共查询到20条相似文献,搜索用时 15 毫秒
1.
2,4,6-trinitrotoluene reduction by an Fe-only hydrogenase in Clostridium acetobutylicum 总被引:1,自引:0,他引:1
Watrous MM Clark S Kutty R Huang S Rudolph FB Hughes JB Bennett GN 《Applied and environmental microbiology》2003,69(3):1542-1547
The role of hydrogenase on the reduction of 2,4,6-trinitrotoluene (TNT) in Clostridium acetobutylicum was evaluated. An Fe-only hydrogenase was isolated and identified by using TNT reduction activity as the selection basis. The formation of hydroxylamino intermediates by the purified enzyme corresponded to expected products for this reaction, and saturation kinetics were determined with a K(m) of 152 micro M. Comparisons between the wild type and a mutant strain lacking the region encoding an alternative Fe-Ni hydrogenase determined that Fe-Ni hydrogenase activity did not significantly contribute to TNT reduction. Hydrogenase expression levels were altered in various strains, allowing study of the role of the enzyme in TNT reduction rates. The level of hydrogenase activity in a cell system correlated (R(2) = 0.89) with the organism's ability to reduce TNT. A strain that overexpressed the hydrogenase activity resulted in maintained TNT reduction during late growth phases, which it is not typically observed in wild type strains. Strains exhibiting underexpression of hydrogenase produced slower TNT rates of reduction correlating with the determined level of expression. The isolated Fe-only hydrogenase is the primary catalyst for reducing TNT nitro substituents to the corresponding hydroxylamines in C. acetobutylicum in whole-cell systems. A mechanism for the reaction is proposed. Due to the prevalence of hydrogenase in soil microbes, this research may enhance the understanding of nitroaromatic compound transformation by common microbial communities. 相似文献
2.
The transformation of TNT and related aminated nitrotoluenes by Clostridium acetobutylicum was investigated. 2,4,6-trinitrotoluene (TNT) was rapidly reduced (537 nM min−1 mg protein−1) to undetermined end products via monohydroxylamino derivatives. TNT reduction was more rapid than that of 2-amino-4,6-dinitrotoluene,
4-amino-2,6-dinitrotoluene and 2,4-diamino-6-nitrotoluene. The metabolic phase of clostridial cultures affected rates and
extents of transformation of TNT and its intermediates. Acidogenic cultures showed rapid transformation rates and the ability
to transform TNT and its primary reduction products to below detection limits; solventogenic cultures did not transform TNT
completely, and showed accumulation of its hydroxylamino derivatives. Carbon monoxide-induced solventogenesis was capable
of slowing the transformation of TNT and intermediates. Studies employing [ring-U-14C]-TNT demonstrated that no significant mineralization occurred and that products of transformation were water-soluble.
Received 06 November 1995/ Accepted in revised form 15 August 1996 相似文献
3.
T A Lewis M M Ederer R L Crawford D L Crawford 《Journal of industrial microbiology & biotechnology》1997,18(2-3):89-96
The manufacture and decommissioning of explosives has generated, and continues to generate, large quantities of waste material
whose primary toxic and mutagenic component is 2,4,6-trinitrotoluene (TNT). The magnitude of this problem has motivated a
great deal of research into treatment processes and environmental fate studies, including characterization of microbial
transformations of TNT. This work has encompassed studies with mixed cultures and pure cultures of microorganisms derived
from either TNT-exposed or unexposed sources, and studies using microorganisms chosen for their known capacities to degrade
other pollutants. Several of these studies are discussed with regard to whether they identified a process that may lead
to the complete detoxification or mineralization of TNT. Since oxygen can have a significant influence on the types of biochemical
reactions that can occur and on the oxidation of intermediates of TNT transformation processes, studies in which oxygen was
not excluded are discussed separately from studies conducted under anaerobic conditions.
Received 31 October 1995/ Accepted in revised form 29 March 1996 相似文献
4.
In this environmental-sample based study, rapid microbial-mediated degradation of 2,4,6-trinitrotoluene (TNT) contaminated soils is demonstrated by a novel strain, Achromobacter spanius STE 11. Complete removal of 100 mg L−1 TNT is achieved within only 20 h under aerobic conditions by the isolate. In this bio-conversion process, TNT is transformed to 2,4-dinitrotoluene (7 mg L−1), 2,6-dinitrotoluene (3 mg L−1), 4-aminodinitrotoluene (49 mg L−1) and 2-aminodinitrotoluene (16 mg L−1) as the key metabolites. A. spanius STE 11 has the ability to denitrate TNT in aerobic conditions as suggested by the dinitrotoluene and NO3 productions during the growth period. Elemental analysis results indicate that 24.77 mg L−1 nitrogen from TNT was accumulated in the cell biomass, showing that STE 11 can use TNT as its sole nitrogen source. TNT degradation was observed between pH 4.0–8.0 and 4–43 °C; however, the most efficient degradation was at pH 6.0–7.0 and 30 °C. 相似文献
5.
Anaerobic transformation of 2,4,6-trinitrotoluene (TNT) 总被引:12,自引:0,他引:12
A sulfate-reducing bacterium using trinitrotoluene (TNT) as the sole nitrogen source was isolated with pyruvate and sulfate as the energy sources. The organism was able to reduce TNT to triaminotoluene (TAT) in growing cultures and cell suspensions and to further transform TAT to still unknown products. Pyruvate, H2, or carbon monoxide served as the electron donors for the reduction of TNT. The limiting step in TNT conversion to TAT was the reduction of 2,4-diamino-6-nitrotoluene (2,4-DANT) to triaminotoluene. The reduction proceeded via 2,4-diamino-6-hydroxylaminotoluene (DAHAT) as an intermediate. The intermediary formation of DAHAT was only observed in the presence of carbon monoxide or hydroxylamine, respectively. The reduction of DAHAT to triaminotoluene was inhibited by both CO and NH2OH. The inhibitors as well as DANT and DAHAT significantly inhibited sulfide formation from sulfite. The data were taken as evidence for the involvement of dissimilatory sulfite reductase in the reduction of DANT and/or DAHAT to triaminotoluene. Hydrogenase purified from Clostridium pasteurianum and carbon monoxide dehydrogenase partially purified from Clostridium thermoaceticum also catalyzed the reduction of DANT in the presence of methyl viologen or ferredoxin, however, as the main reduction product DAHAT rather than triaminotoluene was formed. The findings could explain the function of CO as an electron donor for the DANT reduction (to DAHAT) and the concomitant inhibitory effect of CO on triaminotoluene formation (from DAHAT) by the inhibition of sulfite reductase. Triaminotoluene is further anaerobically converted to unknown products by the isolate under sulfate-reducing and by a Pseudomonas strain under denitrifying conditions. Triaminotoluene conversion was also catalyzed in the absence of cells under aerobic conditions by trace elements, especially by Mn2+, accompanied by the elimination of ammonia in a stoichiometry of 1 NH3 released per TAT transformed. The results might be of interest for the bioremediation of wastewater polluted with nitroaromatic compounds.Abbreviations TNT =
2,4,6-Trinitrotoluene DANT
- 2,4-DANT =
2,4-Diamino-6-nitrotoluene
- 2,6-DANT =
2,6-Diamino-4-nitrotoluene
- ADNT =
aminodinitrotoluene
- 2-ADNT and 4-ADNT
amino substituent at positions 2 or 4
- TAT =
2,4,6-Triaminotoluene
- DAHAT =
2,4-Diamino-6-hydroxylaminotoluene
- MV =
Methyl viologen
- Fd =
Ferredoxin
- H2ase =
Hydrogenase
- CODH =
Carbon monoxide dehydrogenase
- Pyr: Fd OR =
Pyruvate: ferredoxin oxidoreductase
- U =
Units = mol of substrate converted per min 相似文献
6.
Konstantinos C. Makris Rupali Datta Dibyendu Sarkar Kabindra M. Shakya Devanand Pachanoor Padmini Das 《Plant and Soil》2007,295(1-2):229-237
Previous research in our laboratory investigated the effectiveness of a common agrochemical, urea used as a chaotropic agent
to facilitate 2,4,6-trinitrotoluene (TNT) removal by vetiver grass (Vetiveria zizanioides L.). Chaotropic agents disrupt water structure, increasing solubilization of hydrophobic compounds (TNT), and enhancing plant
TNT uptake. Our findings showed that urea significantly enhanced TNT uptake kinetics by vetiver. We hypothesized that the
beneficial effect of urea on the overall TNT uptake by vetiver grass was not plant-specific. We explored this hypothesis by
testing the ability of wheat (Triticum aestivum L.) in removing TNT from aqueous media in the presence of urea. Results showed that untreated (no urea) wheat exhibited a
slow, kinetically limited TNT uptake that was nearly half of the urea-treated wheat TNT capacity (250 mg kg−1). Chaotropic effects of urea were illustrated by the significant (P < 0.001) increase in the TNT second-order reaction rate constants over those of the untreated (no urea) controls. Plant TNT
speciation showed that TNT and several of its metabolites were detected in both root and shoot compartments of the plant,
allowing for 110 and 36% recovery for the untreated and 0.1% urea treated plants. The lower % recovery of the urea-treated
plants was attributed to a number of unknown polar TNT metabolites.
Responsible Editor: Hans Lambers. 相似文献
7.
The fungus Fusarium oxysporum was isolated and identified from the aquatic plant M. aquaticum. The capability of this fungus to transform 2,4,6-trinitrotoluene (TNT) in liquid cultures was investigated TNT was added to shake flask cultures and transformed into 2-amino-4,6-dinitrotoluene (2-A-DNT), 4-amino-2,6-dinitrotoluene (4-A-DNT), and 2,4-diamino-6-nitrotoluene (2,4-DAT) via 2- and 4-hydroxylamino-dinitrotoluene derivatives, which could be detected as intermediate metabolites. Transformation of TNT, 2-A-DNT, and 4-A-DNT was observed by whole cultures and with isolated mycelium. Cell-free protein extracts from the extracellular, soluble, and membrane-bound fractions were prepared from this fungus and tested for TNT-reducing activity. The concentrated extracellular culture medium was unable to transform TNT; however, low levels of TNT transformation were observed by the membrane fraction in the presence of nicotinamide adenine dinucleotide phosphate in an argon atmosphere. A concentrated extract of soluble enzymes also transformed TNT, but to a lesser extent. When TNT toxicity was studied with this fungus, a 50% decrease in the growth of F. oxysporum mycelium was observed when exposed to 20 mg/L TNT. 相似文献
8.
George I Eyers L Stenuit B Agathos SN 《Journal of industrial microbiology & biotechnology》2008,35(4):225-236
To gain insight into the impact of 2,4,6-trinitrotoluene (TNT) on soil microbial communities, we characterized the bacterial
community of several TNT-contaminated soils from two sites with different histories of contamination and concentrations of
TNT. The amount of extracted DNA, the total cell counts and the number of CFU were lower in the TNT-contaminated soils. Analysis
of soil bacterial diversity by DGGE showed a predominance of Pseudomonadaceae and Xanthomonadaceae in the TNT-contaminated soils, as well as the presence of Caulobacteraceae. CFU from TNT-contaminated soils were identified as Pseudomonadaceae, and, to a lesser extent, Caulobacteraceae. Finally, a pristine soil was spiked with different concentrations of TNT and the soil microcosms were incubated for 4 months.
The amount of extracted DNA decreased in the microcosms with a high TNT concentration [1.4 and 28.5 g TNT/kg (dry wt) of soil]
over the incubation period. After 7 days of incubation of these soil microcosms, there was already a clear shift of their
original flora towards a community dominated by Pseudomonadaceae, Xanthomonadaceae, Comamonadaceae and Caulobacteraceae. These results indicate that TNT affects soil bacterial diversity by selecting a narrow range of bacterial species that belong
mostly to Pseudomonadaceae and Xanthomonadaceae. 相似文献
9.
Fleischmann TJ Walker KC Spain JC Hughes JB Morrie Craig A 《Biochemical and biophysical research communications》2004,314(4):957-963
Degradation of TNT by bovine rumen fluid, a novel source of anaerobic microbes, was investigated. Whole rumen fluid contents were spiked with TNT and incubated for a 24h time period. Supernatant samples taken at 0, 1, 2, 4, and 24h were analyzed by reverse-phase HPLC with diode array detection. Within 1h, TNT was not detectable and reduction products of TNT including 2-hydroxyl-amino-4,6-dinitrotoluene, 4-hydroxylamino-2,6-dinitrotoluene, and 4-amino-2,6-dinitrotoluene were present with smaller amounts of diamino-nitrotoluenes. Within 2h, only the diamino and dihydroxyamino-nitrotoluene products remained. After 4h, 2,4-diamino-6-nitrotoluene and 2,4-dihydroxyamino-6-nitrotoluene were the only known molecular species left. At 24h known UV absorbing metabolites were no longer detected, suggesting further transformation such as complete reduction to triaminotoluene or destruction of the aromatic ring of TNT may have occurred. TNT was not transformed at 24h in autoclaved and buffered controls. This study presents the first direct evidence of biodegradation of TNT by ruminal microbes. 相似文献
10.
M M Ederer T A Lewis R L Crawford 《Journal of industrial microbiology & biotechnology》1997,18(2-3):82-88
Several bacterial strains were examined for their ability to degrade the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT).
The strains examined included various clostridial strains isolated from a 4-year-old munition enrichment, related clostridial
strains obtained from a culture collection, two enteric bacteria, and three lactobacilli. All Clostridium species tested were able to reduce TNT rapidly in a complex medium. In cell suspension experiments, these strains were
also able to reduce 2,4-diamino-6-nitrotoluene (DANT) to 2,4,6-triaminotoluene (TAT) and to produce a compound that is not
yet identified; thus, they could not be distinguished from one another with regard to the pathway of transformation. The
enteric strains and the lactobacilli were able to perform the initial reduction of TNT, but none was capable of reducing
DANT in cell suspensions.
Received 31 October 1995/ Accepted in revised form 29 March 1996 相似文献
11.
Transformation of 2,4,6-trinitrotoluene (TNT) by immobilized Phanerochaete chrysosporium under fed-batch and continuous TNT feeding conditions 总被引:1,自引:0,他引:1
Rho D Hodgson J Thiboutot S Ampleman G Hawari J 《Biotechnology and bioengineering》2001,73(4):271-281
The cometabolic transformation of 2,4,6-trinitrotoluene (TNT) by an immobilized Phanerochaete chrysosporium culture was investigated under different TNT and/or glycerol feeding conditions in a 5-L reactor. In the fed-batch feeding mode, as a result of four spiking events at an average feeding rate of 20 mg TNT L(-1) d(-1) and 250 mg glycerol L(-1) d(-1), the initial TNT transformation rate and the glycerol uptake rate of the 7-day-old immobilized cell culture were 2.41 mg L(-1) h(-1) and 16.6 mg L(-1) h(-1), respectively. Thereafter, the TNT fed into the reactor depicted a negative effect on the cell physiology of P. chrysosporium, i.e., both rates decreased constantly. At 32 mg TNT L(-1) d(-1) feeding rate, also in the presence of glycerol (200 mg L(-1) d(-1)), this effect on the fungal cell metabolism was even more significant. When TNT was fed alone at 3.7 mg L(-1) d(-1), it showed an initial 0.75 mg L(-1) h(-1) rate of TNT transformation, i.e., one-third the initial level observed in the presence of glycerol. In contrast, in the continuous feeding mode (dilution rate, D = 0.11 d(-1)), at 5.5 mg TNT L(-1) d(-1) and 220 mg glycerol L(-1) d(-1), the immobilized cell culture exhibited a constant TNT transformation rate for cultivation periods of 50 and 61 days, under uncontrolled and controlled pH conditions, respectively. Thereafter, during the latter experiment, 100% TNT biotransformation was achieved at 1,100 mg L(-1) d(-1) glycerol feeding rate. Immobilized cells (115-day-old), sampled from a continuous TNT feeding experiment, mineralized [(14)C]-TNT to a level of 15.3% following a 41-day incubation period in a microcosm. 相似文献
12.
The H2 uptake activity (units/mg protein) of Clostridium pasteurianum cells with methylene blue as the electron acceptor increases with cell density independent of the growth conditions. The H2 evolution activity (units/mg protein) of the same cells with reduced methyl viologen as the electron donor remains fairly constant under all growth conditions tested. Cells grown under N2-fixing conditions have the highest H2 uptake activity and were used for the purification of hydrogenase II (uptake hydrogenase). Attempts to separate hydrogenase II from hydrogenase I (bidirectional hydrogenase) by a previously published method were unreliable. We report here a new large-scale purification procedure which employs a rapid membrane filtration system to fractionate cell-free extracts. Hydrogenases I and II were easily filtered into the low-molecular-weight fraction (Mr less than 100 000), and from this, hydrogenase II was further purified to a homogeneous state. Hydrogenase II is a monomeric iron-sulfur protein of molecular weight 53 000 containing eight iron atoms and eight acid-labile sulfur atoms per molecule. Hydrogenase II catalyzes both H2 oxidation and H2 evolution at rates of 3000 and 5.9 μmol H2 consumed or evolved/min per mg protein, respectively. The purification procedure for hydrogenase II using the filtration system described greatly facilitates the large-scale purification of hydrogenase I and other enzymes from cell-free extracts of C. pasteurianum. 相似文献
13.
Studies on the stability of solvent production by Clostridium acetobutylicum in continuous culture 总被引:5,自引:4,他引:1
GILLIAN M. STEPHENS R.A. HOLT J.C. GOTTSCHAL † J.G. MORRIS 《Journal of applied microbiology》1985,58(6):597-605
Various methods of continuous flow culture of Clostridium acetobutylicum NCIB 8052 were investigated, with the aim of obtaining prolonged production of acetone and butanol. In ammonia-limited chemostat culture, maximal concentrations of solvents were obtained at pH 5–5 at a relatively high biomass concentration of 1.3–2.0 g/1 dry weight maintained at a dilution rate of 0.06/h. Similar dependence of solvent production on the sustenance of a relatively high cell density was observed in magnesium- or phosphate-limited chemostat cultures. Solvent production was always transient, however, with a shift to production of only acetic and butyric acids being observed after 4–16 volume changes. Longer term solvent production was obtainable under conditions of glucose limitation but the solvent yield was low. Cultivation in a pH-auxostat permitted solvent production in reasonably high yield over at least 70 volume changes with no signs of culture degeneration. Although none of the continuous flow cultures achieved a true steady state, we conclude that turbidostat or pH-auxostat culture are the methods of choice for continuous solvent production by Cl. acetobutylicum NCIB 8052. 相似文献
14.
Klebsiella sp. strain C1 isolated from activated sludge metabolized 2,4,6-trinitrotoluene (TNT) by two different pathways. The typical metabolites in the nitro group reduction pathway of TNT, such as hydroxylamino-dinitrotoluenes and amino-dinitrotoluenes, were detected. Dinitrotoluenes and nitrite were also detected, possibly produced by a denitration pathway. After incubation of [U-14C]TNT for 28 and 77 d, 2.4 and 6.24%, respectively, were released as 14CO2. This mineralization rate was higher than those reported by any other TNT degrading bacteria and might be due to the dual pathways of degradation in this bacterium. 相似文献
15.
16.
17.
Popesku JT Singh A Zhao JS Hawari J Ward OP 《Applied microbiology and biotechnology》2004,65(6):739-746
Metabolites formed during 2,4,6-trinitrotoluene (TNT) removal by a mixed bacterial culture (acclimated and maintained on crude oil-containing medium and capable of high rates of TNT removal) were characterized. In resting cell experiments in the absence of glucose, 46.2 mg/l TNT were removed in 171 h (87.5% removal), with a combined total formation of 7.7 mg/l amino-4,6-dinitrotoluene (ADNT) and 0.3 mg/l 4,4-azoxytetranitrotoluene and 2,4-azoxytetranitrotoluene, leaving 70% of the initial TNT unaccounted for. In the presence of glucose, resting cells removed 45.4 mg/l TNT in 49 h (95.5% removal), with 9.1 mg/l ADNT and 2.4 mg/l azoxy compounds being produced, leaving 70.3% of the TNT unaccounted for. Growing cells (glucose present) were capable of removing 44.2 mg/l TNT within 21 h (97.9% removal), with the concomitant formation of 1.8 mg/l ADNTs and 2.2 mg/l azoxy compounds. Denitrated TNT in the form of 2,6-dinitrotoluene was also produced in growing cells with a maximum amount of 1.31 mg/l after 28 h, followed by a slight decrease with time, leaving 88.5% of the initial TNT unaccounted for after 171 h. Radiolabeled 14C-TNT studies revealed 4.14% mineralization after an incubation period of 163 days with growing cells. 相似文献
18.
Using Escherichia coli for installing and maintaining anaerobiosis for hydrogen production by Clostridium acetobutylicum ATCC 824 is a cost-effective approach for industrial hydrogen production, as it does not require reducing agents or sparging with inert gases. This study was devoted for investigating the feasibility for installing and maintaining anaerobiosis of hydrogen production by C. acetobutylicum ATCC 824 when using E. coli HD701 utilizable versus non utilizable sugars as a-carbon source. Using E. coli HD701 for installing anaerobiosis showed a comparable hydrogen production yield and efficiency to the use of reducing agents and nitrogen sparging in case of hydrogen production from the E. coli HD701 non utilizable sugars. In contrast, using E. coli HD701 for installing anaerobiosis showed a lower hydrogen production yield and efficiency than the use of reducing agents and nitrogen sparging in case of using glucose as a substrate. This is possibly because E. coli HD701 when using glucose compensate for the substrate, and produce hydrogen with lower efficiency than C. acetobutylicum ATCC 824. These results indicated that the use of E. coli HD701 for installing anaerobiosis would not be economically feasible when using E. coli HD701 utilizable sugars as a carbon source. In contrast, the use of this approach for installing anaerobiosis for hydrogen production from sucrose and starch would have a high potency for industrial applications. 相似文献
19.
丙酮丁醇梭菌发酵菊芋汁生产丁醇 总被引:4,自引:0,他引:4
对丙酮丁醇梭菌Clostridium acetobutylicum L7发酵菊芋汁酸水解液生产丁醇进行了初步研究。实验结果表明,以该水解液为底物生产丁醇,不需要添加氮源和生长因子。当水解液初始糖浓度为48.36 g/L时,其发酵性能与以果糖为碳源的对照组基本相同,发酵终点丁醇浓度为8.67 g/L,丁醇、丙酮和乙醇的比例为0.58∶0.36∶0.06,但与以葡萄糖为碳源的对照组相比,发酵时间明显延长,表明该菌株葡萄糖转运能力强于果糖。当水解液初始糖浓度提高到62.87 g/L时,发酵终点残糖浓度从3.09 g/L增加到3.26 g/L,但丁醇浓度却提高到11.21 g/L,丁醇、丙酮和乙醇的比例相应为0.64∶0.29∶0.05,表明适量糖过剩有助于C.acetobutylicum L7胞内代谢从丙酮合成向丁醇合成途径调节;继续提高水解液初始糖浓度,发酵终点残糖浓度迅速升高,丁醇生产的技术经济指标受到明显影响。 相似文献
20.
在建立TNT大鼠白内障的基础上,用HPLC分析了晶状体内TNT及其代谢产物,并用ESR及NBT方法检测了TNT在晶状体内的代谢过程所产生的自由基。结果表明,慢性染毒24个月的大鼠白内障晶状体内含有TNT原形和4氨基2,6二硝基甲苯代谢产物,以及在体外与正常晶状体微粒体孵育可产生TNT硝基阴离子自由基和超氧阴离子自由基。上述结果提示,TNT可进入晶状体内,在其还原代谢过程中产生硝基阴离子自由基中间产物,在有氧条件下进而产生超氧阴离子自由基,这可能是TNT导致白内障的启动因素。 相似文献