首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The mitochondrial DNA (mtDNA) from the cultured cells of a cytoplasmic male-sterile line (A-58CMS) of rice (Oryza sativa) was cloned and its physical map was constructed. There was structural alteration on the mitochondrial genome during the cell culture. Detailed restriction analysis of cosmid clones having mtDNA fragments suggested either that the master genome has a 100-kb duplication (the genome size becomes 450 kb) or that a master circle is not present in the genome (the net structural complexity becomes 350 kb). The physical map of plant mitochondrial genomes thus far reported is illustrated in a single circle, namely a master circle. However, no circular DNA molecule corresponding to a master circle has yet been proved. In the present report, representation of plant mitochondrial genomes and a possibility for mitochondrial genome without a master circle are discussed.  相似文献   

2.
The mitochondrial genome of 23 Arabidopsis thaliana ecotypes was analysed by Southern hybridization in total cellular DNA. Firstly, the extent of divergence between the mitochondrial genomes in closely related lines of one plant species and secondly, the use of mitochondrial versus nuclear RFLPs to determine evolutionary relationships between Arabidopsis ecotype isolates was investigated. Highly divergent stoichiometries of alternative mitochondrial genome arrangements characterize individual ecotypes including the complete loss of a 5 kb region from ecotype Landsberg without apparent effect on plant viability. The genetic similarities between ecotypes suggested by mitochondrial genome arrangements differ from those deduced from 18 nuclear RFLP loci (CAPS markers). Similarity of nuclear RFLP patterns among the 23 Arabidopsis ecotypes neitehr correlates with their geographic origin nor with the observed mitochondrial genome arrangements. A promiscuous mitochondrial sequence insertion previously identified in ecotype Columbia is also found in the nuclear genomes of ecotypes Eifel, Enkheim and Hilversum. Two ecotypes (Eifel and Tabor) displaying identical RFLP patterns at all 18 nuclear loci show differences in both this sequence transfer and a mitochondrial DNA recombination event.  相似文献   

3.
Most of the plant mitochondrial (mt) genomes that have been mapped are believed to be organized as master circle molecules from which sub-genomic molecules arise through homologous recombination. We have evidence to suggest that a major part of the rice mt genome is organized as independent, sub-genomic molecules or mt chromosomes, one of which has already been mapped. This study is aimed at the identification of the other molecular entities that comprise the genome. Pulsed-field gel electrophoresis of the native rice mt DNA and Southern analysis with different mt gene probes have shown that in addition to the 117 kb mt chromosome, at least four more such molecules of sizes 130 kb, 95 kb, 70 kb and 56 kb account for most of the rice mt genome. A majority of the rice mt genes that encode products involved in oxidative phosphorylation are distributed among these five chromosomes. Partial restriction map of the 95 kborf 25/cox 3 chromosome, indicating the sites for the enzymesBglII andHindIII has also been determined.  相似文献   

4.
Determining mitochondrial genomes is important for elucidating vital activities of seed plants. Mitochondrial genomes are specific to each plant species because of their variable size, complex structures and patterns of gene losses and gains during evolution. This complexity has made research on the soybean mitochondrial genome difficult compared with its nuclear and chloroplast genomes. The present study helps to solve a 30-year mystery regarding the most complex mitochondrial genome structure, showing that pairwise rearrangements among the many large repeats may produce an enriched molecular pool of 760 circles in seed plants. The soybean mitochondrial genome harbors 58 genes of known function in addition to 52 predicted open reading frames of unknown function. The genome contains sequences of multiple identifiable origins, including 6.8 kb and 7.1 kb DNA fragments that have been transferred from the nuclear and chloroplast genomes, respectively, and some horizontal DNA transfers. The soybean mitochondrial genome has lost 16 genes, including nine protein-coding genes and seven tRNA genes; however, it has acquired five chloroplast-derived genes during evolution. Four tRNA genes, common among the three genomes, are derived from the chloroplast. Sizeable DNA transfers to the nucleus, with pericentromeric regions as hotspots, are observed, including DNA transfers of 125.0 kb and 151.6 kb identified unambiguously from the soybean mitochondrial and chloroplast genomes, respectively. The soybean nuclear genome has acquired five genes from its mitochondrial genome. These results provide biological insights into the mitochondrial genome of seed plants, and are especially helpful for deciphering vital activities in soybean.  相似文献   

5.
Mitochondrial genomes in higher plants are much larger and more complex as compared to animal mitochondrial genomes. There is growing evidence that plant mitochondrial genomes exist predominantly as a collection of linear and highly branched DNA molecules and replicate by a recombination-dependent mechanism. However, biochemical evidence of mitochondrial DNA (mtDNA) recombination activity in plants has previously been lacking. We provide the first report of strand-invasion activity in plant mitochondria. Similar to bacterial RecA, this activity from soybean is dependent on the presence of ATP and Mg(2+). Western blot analysis using an antibody against the Arabidopsis mitochondrial RecA protein shows cross-reaction with a soybean protein of about 44 kDa, indicating conservation of this protein in at least these two plant species. mtDNA structure was analyzed by electron microscopy of total soybean mtDNA and molecules recovered after field-inversion gel electrophoresis (FIGE). While most molecules were found to be linear, some molecules contained highly branched DNA structures and a small but reproducible proportion consisted of circular molecules (many with tails) similar to recombination intermediates. The presence of recombination intermediates in plant mitochondria preparations is further supported by analysis of mtDNA molecules by 2-D agarose gel electrophoresis, which indicated the presence of complex recombination structures along with a considerable amount of single-stranded DNA. These data collectively provide convincing evidence for the occurrence of homologous DNA recombination in plant mitochondria.  相似文献   

6.
The genome of the model plant Arabidopsis thaliana has been sequenced to near completion. To facilitate experimental determination of the function of every gene in the species, we constructed a large-insert library from the Landsberg ecotype using a plant-transformation-competent binary BAC vector, BIBAC2. The library contains 11,520 clones with an estimated average insert size of 162 kb. Of a sample of 102 clones, 17.6% had no inserts; further, in the library as a whole, 287 clones contained chloroplast DNA, and 25 contained mitochondrial DNA. Thus it is estimated that 9,295 clones originated from the nuclear genome, representing a 11.5 x coverage. The library was further characterized by screening with probes corresponding to 180-bp repeats, 5S rDNA, 18S-25S rDNA and 23 single-copy RFLP markers. The results showed that 92 clones contained 180-bp centromeric repeats, 78 contained 5S rDNA and 95 contained 18S-25S rDNA, approximately 1%, 0.8% and 1%, respectively, of the nuclear clones in the library. Screening the library with the 23 RFLP markers showed that each one hybridized to an average of seven clones. This library is the first large-insert DNA library for the widely studied Landsberg erecta strain. It will greatly facilitate gene identification by complementation screening, and will enhance analysis of the structure, organization and evolution of the A. thaliana genome.  相似文献   

7.
Numerous Brassica napus (+) Arabidopsis thaliana somatic hybrids were screened for male sterility and aberrant flower phenotypes. Nine hybrids were selected and backcrossed recurrently to B. napus. The resulting lines displayed stable maternal inheritance of flower phenotypes. Nuclear and organellar genomes were characterized molecularly using RFLP analysis. No DNA from A. thaliana was found in the nuclear genome after six back-crosses, whilst the mitochondrial genomes contained rearranged DNA from both A. thaliana and B. napus. Each line tested had a unique RFLP pattern of the mitochondrial DNA (mtDNA) that remained unchanged between the BC(3) and BC(6) generation. The plastid genomes consisted of B. napus DNA. Five lines of the BC(5) generation were subjected to more comprehensive investigations of growth, morphology and fertility. On the basis of these investigations, the five CMS lines could be assigned to two groups, one represented by three lines displaying reduced vegetative development, complete male sterility, and homeotic conversions of stamens into feminized structures. The second group, represented by the other two lines, were not completely male-sterile but still displayed severely affected flower morphologies. These two lines did not display any reduction in vegetative development. For both groups only stamens and petals suffered from the morphological and functional aberrations, while the sepals and pistils displayed normal morphology. All plants were fully female-fertile. Different rearrangements of the mitochondrial genome disturbed nuclear-mitochondrial interactions and led to various types of aberrant growth and flower development. The existence of numerous CMS lines with different mitochondrial patterns involving a species with a sequenced genome offers new opportunities to investigate the genetic regulation of CMS and its associated developmental perturbations.  相似文献   

8.
Using contiguous genomic DNA sequences of Arabidopsis thaliana, we were able to identify a region of conserved structure in the genome of rice. The conserved, and presumptive homoeologous segments, are 194 kb and 219-300 kb in size in Arabidopsis and rice, respectively. They contain five homologous genes, distinguished in order by a single inversion. These represent the first homoeologous segments identified in the genomes of a dicot and a monocot, demonstrating that fine-scale conservation of genome structure exists and is detectable across this major divide in the angiosperms. The conserved framework of genes identified is interspersed with non-conserved genes, indicating that mechanisms beyond segmental inversions and translocations need to be invoked to fully explain plant genome evolution, and that the benefits of comparative genomics over such large taxonomic distances may be limited.  相似文献   

9.
We have devised an efficient method for replicating and stably maintaining entire mitochondrial genomes in Escherichia coli and have shown that we can engineer these mitochondrial DNA (mtDNA) genome clones using standard molecular biological techniques. In general, we accomplish this by inserting an E.coli replication origin and selectable marker into isolated, circular mtDNA at random locations using an in vitro transposition reaction and then transforming the modified genomes into E.coli. We tested this approach by cloning the 16.3 kb mouse mitochondrial genome and found that the resulting clones could be engineered and faithfully maintained when we used E.coli hosts that replicated them at moderately low copy numbers. When these recombinant mtDNAs were replicated at high copy numbers, however, mtDNA sequences were partially or fully deleted from the original clone. We successfully electroporated recombinant mouse mitochondrial genomes into isolated mouse mitochondria devoid of their own DNA and detected robust in organello RNA synthesis by RT-PCR. This approach for modifying mtDNA and subsequent in organello analysis of the recombinant genomes offers an attractive experimental system for studying many aspects of vertebrate mitochondrial gene expression and is a first step towards true in vivo engineering of mammalian mitochondrial genomes.  相似文献   

10.
The putative mitochondrial genome of Plasmodium falciparum   总被引:2,自引:0,他引:2  
Intraerythrocytic stages of mammalian malarial parasites employ glycolysis for energy production but some aspects of mitochondrial function appear crucial to their survival since inhibitors of mitochondrial protein synthesis and electron transport have antimalarial effects. Investigations of the putative mitochondrial genome of Plasmodium falciparum have detected organellar rRNAs and tRNAs encoded by a 35 kb circular DNA. Some features of the organization and sequence of the rRNA genes are reminiscent of chloroplast DNAs. The 35 kb DNA also encodes open reading frames for proteins normally found in chloroplast but not mitochondrial genomes. An apparently unrelated 6 kb tandemly repeated element which encodes two mitochondrial protein coding genes and fragments of rRNA genes is also found in malarial parasites. The malarial mitochondrial genome thus appears quite unusual. Further investigations are expected to provide insights into the possible functional relationships between these molecules and perhaps their evolutionary history.  相似文献   

11.
Intraerythrocytic stages of mammalian malarial parasites employ glycolysis for energy production but some aspects of mitochondrial function appear crucial to their survival since inhibitors of mitochondrial protein synthesis and electron transport have antimalarial effects. Investigations of the putative mitochondrial genome of Plasmodium falciparum have detected organellar rRNAs and tRNAs encoded by a 35 kb circular DNA. Some features of the organization and sequence of the rRNA genes are reminiscent of chloroplast DNAs. The 35 kb DNA also encodes open reading frames for proteins normally found in chloroplast but not mitochondrial genomes. An apparently unrelated 6 kb tandemly repeated element which encodes two mitochondrial protein coding genes and fragments of rRNA genes is also found in malarial parasites. The malarial mitochondrial genome thus appears quite unusual. Further investigations are expected to provide insights into the possible functional relationships between these molecules and perhaps their evolutionary history.  相似文献   

12.
Lilly JW  Havey MJ 《Genetics》2001,159(1):317-328
Closely related cucurbit species possess eightfold differences in the sizes of their mitochondrial genomes. We cloned mitochondrial DNA (mtDNA) fragments showing strong hybridization signals to cucumber mtDNA and little or no signal to watermelon mtDNA. The cucumber mtDNA clones carried short (30-53 bp), repetitive DNA motifs that were often degenerate, overlapping, and showed no homology to any sequences currently in the databases. On the basis of dot-blot hybridizations, seven repetitive DNA motifs accounted for >13% (194 kb) of the cucumber mitochondrial genome, equaling >50% of the size of the Arabidopsis mitochondrial genome. Sequence analysis of 136 kb of cucumber mtDNA revealed only 11.2% with significant homology to previously characterized mitochondrial sequences, 2.4% to chloroplast DNA, and 15% to the seven repetitive DNA motifs. The remaining 71.4% of the sequence was unique to the cucumber mitochondrial genome. There was <4% sequence colinearity surrounding the watermelon and cucumber atp9 coding regions, and the much smaller watermelon mitochondrial genome possessed no significant amounts of cucumber repetitive DNAs. Our results demonstrate that the expanded cucumber mitochondrial genome is in part due to extensive duplication of short repetitive sequences, possibly by recombination and/or replication slippage.  相似文献   

13.
14.
A new Arabidopsis thaliana (ecotype Columbia) genomic library has been constructed in Yeast Artificial Chromosomes: the CIC library (for CEPH, INRA and CNRS). Optimization of plant culture conditions and protoplast preparation allowed the recovery of large amounts of viable protoplasts. Mechanical shearing of DNA was minimized by isolation of DNA from protoplasts embedded in agarose. Cloning of large inserts was favored by including two successive size fractionation steps (after partial Eco RI digestion and after ligation with the vector arms), which selected DNA fragments larger than 350 kb. The library consists of 1152 clones with an average insert size of 420 kb. Clones carrying chloroplast DNA and various nuclear repeated sequences have been identified. Twenty-one per cent of the clones are found to contain chloroplast DNA. Therefore, the library represents around four nuclear genome equivalents. The clones containing 5S rDNA genes, 18S-25S rDNA sequences and the 180 bp paracentromeric repeated element account for 3.6%, 8.9% and 5.8%, respectively. Only one clone was found to carry the 160 bp paracentromeric repeated element. Given the smaller size of clones carrying Arabidopsis repeated DNA, the average size of remaining clones is around 480 kb. The library was screened by PCR amplification using pairs of primers corresponding to sequences dispersed in the genome. Seventy out of 76 pairs of primers identified from one to seven YAC clones. Thus at least 92% of the genome is represented in the CIC library. The survey of the library for clones containing unlinked DNA sequences indicates that the proportion of chimeric clones is lower than 10%.  相似文献   

15.
Yeast mitochondrial DNA molecules have long, AT-rich intergenic spacers punctuated by short GC clusters. GC-rich elements have previously been characterized by others as preferred sites for intramolecular recombination leading to the formation of subgenomic petite molecules. In the present study we show that GC clusters are favored sites for intermolecular recombination between a petite and the wild-type grande genome. The petite studied retains 6.5 kb of mitochondrial DNA reiterated tandemly to form molecules consisting of repeated units. Genetic selection for integration of tandem 6.5 kb repeats of the petite into the grande genome yielded a novel recombination event. One of two crossovers in a double exchange event occurred as expected in the 6.5 kb of matching sequence between the genomes, whereas the second exchange involved a 44 bp GC cluster in the petite and another 44 bp GC cluster in the grande genome 700 bp proximal to the region of homology. Creation of a mitochondrial DNA molecule with a repetitive region led to secondary recombination events that generated a family of molecules with zero to several petite units. The finding that 44 bp GC clusters are preferred as sites for intermolecular exchange adds to the data on petite excision implicating these elements as recombinational hotspots in the yeast mitochondrial genome.  相似文献   

16.
A cosmid library and physical maps of mitochondrial DNA (mtDNA) from a liverwort, Marchantia polymorpha, were constructed using the cosmid clones. Electrophoresis profile and the physical maps indicated that the liverwort mtDNA was approximately 183 kb long, the smallest among plant mtDNAs, and that it consisted of a single circular molecule. Southern hybridization analysis showed that genes typical to the mitochondrial genome existed in a single copy, and also that there was no incorporation of chloroplast DNA fragments into the mitochondrial genome.  相似文献   

17.
18.
19.
Multimeric forms of herpes simplex virus type 2 glycoproteins.   总被引:9,自引:8,他引:1       下载免费PDF全文
Molecular clones of closed circular DNA molecules of a mink cell focus-inducing murine leukemia virus (MCF-13 MuLV) were generated. Closed circular DNA molecules isolated from a Hirt extraction of recently infected NIH/3T3 cells were inserted at their unique EcoRI site into lambda gtWES.lambda B. Restriction endonuclease analysis of inserts of two clones indicated that they represented intact MCF-13 MuLV genomes. One viral insert contained two large terminal repeat sequences, and the other contained only one. A 300-base-pair DNA fragment located in the envelope region of the MCF-13 MuLV genome was determined to be related to xenotropic MuLV sequences.  相似文献   

20.
Plastid genomes of algae resemble those of terrestrial plants in form, size, and rate of nucleotide sequence change. They are circular and range in size from 73 kilobases (kb) to over 400 kb. Their many copies per cell can compose >15% of total cell DNA. Mitochondrial genomes, like plastid genomes, are present in high copy number in preparations of total algal cell DNA. Almost all known algal mitochondrial DNA genomes are relatively small, <50 kb; in some species they are linear, whereas in others they are circular. One of the persistent perplexities for phycologists is the question of what relationship two clones or two groups of organisms bear to each other. Several relatively simple techniques can reveal whether or not two organisms belong to the same clone. Total mitochondrial genome size can be compared directly between isolates, although identity in size does not necessarily mean identity in sequence. Restriction endonuclease digestion combined with probing permits comparison of DNA fragment patterns to see if there is identity or near identity between two samples. This methodology can be applied both to organelle genomes and to nuclear genomes. So far, restriction endonucleases cleave plastid and mitochondrial DNA of organisms belonging to the same gene pool into nearly identical fragment patterns, whereas organisms nearly or totally incapable of interbreeding display patterns wherein ? 50% of restriction fragments differ in position on an agarose gel after electrophoresis. Thus, organelle genomes may be the first choice for comparing both total size and restriction endonuclease fragment patterns to obtain an indication of whether two organisms are closely related. This methodology can be applied both to organisms in which interbreeding is easy to test and to the many algae in which homothallism or lack of sexual clones has precluded standard breeding analyses. With further data on variability levels within and between fertile populations, it may be possible to state with confidence whether a sample of morphologically similar organisms shares a common gene pool, even if their breeding cannot be manipulated experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号