共查询到20条相似文献,搜索用时 15 毫秒
1.
Ramsey JJ Harper ME Humble SJ Koomson EK Ram JJ Bevilacqua L Hagopian K 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2005,140(1):99-108
Mitochondrial membrane fatty acid composition has been proposed to play a role in determining mitochondrial proton leak rate. The purpose of this study was to determine if feeding rats diets with different fatty acid sources produces changes in liver proton leak and H(2)O(2) production. Six-month-old male FBNF(1) rats were fed diets with a primary fat source of either corn or fish oil for a 6-month period. As expected, diet manipulations produced substantial differences in mitochondrial fatty acid composition. These changes were most striking for 20:4n6 and 22:6n3. However, proton leak and phosphorylation kinetics as well as lipid and protein oxidative damage were not different (P > 0.10) between fish and corn oil groups. Metabolic control analysis, however, did show that control of both substrate oxidation and phosphorylation was shifted away from substrate oxidation reactions to increased control by phosphorylation reactions in fish versus corn oil groups. Increased mitochondrial H(2)O(2) production was observed in corn versus fish oil-fed rats when mitochondria were respiring on succinate alone or on either succinate or pyruvate/malate in the presence of antimycin A. These results show that mitochondrial H(2)O(2) production and the regulation of oxidative phosphorylation are altered in liver mitochondria from rats consuming diets with either fish or corn oil as the primary lipid source. 相似文献
2.
The proton leak across the mitochondrial inner membrane 总被引:10,自引:0,他引:10
M D Brand 《Biochimica et biophysica acta》1990,1018(2-3):128-133
The proton conductance of the mitochondrial inner membrane increases at high protonmotive force in isolated mitochondria and in mitochondria in situ in rat hepatocytes. Quantitative analysis of its importance shows that about 20-30% of the oxygen consumption by resting hepatocytes is used to drive a heat-producing cycle of proton pumping by the respiratory chain and proton leak back to the matrix. The flux control coefficient of the proton leak pathway over respiration rate varies between 0.9 and zero in mitochondria depending on the rate of respiration, and has a value of about 0.2 in hepatocytes. Changes in the proton leak pathway in situ will therefore change respiration rate. Mitochondria isolated from hypothyroid animals have decreased proton leak pathway, causing slower state 4 respiration rates. Hepatocytes from hypothyroid rats also have decreased proton leak pathway, and this accounts for about 30% of the decrease in hepatocyte respiration rate. Mitochondrial proton leak may be a significant contributor to standard metabolic rate in vivo. 相似文献
3.
4.
R Strum-Odin B Adkins-Finke W L Blake S D Phinney S D Clarke 《Biochimica et biophysica acta》1987,921(2):378-391
The objective of these studies with rat hepatocytes in primary culture was to establish that: (a) membrane phospholipids would become enriched with the specific fatty acid supplemented to the media and (b) hepatocyte monolayer triacylglycerol synthetic rates were dependent on the type of fatty acid enrichment of the membrane phospholipids. Hepatocytes cultured in the absence of media lipid developed a phospholipid fatty acid composition which is indicative of an essential fatty acid deficiency. The extensive rise in 18:1(n - 9) content indicated that delta 9-desaturase was active. The fatty acid composition of phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol in the microsomal- and mitochondrial-enriched fractions was highly dependent upon the type of fatty acid supplemented to the medium. Incorporation of fatty acids into phospholipids was rapid, and a new steady-state in fatty acid composition was achieved within approx. 36 h. Changes in the fatty acid composition of these hepatocyte phospholipid subclasses resulting from media supplementation with 18:2/20:4(n-6) or 20:5(n-3) were similar, but not identical, to changes which occurred in vivo as a result of consuming diets rich in 18:2(n-6) or 20:5(n-3). Hepatocyte lipogenesis was highly dependent upon the type of fatty acid supplemented to the medium. Prior conditioning with 16:0 increased triacylglycerol synthesis and secretion. Secretion of triacylglycerol was reduced by polyenoic fatty acid enrichment with 20:5(n-3) greater than 20:4/18:2(n-6). The suppression of triacylglycerol synthesis by 20:5(n-3) was due to an increased (P less than 0.05) diacylglycerol specific activity, which indicates that 20:5(n-3) suppression of hepatic triacylglycerol production may be caused in part by the inhibition of diacylglycerol acyltransferase. 相似文献
5.
Richter M Daufenbach J Drebing S Vucetic V Nguyen DT 《Journal of plant physiology》2004,161(12):1325-1337
A treatment of leaves of Spinacia oleracea L. with light or with the thiol reagent dithiothreitol in the dark led to partly uncoupled thylakoids. After induction in intact leaves, the partial uncoupling was irreversible at the level of isolated thylakoids. We distinguish between uncoupling by proton slip, which means a decrease of the H+/e−-ratio due to less efficient proton pumping, and proton leak as defined by enhanced kinetics of proton efflux. Proton slip and proton leak made about equal contributions to the total uncoupling. The enhanced proton efflux kinetics corresponded to reduction of subunit CF1-γ of the ATP synthase as shown by fluorescence labeling of thylakoid proteins with the sulfhydryl probe 5-iodoacetamido fluorescein. The maximum value of the fraction of reduced CF1-γ was only 36%, which indicates that in vivo the reduction of CF1-γ could be limited by fast reoxidation and/or restricted accessibility of CF1-γ to thioredoxin. Measurements of the ratio ATP/2e indicated that only the uncoupling related to less efficient proton pumping led to a decrease in the ATP yield. 相似文献
6.
Inverse modifications of heart and liver alpha-tocopherol status by various dietary n-6/n-3 polyunsaturated fatty acid ratios 总被引:1,自引:0,他引:1
M Chautan R Calaf J Léonardi M Charbonnier M Andre H Portugal A M Pauli H Lafont G Nalbone 《Journal of lipid research》1990,31(12):2201-2208
The effect of dietary n-6/n-3 fatty acid ratio on alpha-tocopherol homeostasis was investigated in rats. Animals were fed diets containing fat (17% w/w) in which the n-6/n-3 ratio varied from 50 to 0.8. This was achieved by combining corn oil, fish oil, and lard. The polyunsaturated to saturated ratio and total alpha-tocopherol remained constant in all diets. Results showed that enrichment of n-3 polyunsaturated fatty acids in the diet, even at a low amount (3.9% w/w), resulted in a dramatic reduction of blood alpha-tocopherol concentration, which, in fact, is the result of a decrease in plasma lipids, since the alpha-tocopherol to total lipids ratio was not significantly altered. The most striking effect observed was a considerable alpha-tocopherol enrichment (x 4) of the heart as its membranes became enriched with n-3 polyunsaturated fatty acids. This process appeared even with a low amount of fish oil (3.9% w/w) added to the diet. Accordingly, a strong positive correlation was found between heart alpha-tocopherol and docosahexaenoic acid (r = 0.86) or docosahexaenoic acid plus eicosapentaenoic acid levels (r = 0.84). Conversely, the liver alpha-tocopherol level dropped dramatically when n-3 polyunsaturated fatty acids were gradually added to the diet. It is concluded that fish oil intake dramatically alters the alpha-tocopherol homeostasis in rats. 相似文献
7.
Y S Huang D F Horrobin 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1987,185(3):291-296
We studied the effect of sex on the distribution of long-chain n-3 and n-6 fatty acids in essential fatty acid-deficient rats fed gamma-linolenate (GLA) concentrate and/or eicosapentaenoate and docosahexaenoate-rich fish oil (FO). Male and female weanling rats were rendered essential fatty acid deficient by maintaining them on a fat-free semisynthetic diet for 8 weeks. Thereafter, animals of each sex were separated into three groups (n = 6) and given, for 2 consecutive days by gastric intubation, 4 g/kg body wt per day of GLA concentrate (containing 84% 18:2n-6), n-3 fatty acid-rich FO (containing 18% 20:5n-3 and 52% 22:6n-3), or an equal mixture of the two oil preparations (GLA + FO). The fatty acid distributions in plasma and liver lipids were then examined. GLA treatment increased the levels of C-20 and C-22 n-6 fatty acids in all lipid fractions indicating that GLA was rapidly metabolized. However, the increases in 20:3n-6 were less in females than those in males, while those in 20:4n-6 were greater, suggesting that the conversion of 20:3n-6 to 20:4n-6 was more active in female than in male rats. FO treatment increased the levels of 20:5n-3 and 22:6n-3 and reduced those of 20:4n-6. The increase in n-3 fatty acids was greater in females than that in males and the reduction in 20:4n-6 was smaller. Consequently, the sum of total long-chain EFAs incorporated was greater in females than that in males. The administration of n-3 fatty acids also reduced the ratio of 20:4n-6 to 20:3n-6 in GLA + FO-treated rats indicating that n-3 fatty acids inhibited the activity of delta-5-desaturase. However, this effect was not affected by the sex difference. 相似文献
8.
《Prostaglandins, leukotrienes, and essential fatty acids》2008,78(5-6):309-318
Specific fatty acid alterations have been described in the blood and tissues of cystic fibrosis (CF) patients. The two most consistent alterations include decreased levels of linoleic acid (LA) and decreased levels of docosahexaenoic acid (DHA). Increased arachidonic acid (AA) release from membrane phospholipids, as well as changes in levels of AA and other monounsaturated and polyunsaturated fatty acids (PUFAs) have also been described in CF. Although mechanisms of fatty acid alterations have not yet been determined, these alterations may have an important role in the progression of the CF disease. There have been several clinical trials in which CF patients were supplemented with n-3 fatty acids. Most trials resulted in an increase in the levels of the supplemental fatty acids in the blood of CF patients in the absence of significant clinical improvement. It is recommended that future trials include a larger population of CF patients and measure multiple clinical outcomes. 相似文献
9.
Al-Turkmani MR Freedman SD Laposata M 《Prostaglandins, leukotrienes, and essential fatty acids》2007,77(5-6):309-318
Specific fatty acid alterations have been described in the blood and tissues of cystic fibrosis (CF) patients. The two most consistent alterations include decreased levels of linoleic acid (LA) and decreased levels of docosahexaenoic acid (DHA). Increased arachidonic acid (AA) release from membrane phospholipids, as well as changes in levels of AA and other monounsaturated and polyunsaturated fatty acids (PUFAs) have also been described in CF. Although mechanisms of fatty acid alterations have not yet been determined, these alterations may have an important role in the progression of the CF disease. There have been several clinical trials in which CF patients were supplemented with n-3 fatty acids. Most trials resulted in an increase in the levels of the supplemental fatty acids in the blood of CF patients in the absence of significant clinical improvement. It is recommended that future trials include a larger population of CF patients and measure multiple clinical outcomes. 相似文献
10.
Thyroid hormone regulation of nuclear-encoded mitochondrial inner membrane polypeptides of the liver
The effects of thyroid hormone on nuclear-encoded mitochondrial inner membrane proteins were investigated by in vitro translation of the endogenous mRNA present in a postmitochondrial fraction from the livers of rats treated in vivo with hormone. The levels of the mRNAs were estimated by quantitative immunoabsorption of the translation mixture. Total protein synthesis was increased 2.6-fold after 4 days of in vivo hormone treatment, but only 10-15% of the polypeptides were dramatically altered (greater than 5-fold). Among the most highly elevated were cytochrome c1 (greater than 10-fold increase) and the Rieske iron-sulfur protein of the cytochrome bc1 complex. Other inner membrane proteins (core protein 1, beta subunit of F1 ATPase, subunit IV of cytochrome oxidase, 3-hydroxybutyrate dehydrogenase) and non-mitochondrial proteins (rat serum albumin, beta 2-microglobulin) were not altered significantly by hormone treatment. Cytochrome c1 and the Rieske protein increased after 12 h of hormone treatment, a relatively early response in mammalian mitochondrial biogenesis. The possible significance of this response for the regulation of mitochondrial synthesis and assembly is discussed. 相似文献
11.
Plasmalogen metabolism-related enzymes in rat brain during aging: influence of n-3 fatty acid intake
Plasmalogens (Pls) are phospholipids containing a vinyl-ether bond at the sn-1 position of the glycerol backbone. They represent between 1/2 and 2/3 of the ethanolamine phospholipids in the brain. During aging, the Pls content in human brain falls down. However, the role of Pls metabolism-related enzymes in the regulation of Pls levels remains to be determined. Dihydroxyacetone phosphate acyltransferase (DHAP-AT) is the enzyme involved in the first step of Pls biosynthesis. In the brain, a phospholipase A2, which selectively acts on Pls, has been isolated (Pls-PLA2s). In this work, we aimed to evaluate the impact of DHAP-AT (a key enzyme of Pls biosynthesis) and Pls-PLA2 (a specific Pls degradation enzyme) on the evolution of Pls content in the rat brain during aging. The influence of n-3 fatty acid intake was also evaluated. Littermates from two generations of n-3 deficient rats were fed an equilibrated diet containing either alpha-LNA alone or with two doses of DHA. After weaning, 3, 9 or 21 months of diet, rats were sacrificed. Enzymatic assays were performed, Pls levels were assessed and the sn-2 position of ethanolamine Pls was analyzed. DHAP-AT activity significantly increased between weaning and 3 months with a concomitant increase of brain Pls, which reached maximal levels after 9 months. Then, Pls levels and DHAP-AT activity significantly decreased while Pls-PLA2s activity significantly increased. Dietary n-3 fatty acids had no effect on DHAP-AT activity and on Pls levels. In conclusion, the increase of brain Pls content in the first part of the life may be related to the high increase of DHAP-AT activity, probably stimulated by DHA. In aged animals, the decrease of Pls levels may mainly be caused to an increase of their degradation by Pls-PLA2. Dietary DHA may not oppose the physiologic aging. 相似文献
12.
13.
Maria Chomova Maria Balazova Jana Muchova 《Molecular and cellular biochemistry》2017,428(1-2):109-118
High expression of connexins was found in a variety of cancers, but their role is still controversial. We investigated whether connexin43 (Cx43) contributed to bladder carcinogenesis through MAPK activation. In this study, we found that Cx43 expression was significantly increased in bladder cancer tissues and cell line. Overexpression of Cx43 in bladder cancer 5637 cells increased cell proliferation, promoted cell cycle progression, and inhibited apoptosis. Western blot showed that JNK and ERK pathways were dramatically activated in Cx43-overexpressed cells. Conversely, knockdown of Cx43 inhibited cell proliferation by increasing apoptosis and causing cell cycle arrest, concomitant with inhibition of JNK and ERK signaling. In addition, JNK and ERK pathways were also activated in bladder cancer tissues. In conclusion, abnormal high expression and cytoplasmic localization of Cx43 contributed to bladder cancer. Inhibition of Cx43 activity could be a potential therapeutic strategy for preventing the progression of bladder cancer. 相似文献
14.
《Prostaglandins, leukotrienes, and essential fatty acids》2010,82(5-6):331-339
The objective was to examine the effect of polyunsaturated fatty acid type (plant vs fish oil-derived n-3, compared to n-6 fatty acids in the presence of constant proportions of saturated, monounsaturated and polyunsaturated fatty acids) on obesity, insulin resistance and tissue fatty acid composition in genetically obese rats. Six-week-old fa/fa and lean Zucker rats were fed with a 10% (w/w) mixed fat diet containing predominantly flax-seed, menhaden or safflower oils for 9 weeks. There was no effect of dietary lipid on obesity, oral glucose tolerance (except t=60 min insulin), pancreatic function or molecular markers related to insulin, glucose and lipid metabolism, despite increased n-3 fatty acids in muscle and adipose tissue. The menhaden oil diet reduced fasting serum free fatty acids in both fa/fa and lean rats. These data suggest that n-3 composition does not alter obesity and insulin resistance in the fa/fa Zucker rat model when dietary lipid classes are balanced. 相似文献
15.
Larrarte E Margareto J Novo FJ Marti A Alfredo Martínez J 《Archives of biochemistry and biophysics》2002,404(1):166-171
Mitochondrial uncoupling protein 1 (UCP1) mediates the thermogenic transport of protons through the inner mitochondrial membrane. This proton leak uncouples respiration from ATP synthesis. The current study assessed the possible contribution of UCP1 muscle gene transfer to impair mitochondrial respiration in a tissue lacking UCP1 gene expression. Rats received an intramuscular injection of plasmid pXC1 containing UCP1 cDNA in the right tibialis muscles, while left tibialis muscles were injected with empty plasmid as control. Ten days after DNA injection, mitochondria from tibialis anterior muscles were isolated and analyzed. UCP1 gene transfer resulted in protein expression as analyzed by inmunoblotting. Mitochondria isolated from UCP1-injected muscles showed a significant increase in state 2 and state 4 oxygen consumption rates and a decreased respiration control ratio in comparison to mitochondria from control muscles. Furthermore, UCP1-containing mitochondria had a lower membrane potential in those states (2 and 4) when compared with control mitochondria. Our results revealed that UCP1 muscle gene transfer is associated with an induced mitochondrial proton leak, which could contribute to increase energy expenditure. 相似文献
16.
17.
Docosahexaenoic acid synthesis from n-3 fatty acid precursors in rat hippocampal neurons 总被引:1,自引:0,他引:1
Docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acid in the brain, has important functions in the hippocampus. To better understand essential fatty acid homeostasis in this region of the brain, we investigated the contributions of n-3 fatty acid precursors in supplying hippocampal neurons with DHA. Primary cultures of rat hippocampal neurons incorporated radiolabeled 18-, 20-, 22-, and 24-carbon n-3 fatty acid and converted some of the uptake to DHA, but the amounts produced from either [1-14 C]α-linolenic or [1-14 C]eicosapentaenoic acid were considerably less than the amounts incorporated when the cultures were incubated with [1-14 C]22:6n-3. Most of the [1-14 C]22:6n-3 uptake was incorporated into phospholipids, primarily ethanolamine phosphoglycerides. Additional studies demonstrated that the neurons converted [1-14 C]linoleic acid to arachidonic acid, the main n-6 fatty acid in the brain. These findings differ from previous results indicating that cerebral and cerebellar neurons cannot convert polyunsaturated fatty acid precursors to DHA or arachidonic acid. Fatty acid compositional analysis demonstrated that the hippocampal neurons contained only 1.1–2.5 mol% DHA under the usual low-DHA culture conditions. The relatively low-DHA content suggests that some responses obtained with these cultures may not be representative of neuronal function in the brain. 相似文献
18.
Interactions of saturated, n-6 and n-3 polyunsaturated fatty acids to modulate arachidonic acid metabolism 总被引:6,自引:0,他引:6
Anti-thrombotic effects of omega-3 (n-3) fatty acids are believed to be due to their ability to reduce arachidonic acid levels. Therefore, weanling rats were fed n-3 acids in the form of linseed oil (18:3n-3) or fish oil (containing 20:5n-3 and 22:6n-3) in diets containing high levels of either saturated fatty acids (hydrogenated beef tallow) or high levels of linoleic acid (safflower oil) for 4 weeks. The effect of diet on the rate-limiting enzyme of arachidonic acid biosynthesis (delta 6-desaturase) and on the lipid composition of hepatic microsomal membrane was determined. Both linseed oil- or fish oil-containing diets inhibited conversion of linoleic acid to gamma-linolenic acid. Inhibition was greater with fish oil than with linseed oil, only when fed with saturated fat. delta 6-Desaturase activity was not affected when n-3 fatty acids were fed with high levels of n-6 fatty acids. Arachidonic acid content of serum lipids and hepatic microsomal phospholipids was lower when n-3 fatty acids were fed in combination with beef tallow but not when fed with safflower oil. Similarly, n-3 fatty acids (18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3) accumulated to a greater extent when n-3 fatty acids were fed with beef tallow than with safflower oil. These observations indicate that the efficacy of n-3 fatty acids in reducing arachidonic acid level is dependent on the linoleic acid to saturated fatty acid ratio of the diet consumed. 相似文献
19.
Five groups of lactating sows were fed diets containing 8% of either added rapeseed oil, fish oil or sunflower oil and 60 mg vitamin E/kg feed, or the diets with sunflower oil and fish oil, respectively, supplemented with 500 mg vitamin E/kg. Supplementation of vitamin E to the sows increased the concentration of alpha-tocopherol of the muscle, and addition of sunflower oil decreased the activity of glutathione peroxidase in liver cytosol compared to fish oil and rapeseed oil. The composition of fatty acids of alveolar macrophages (AM) of piglets was influenced by the dietary fat sources provided the sows, i.e., the ratio of n-6:n-3 fatty acids was highest in AM of piglets suckling sows of the sunflower oil treatments, and lowest in AM of piglets suckling sows fed fish oil with the rapeseed oil treatment in between. The ex vivo synthesis of prostaglandin E(2) and thromboxane B(2) in AM of piglets suckling sows fed sunflower oil was elevated compared to piglets suckling sows fed fish oil. Vitamin E supplementation to sows enhanced the synthesis of these eicosanoids, and also the concentration of alpha-tocopherol in the AM of the piglets. 相似文献
20.
Yanrong Zhou Yanli Lin Xiaojie Wu Chong Feng Chuan Long Fuyin Xiong Ning Wang Dengke Pan Hongxing Chen 《Transgenic research》2014,23(1):89-97
Livestock meat is generally low in n-3 polyunsaturated fatty acids (PUFAs), which are beneficial to human health. An alternative approach to increasing the levels of n-3 PUFAs in meat is to generate transgenic livestock animals. In this study, we describe the generation of cloned pigs that express the cbr-fat-1 gene from Caenorhabditis briggsae, encoding an n-3 fatty acid desaturase. Analysis of fatty acids demonstrated that the cbr-fat-1 transgenic pigs produced high levels of n-3 fatty acids from n-6 analogs; consequently, a significantly reduced ratio of n-6/n-3 fatty acids was observed. We demonstrated that the n-3 desaturase gene from C. briggsae was functionally expressed, and had a significant effect on the fatty acid composition of the transgenic pigs, which may allow the production of pork enriched in n-3 PUFAs. 相似文献