity, and CYP1A mRNA contents. E2 at non-cytotoxic concentrations caused a significant time- and concentration-dependent decline of basal but not of induced hepatic EROD activities. The inhibitory action of E2 on basal CYP1A was also evident at the mRNA level. The presence of the ER antagonist tamoxifen abolished the inhibitory action of E2 on CYP1A expression. The results from these in vitro experiments provide evidence (a) that the ER is involved in the suppressive action of E2 on CYP1A, and (b) that E2 inhibitory action does not overcome xenobiotic induction of CYP1A.  相似文献   

5.
6.
A number of highly toxic environmental pollutants including certain polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF), and 'dioxin-like' polychlorinated biphenyls (PCB) are among the most potent agonists of the aryl hydrocarbon receptor (AHR). Induction of cytochrome P4501A1 (CYP1A1) in mammalian cell culture is widely used as a functional parameter for AHR activation providing an estimate for 'dioxin-like' inducing equivalents in extracts from environmental samples. Since a number of polycyclic aromatic hydrocarbons (PAHs) also act as AHR-agonists, the CYP1A1-inducing potencies, measured as induction of 7-ethoxyresorufin O-deethylase (EROD) activity in rat hepatocyte cultures were analyzed for 16 PAHs frequently present in environmental samples. Among these, seven PAHs including benzo[a]pyrene were relatively potent inducers allowing the determination of Induction Equivalency Factors (IEF). For three PAHs including benzo[k]fluoranthene which acted as weak inducers, IEFs were estimated, while six PAHs including acenaphthylene were classified as inactive. Based on different efficacies the concentration-response characteristics of CYP1A1 induction were analyzed in more detail for benzo[a]pyrene, benzo[k]fluoranthene, and acenaphthylene. Benzo[k]fluoranthene was markedly less effective than benzo[a]pyrene as inducer of EROD activity but even more effective than benzo[a]pyrene as inducer of CYP1A1 protein and mRNA. Acenaphthylene was highly more effective on the level of mRNA than on the levels of protein or EROD activity. Further analysis revealed that the low efficacy of acenaphthylene as inducer of CYP1A1 protein and EROD activity is due to its marked cytotoxicity while no clear-cut explanation was found for the differences in efficacy between benzo[k]fluoranthene and benzo[a]pyrene. The EROD-inducing potency of a mixture of 16 PAH was about 2-fold higher than that calculated on the basis of IEFs of the individual constituents of the mixture.  相似文献   

7.
Metabolic activation and DNA adduct formation of the carcinogenic aromatic hydrocarbon dibenzo[a,l]pyrene (DBP) was investigated in human mammary carcinoma MCF-7 cells and human cytochrome P450 (CYP) 1B1-expressing Chinese hamster V79 cells in culture. It has been shown that DBP is metabolically activated to DNA-binding diol epoxides both in vitro and in vivo. To further establish the role of human CYP1B1 in the activation of DBP, both cell lines were cotreated with DBP and a selective chemical inhibitor of CYP1B1, 2,4,3' ,5'-tetramethoxy-stilbene (TMS). Results from DBP-DNA adduct analyses revealed the complete inhibition of DNA binding when cells were cotreated with DBP and TMS in comparison to DBP alone. Inactivation of CYP1B1 by TMS was also demonstrated through a decrease in the 7-ethoxyresorufin O-deethylase (EROD) activity in microsomes isolated from these cells. Emodin, 3-methyl-1,6,8-trihydroxyanthraquinone, an active ingredient of an herb, has been recently shown of being able to induce CYP1 gene expression. Examination of human CYP1B1 induction and EROD activity confirmed an increase in protein levels upon cotreatment with emodin and DBP. Despite increases in protein levels and enzyme activity, there was no significant change in DBP-DNA binding levels at very low substrate concentrations (17 nM). The data obtained in this study emphasize the central role of CYP1B1 in the activation of DBP in human cells in culture.  相似文献   

8.
9.
10.
11.
We studied the mechanism of toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the chick embryo, which is an organism highly sensitive to TCDD. TCDD was injected into egg yolks prior to embryogenesis, and eggs were incubated for 12 or 18 days. In TCDD-exposed embryos, we observed increased heart wet weight and change in the color of the liver, with abnormal fatty vesicle formation. To determine whether these effects were mediated by the aryl hydrocarbon receptor (AhR), we examined expression levels of AhR, CYP1A4, and CYP1A5. AhR was expressed continuously in the heart and liver during embryogenesis, whereas induction of CYP1A4 and CYP1A5 by TCDD was detected only in the liver. In situ hybridization study of tissue sections revealed induction of CYP1A4 in the abnormal liver tissue in which color change was not observed. To determine whether these different responses to TCDD depended on the cell type, primary cultures of chick hepatocytes and cardiac myocytes were established and 7-ethoxyresorufin-O-deethylase (EROD) activity was measured. Induction of EROD activity following exposure to TCDD was detected in hepatocytes but not in cardiac myocytes. Although the heart is a principal target organ for TCDD toxicity and AhR is expressed throughout embryogenesis, induction of CYP1A was not observed in the chick heart. Thus, we conclude that defects in the heart induced by exposure to TCDD occur via a different pathway than that occurring in the liver.  相似文献   

12.
Regulation and expression of human CYP1A1 is demonstrated in transgenic mice. We have developed two transgenic mouse lines. One mouse strain (CYPLucR) carries a functional human CYP1A1 promoter (-1612 to +293)-luciferase reporter gene, and the other strain (CYP1A1N) expresses CYP1A1 under control of the full-length human CYP1A1 gene and 9 kb of flanking regulatory DNA. With CYPLucR(+/-) mice, 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) and several other aryl hydrocarbon receptor ligands induced hepatocyte-specific luciferase activity. When other tissues were examined, TCDD induced luciferase activity in brain with limited induction in lung and no detectable luciferase activity in kidney. Treatment of CYP1A1N(+/-) mice with TCDD resulted in induction of human CYP1A1 in liver and lung, while mouse Cyp1a1 was induced in liver, lung, and kidney. Although induced CYP1A1/Cyp1a1 could not be detected by Western blot analysis in brains from CYP1A1N(+/-) mice, induction in brain was verified by detection of CYP1A1/Cyp1a1 RNA. The administration of TCDD to nursing mothers to examine the effect of lactational exposure via milk demonstrated prominent induction of luciferase activity in livers of CYPLucR(+/-) newborn pups with limited induction in brain. However, TCDD treatment of adult CYPLucR(+/-) mice led to a 7-10-fold induction of brain luciferase activity. Combined these results indicate that tissue-specific and developmental factors are controlling aryl hydrocarbon receptor-mediated induction of human CYP1A1.  相似文献   

13.
Active derivatives of vitamin A are essential in physiological processes such as cell growth, differentiation, morphogenesis and development. The biological functions of vitamin A are mediated through the retinoid acid receptors (RARs) and retinoid X receptors (RXRs). Aryl hydrocarbon receptor (AhR) agonists such as planar halogenated compounds are known to interfere with vitamin A homeostasis in both field and laboratory studies. In this study, we have investigated the molecular interactions between vitamin A and AhR signalling pathways using juvenile Atlantic salmon and agonists for both receptor pathways. Groups of juvenile salmon were treated with all-trans- and 9-cis-retinoic acid mixture (7:3 ratio) dissolved in DMSO (dimethyl sulfoxide) at 0.1, 1 and 10 mg/kg fish weight. The mixture was force fed singly or in combination with 0.1 mg 3,3',4,4'-tetrachlorobiphenyl (co-planar congener 77)/kg fish weight dissolved in DMSO. Liver samples were collected 3 days after PCB-77 exposure. A separate group exposed to combined retinoic acid (1 mg/kg for 5 days) and PCB-77, was sampled at 3, 7 and 14 days after PCB-77 exposure. Liver samples collected from all exposure groups were analyzed for gene (RARalpha, AhR2alpha, AhR2beta, CYP1A1, UGT1 and GSTpi) expression using real-time PCR and activity (7-ethoxyresorufin O-deethylase (EROD), UGT and GST) using biochemical methods with specific substrates. Our data showed that exposure to RA alone did not produce a significant increase of RARalpha mRNA levels, and the presence of PCB-77 attenuated the expression of RARalpha in RA dose- and time-specific manner. In addition, RA produced a dose-dependent increase of CYP1A1 mRNA and activity (EROD) levels without concomitant increase in AhR2 isoforms. When administered alone, PCB-77 produced increased CYP1A1, UGT1 and GSTpi mRNA and enzyme levels. The PCB-77-induced CYP1A1, UGT1 and GSTpi (mRNA and activity) levels were modulated by RA, in a parameter and dose-specific manner. In general, our data show an interaction between vitamin A and AhR signalling that may affect retinoid homeostasis in fish.  相似文献   

14.
The present study investigated the involvement of catecholamines in stress-mediated alterations in CYP1A1 induction by benzo(alpha)pyrene (B(alpha)P) in Wistar rats. This was achieved by measuring EROD activity and CYP1A1 mRNA levels in liver tissue from rats exposed to restraint stress and B(alpha)P coupled with pharmacological modulation of peripheral and central catecholamine levels and different adrenoceptors. In a state of reserpine-induced central and peripheral catecholamine depletion, stress strongly suppressed EROD induction. Peripheral catecholamines do not appear to play a critical role in the stress-mediated modulation of EROD inducibility by B(alpha)P. Stress did not alter EROD inducibility by B(alpha)P when peripheral catecholamines were either depleted by guanethidine or supplemented by peripheral adrenaline administration. On the other hand, central noradrenergic systems appear to have a role in the stress-mediated changes in B(alpha)P-induced EROD activity and Cyp1A1 gene expression. Stimulation or blockade of noradrenaline release with atipamezole and dexmedetomidine, respectively, significantly modified the up-regulating effect of stress. Alpha1 adrenoceptors also appear to participate in the effect of stress on EROD inducibility. Alpha1-blockade with prazosin potentiated the up-regulating effect of stress, possibly preventing the down-regulating effect of noradrenaline. Beta adrenoceptors also seem to be involved directly or indirectly in the stress-mediated modulation of Cyp1A1, as propranolol (beta-antagonist) blocked the down-regulating effect of stress on B(alpha)P-induced Cyp1A1 gene expression. Plasma corticosterone alterations after stress were not related to alterations in the B(alpha)P-induced EROD activity and Cyp1A1 gene expression. In conclusion, stress appears to interfere in the regulation of B(alpha)P-induced hepatic CYP1A1 in an unpredictable manner and via signalling pathways not always directly related to catecholamines. In particular, whenever drug treatment disrupts noradrenergic neurotransmission, other stress-stimulated factors appear to modify the induction of CYP1A1. In summary, regulation of induction of hepatic CYP1A1 during stress appears to involve various components of the stress system, including central and peripheral catecholamines, which interact in a complex manner, yet to be elucidated.  相似文献   

15.
We report here a novel observation that 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) induced predominantly cytochrome P4501A1 (CYP1A1) in rat hepatocytes and predominantly CYP1A2 in human hepatocytes. As part of our research program to evaluate species-differences in response to CYP inducers, we studied the effects of TCDD on CYP1A activity, protein, and gene expression in primary cultures of rat and human hepatocytes. TCDD was found to induce CYP1A activity, measured as ethoxyresorufin-O-deethylase (EROD) activity, in both rat and human hepatocytes. TCDD induction of EROD activity in human hepatocytes (2-5 fold of concurrent solvent control), was significantly lower than that found in rat hepatocytes ( 20-fold of concurrent solvent control). Two structural analogs of TCDD, 2,3,7,8-tetrachlorodibenzofuran (TCDF) and 6-nitro-1,3,8-trichlorodibenzofuran (6-NCDF), were also evaluated. As observed for TCDD, human hepatocytes consistently showed a lower response than rat hepatocytes. As most TCDD-related effects are believed to be mediated via binding of the TCDD-Ah receptor (AhR) complex to DNA, nuclear AhR levels were measured in rat and human hepatocytes after TCDD treatment. We found that the nuclear AhR levels in TCDD-treated rat hepatocytes were approximately 4 times higher than found in TCDD-treated human hepatocytes. However, the estimated binding affinity of [3H]TCDD to nuclear AhR from rat hepatocytes was similar. The species difference in response to TCDD was further evaluated by analysis of CYP1A1 and CYP1A2 mRNA levels using Northern analysis, and P4501A1 and 1A2 protein levels using Western immunoblotting. Results showed that, at both gene expression and protein levels, TCDD induced predominantly CYP1A1 in rat hepatocytes and CYP1A2 in human hepatocytes.  相似文献   

16.
1. The role of protein kinase C (PKC) in B-naphthoflavone (BNF) induction of CYP1A1 in rainbow trout hepatocytes was investigated.2. Primary cultures of rainbow trout hepatocytes treated with BNF for 24 hr showed an increase in microsomal 7-ethyoxyresorufm-O-deethylase (EROD) activity compared to cells treated with vehicle (DMSO) only.3. Increases in EROD activities were proportional to increased concentrations of BNF from 1 to 10 nM reaching a plateau at higher concentrations (20–100 nM) of BNF.4. Western blot analysis using specific antibody (LM4b) against CYP1A1 showed that changes in microsomal CYP1A1 protein paralleled that of EROD activity.5. The induction of EROD activity by BNF required both protein and RNA synthesis since the process was blocked by both cycloheximide and actinomycin D.6. Pretreatment of hepatocytes with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) led to a dose dependent suppression of BNF-induced EROD activity and CYP1A1 content. TPA alone had no effect on hepatic EROD activity and CYP1A1 protein level.7. Pretreatment with sn-1,2 didecanoylglycerol, a PKC activator, had no effect on BNF-induced EROD activity in these cells.8. Pretreatment of cells with staurosporine, a PKC inhibitor, effectively blocked BNF-induced EROD activity.9. PKC may play a role in the induction of CYP1A1 gene expression in fish liver by BNF.  相似文献   

17.
18.
A Dey  D Parmar  M Dayal  A Dhawan  P K Seth 《Life sciences》2001,69(4):383-393
Studies initiated to characterise the catalytic activity and expression of CYP1A1 in rat blood lymphocytes revealed significant activity of 7-ethoxyresorufin-O-deethylase (EROD) in rat blood lymphocytes. Pretreatment with 3-methylcholanthrene (MC) and beta-naphthoflavone (NF) resulted in significant induction in the activity of lymphocyte EROD suggesting that like the liver enzyme, EROD activity in lymphocytes is inducible and is mediated by the MC inducible isoenzymes of P450. The increase in the activity of EROD was associated with a significant increase in the apparent Vmax and affinity of the substrate towards EROD. That this increase in the activity of EROD could be primarily due to the increase in the expression of CYP1A1 isoenzymes was demonstrated by RT-PCR and western immunoblotting studies indicating an increase in the expression of CYP1A1 in blood lymphocytes after MC pretreatment. Significant inhibition in the EROD activity of MC induced lymphocyte by anti-CYP1A1/1A2 and alpha-naphthoflavone further provided evidence that the CYP1A1/1A2 isoenzymes are involved in the activity of EROD in blood lymphocytes. The data indicating similarities in the regulation of CYP1A1 in blood lymphocytes with the liver isoenzyme suggests that factors which may affect expression of CYP1A1 in liver may also affect expression in blood lymphocytes and that blood lymphocytes could be used as a surrogates for studying hepatic expression of the xenobiotic metabolising enzymes.  相似文献   

19.
Carbofuran is a pesticide, which is used throughout the world as a nematicide and an acaricide. This pesticide integrates into living organisms through aquatic ecosystem. In earlier report, we had demonstrated that cytochrome P4501A was induced in cultured catfish hepatocytes in response to carbofuran, which might be responsible for the detoxification of this pesticide. As the underlying signaling mechanism associated with induction and regulation of cytochrome P4501A has not yet been well defined, we therefore in the present study have investigated to identify the regulatory network of cytochrome P4501A in catfish liver or cultured hepatocytes by targeting several key signaling molecules such as phosphatidyl inositol (PI) or protein kinase C (PKC), which are critical molecules for many important pathways. PKC and heat shock protein70 (HSP70) have been shown to be induced in response to carbofuran in catfish hepatocytes. Results also indicate that induction of CYP1A is modulated by HSP70 and PKC in fish hepatocytes. Thus our data shed light on the regulation of EROD activity, which has been used as a bio-monitoring tool for measuring aquatic pollution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号