首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spontaneous mutations at numerous sites distant from the active site of human immunodeficiency virus type 1 protease enable resistance to inhibitors while retaining enzymatic activity. As a benchmark for probing the effects of these mutations on the conformational adaptability of this dimeric β-barrel protein, the folding free-energy surface of a pseudo-wild-type variant, HIV-PR?, was determined by a combination of equilibrium and kinetic experiments on the urea-induced unfolding/refolding reactions. The equilibrium unfolding reaction was well described by a two-state model involving only the native dimeric form and the unfolded monomer. The global analysis of the kinetic folding mechanism reveals the presence of a fully folded monomeric intermediate that associates to form the native dimeric structure. Independent analysis of a stable monomeric version of the protease demonstrated that a small-amplitude fluorescence phase in refolding and unfolding, not included in the global analysis of the dimeric protein, reflects the presence of a transient intermediate in the monomer folding reaction. The partially folded and fully folded monomers are only marginally stable with respect to the unfolded state, and the dimerization reaction provides a modest driving force at micromolar concentrations of protein. The thermodynamic properties of this system are such that mutations can readily shift the equilibrium from the dimeric native state towards weakly folded states that have a lower affinity for inhibitors but that could be induced to bind to their target proteolytic sites. Presumably, subsequent secondary mutations increase the stability of the native dimeric state in these variants and, thereby, optimize the catalytic properties of the resistant human immunodeficiency virus type 1 protease.  相似文献   

2.
To elucidate determinants of thermostability and folding pathways of the intrinsically stable proteins from extremophilic organisms, we are studying β-glucosidase from Pyrococcus furiosus. Using fluorescence and circular dichroism spectroscopy, we have characterized the thermostability of β-glucosidase at 90°C, the lowest temperature where full unfolding is achieved with urea. The chemical denaturation profile reveals that this homotetrameric protein unfolds at 90°C with an overall ΔG° of ∼ 20 kcal mol−1. The high temperatures needed to chemically denature P. furiosus β-glucosidase and the large ΔG° of unfolding at high temperatures shows this to be one of the most stable proteins yet characterized. Unfolding proceeds via a three-state pathway that includes a stable intermediate species. Stability of the native and intermediate forms is concentration dependent, and we have identified a dimeric assembly intermediate using high temperature native gel electrophoresis. Based on this data, we have developed a model for the denaturation of β-glucosidase in which the tetramer dissociates to partially folded dimers, followed by the coupled dissociation and denaturation of the dimers to unfolded monomers. The extremely high stability is thus derived from a combination of oligomeric interactions and subunit folding.  相似文献   

3.
We have examined the folding and unfolding of the caspase recruitment domain of procaspase-1 (CP1-CARD), a member of the alpha-helical Greek key protein family. The equilibrium folding/unfolding of CP1-CARD is described by a two-state mechanism, and the results show CP1-CARD is marginally stable with a DeltaG(H2O) of 1.1 +/- 0.2 kcal/mole and an m-value of 0.65 +/- 0.06 kcal/mole/M (10 mM Tris-HCl at pH 8.0, 1 mM DTT, 25 degrees C). Consistent with the equilibrium folding data, CP1-CARD is a monomer in solution when examined by size exclusion chromatography. Single-mixing stopped-flow refolding and unfolding studies show that CP1-CARD folds and unfolds rapidly, with no detectable slow phases, and the reactions appear to reach equilibrium within 10 msec. However, double jump kinetic experiments demonstrate the presence of an unfolded-like intermediate during unfolding. The intermediate converts to the fully unfolded conformation with a half-time of 10 sec. Interrupted refolding studies demonstrate the presence of one or more nativelike intermediates during refolding, which convert to the native conformation with a half-time of about 60 sec. Overall, the data show that both unfolding and refolding processes are slow, and the pathways contain kinetically trapped species.  相似文献   

4.
The H2A/H2B heterodimer is a component of the nucleosome core particle, the fundamental repeating unit of chromatin in all eukaryotic cells. The kinetic folding mechanism for the H2A/H2B dimer has been determined from unfolding and refolding kinetics as a function of urea using stopped-flow, circular dichroism and fluorescence methods. The kinetic data are consistent with a three-state mechanism: two unfolded monomers associate to form a dimeric intermediate in the dead-time of the SF instrument (approximately 5 ms); this intermediate is then converted to the native dimer by a slower, first-order reaction. Analysis of the burst-phase amplitudes as a function of denaturant indicates that the dimeric kinetic intermediate possesses approximately 50% of the secondary structure and approximately 60% of the surface area burial of the native dimer. The stability of the dimeric intermediate is approximately 30% of that of the native dimer at the monomer concentrations employed in the SF experiments. Folding-to-unfolding double-jump experiments were performed to monitor the formation of the native dimer as a function of folding delay times. The double-jump data demonstrate that the dimeric intermediate is on-pathway and obligatory. Formation of a transient dimeric burst-phase intermediate has been observed in the kinetic mechanism of other intertwined, segment-swapped, alpha-helical, DNA-binding dimers, such as the H3-H4 histone dimer, Escherichia coli factor for inversion stimulation and E.coli Trp repressor. The common feature of a dimeric intermediate in these folding mechanisms suggests that this intermediate may accelerate protein folding, when compared to the folding of archael histones, which do not populate a transient dimeric species and fold more slowly.  相似文献   

5.
The unfolding transition and kinetic refolding of dimeric creatine kinase after urea denaturation were monitored by intrinsic fluorescence and far ultraviolet circular dichroism. An equilibrium intermediate and a kinetic folding intermediate were identified and characterized. The fluorescence intensity of the equilibrium intermediate is close to that of the unfolded state, whereas its ellipticity at 222 nm is about 50% of the native state. The transition curves measured by these two methods are therefore non-coincident. The kinetic folding intermediate, formed during the burst phase of refolding under native-like conditions, possesses 75% of the native secondary structure, but is mostly lacking in native tertiary structure. In moderate concentrations of urea, only the initial, rapid change in fluorescence intensity or negative ellipticity is observed, and the final state values do not reach the equivalent unfolding values. The unfolding and refolding transition curves measured under identical conditions are non-coincident within the transition from intermediate to fully unfolded state. It is observed by SDS-PAGE that disulfide bond-linked dimeric or oligomeric intermediates are formed in moderate urea concentrations, especially in the refolding reaction. These rapidly formed, soluble intermediates represent an off-pathway event that leads to the hysteresis in the refolding transition curves.  相似文献   

6.
In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves shared or distinct kinetic mechanisms. To investigate the potential mechanisms of formation, the refolding and unfolding kinetics of horse apomyoglobin were measured by continuous- and stopped-flow fluorescence over a time range from approximately 100 μs to 10 s, along with equilibrium unfolding transitions, as a function of urea concentration at pH 6.0 and 8°C. The formation of a kinetic intermediate was observed over a wider range of urea concentrations (0–2.2 M) than the formation of the native state (0–1.6 M). Additionally, the kinetic intermediate remained populated as the predominant equilibrium state under conditions where the native and unfolded states were unstable (at ~0.7–2 M urea). A continuous shift from the kinetic to the equilibrium intermediate was observed as urea concentrations increased from 0 M to ~2 M, which indicates that these states share a common kinetic folding mechanism. This finding supports the conclusion that these intermediates are equivalent. Our results in turn suggest that the regions of the protein that resist denaturant perturbations form during the earlier stages of folding, which further supports the structural equivalence of transient and equilibrium intermediates. An additional folding intermediate accumulated within ~140 μs of refolding and an unfolding intermediate accumulated in <1 ms of unfolding. Finally, by using quantitative modeling, we showed that a five-state sequential scheme appropriately describes the folding mechanism of horse apomyoglobin.  相似文献   

7.
Sasahara K  Demura M  Nitta K 《Proteins》2002,49(4):472-482
The equilibrium and kinetic folding of hen egg-white lysozyme was studied by means of circular dichroism spectra in the far- and near-ultraviolet (UV) regions at 25 degrees C under the acidic pH conditions. In equilibrium condition at pH 2.2, hen lysozyme shows a single cooperative transition in the GdnCl-induced unfolding experiment. However, in the GdnCl-induced unfolding process at lower pH 0.9, a distinct intermediate state with molten globule characteristics was observed. The time-dependent unfolding and refolding of the protein were induced by concentration jumps of the denaturant and measured by using stopped-flow circular dichroism at pH 2.2. Immediately after the dilution of denaturant, the kinetics of refolding shows evidence of a major unresolved far-UV CD change during the dead time (<10 ms) of the stopped-flow experiment (burst phase). The observed refolding and unfolding curves were both fitted well to a single-exponential function, and the rate constants obtained in the far- and near-UV regions coincided with each other. The dependence on denaturant concentration of amplitudes of burst phase and both rate constants was modeled quantitatively by a sequential three-state mechanism, U<-->I<-->N, in which the burst-phase intermediate (I) in rapid equilibrium with the unfolded state (U) precedes the rate-determining formation of the native state (N). The role of folding intermediate state of hen lysozyme was discussed.  相似文献   

8.
Nakao M  Maki K  Arai M  Koshiba T  Nitta K  Kuwajima K 《Biochemistry》2005,44(17):6685-6692
The intermediate in the equilibrium unfolding of canine milk lysozyme induced by a denaturant is known to be very stable with characteristics of the molten globule state. Furthermore, there are at least two kinetic intermediates during refolding of this protein: a burst-phase (first) intermediate formed within the dead time of stopped-flow measurements and a second intermediate that accumulates with a rate constant of 22 s(-)(1). To clarify the relationships of these intermediates with the equilibrium intermediate, and also to characterize the structural changes of the protein during refolding, here we studied the kinetic refolding reactions using stopped-flow circular dichroism at 10 different wavelengths and obtained the circular dichroism spectra of the intermediates. Comparison of the circular dichroism spectra of the intermediates, as well as the absence of observed kinetics in the refolding from the fully unfolded state to the equilibrium intermediate, has demonstrated that the burst-phase intermediate is equivalent to the equilibrium intermediate. The difference circular dichroism spectrum that represented changes from the kinetic intermediate to the native state had characteristics of an exciton coupling band, indicating that specific packing of tryptophan residues in this protein occurred in this phase. From these findings, we propose a schematic model of the refolding of canine milk lysozyme that is consistent with the hierarchical mechanism of protein folding.  相似文献   

9.
Copper is a redox-active metal and the main player in electron transfer reactions occurring in multicopper oxidases. The role of copper in the unfolding pathway and refolding of the multicopper oxidase CotA laccase in vitro was solved using double-jump stopped-flow experiments. Unfolding of apo- and holo-CotA was described as a three-state process with accumulation of an intermediate in between the native and unfolded state. Copper stabilizes the native holo-CotA but also the intermediate state showing that copper is still bound to this state. Also, copper binds to unfolded holo-CotA in a non-native coordination promoting CotA aggregation and preventing refolding to the native structure. These results gather information on unfolding/folding pathways of multicopper oxidases and show that copper incorporation in vivo should be a tight controlled process as copper binding to the unfolded state under native conditions promotes protein aggregation.  相似文献   

10.
Folding of the 123 amino acid residue Greek key protein apo-pseudo azurin from Thiosphaera pantotropha has been examined using stopped-flow circular dichroism in 0.5 M Na2SO4 at pH 7.0 and 15 degrees C. The data show that the protein folds from the unfolded state with all eight proline residues in their native isomers (seven trans and one cis) to an intermediate within the dead-time of the stopped-flow mixing (50 ms). The urea dependence of the rates of folding and unfolding of the protein were also determined. The ratio of the folding rate to the unfolding rate (extrapolated into water) is several orders of magnitude too small to account for the equilibrium stability of the protein, consistent with the population of an intermediate. Despite this, the logarithm of the rate of folding versus denaturant concentration is linear. These data can be rationalised by the population of an intermediate under all refolding conditions. Accordingly, kinetic and equilibrium measurements were combined to fit the chevron plot to an on-pathway model (U <==> I <==> N). The fit shows that apo-pseudoazurin rapidly forms a compact species that is stabilised by 25 kJ/mol before folding to the native state at a rate of 2 s-1. Although the data can also be fitted to an off-pathway model (I <==> U <==> N), the resulting kinetic parameters indicate that the protein would have to fold to the native state at a rate of 86,000 s-1 (a time constant of only 12 microseconds). Similarly, models in which this intermediate is bypassed also lead to unreasonably fast refolding rates. Thus, the intermediate populated during the refolding of apo-pseudoazurin appears to be obligate and on the folding pathway. We suggest, based on this study and others, that some intermediates play a critical role in limiting the search to the native state.  相似文献   

11.
FIS, the factor for inversion stimulation, from Escherichia coli and other enteric bacteria, is an interwined alpha-helical homodimer. Size exclusion chromatography and static light scattering measurements demonstrated that FIS is predominately a stable dimer at the concentrations (1-10 microM monomer) and buffer conditions employed in this study. The folding and unfolding of FIS were studied with both equilibrium and kinetic methods by circular dichroism using urea and guanidinium chloride (GdmCl) as the perturbants. The equilibrium folding is reversible and well-described by a two-state folding model, with stabilities at 10 degrees C of 15.2 kcal mol(-1) in urea and 13.5 kcal mol(-1) in GdmCl. The kinetic data are consistent with a two-step folding reaction where the two unfolded monomers associate to a dimeric intermediate within the mixing time for the stopped-flow instrument (<5 ms), and a slower, subsequent folding of the dimeric intermediate to the native dimer. Fits of the burst phase amplitudes as a function of denaturant showed that the free energy for the formation of the dimeric intermediate constitutes the majority of the stability of the folding (9.6 kcal mol(-1) in urea and 10.5 kcal mol(-1) in GdmCl). Folding-to-unfolding double jump kinetic experiments were also performed to monitor the formation of native dimer as a function of folding delay times. The data here demonstrate that the dimeric intermediate is obligatory and on-pathway. The folding mechanism of FIS, when compared to other intertwined, alpha-helical, homodimers, suggests that a transient kinetic dimeric intermediate may be a common feature of the folding of intertwined, segment-swapped, alpha-helical dimers.  相似文献   

12.
Bollen YJ  Sánchez IE  van Mierlo CP 《Biochemistry》2004,43(32):10475-10489
The folding kinetics of the 179-residue Azotobacter vinelandii apoflavodoxin, which has an alpha-beta parallel topology, have been followed by stopped-flow experiments monitored by fluorescence intensity and anisotropy. Single-jump and interrupted refolding experiments show that the refolding kinetics involve four processes yielding native molecules. Interrupted unfolding experiments show that the two slowest folding processes are due to Xaa-Pro peptide bond isomerization in unfolded apoflavodoxin. The denaturant dependence of the folding kinetics is complex. Under strongly unfolding conditions (>2.5 M GuHCl), single exponential kinetics are observed. The slope of the chevron plot changes between 3 and 5 M denaturant, and no additional unfolding process is observed. This reveals the presence of two consecutive transition states on a linear pathway that surround a high-energy on-pathway intermediate. Under refolding conditions, two processes are observed for the folding of apoflavodoxin molecules with native Xaa-Pro peptide bond conformations, which implies the population of an intermediate. The slowest of these two processes becomes faster with increasing denaturant concentration, meaning that an unfolding step is rate-limiting for folding of the majority of apoflavodoxin molecules. It is shown that the intermediate that populates during refolding is off-pathway. The experimental data obtained on apoflavodoxin folding are consistent with the linear folding mechanism I(off) <==> U <==> I(on) <== > N, the off-pathway intermediate being the molten globule one that also populates during equilibrium denaturation of apoflavodoxin. The presence of such on-pathway and off-pathway intermediates in the folding kinetics of alpha-beta parallel proteins is apparently governed by protein topology.  相似文献   

13.
The refolding of mitochondrial aspartate aminotransferase (mAAT; EC 2.6.1.1) has been studied following unfolding in 6 m guanidine hydrochloride for different periods of time. Whereas reactivation of equilibrium-unfolded mAAT is sigmoidal, reactivation of the short term unfolded protein displays a double exponential behavior consistent with the presence of fast and slow refolding species. The amplitude of the fast phase decreases with increasing unfolding times (k approximately 0.75 min(-1) at 20 degrees C) and becomes undetectable at equilibrium unfolding. According to hydrogen exchange and stopped-flow intrinsic fluorescence data, unfolding of mAAT appears to be complete in less than 10 s, but hydrolysis of the Schiff base linking the coenzyme pyridoxal 5'-phosphate (PLP) to the polypeptide is much slower (k approximately 0.08 min(-1)). This implies the existence in short term unfolded samples of unfolded species with PLP still attached. However, since the disappearance of the fast refolding phase is about 10-fold faster than the release of PLP, the fast refolding phase does not correspond to folding of the coenzyme-containing molecules. The fast refolding phase disappears more rapidly in the pyridoxamine and apoenzyme forms of mAAT, both of which lack covalently attached cofactor. Thus, bound PLP increases the kinetic stability of the fast refolding unfolding intermediates. Conversion between fast and slow folding forms also takes place in an early folding intermediate. The presence of cyclophilin has no effect on the reactivation of either equilibrium or short term unfolded mAAT. These results suggest that proline isomerization may not be the only factor determining the slow refolding of this cofactor-dependent protein.  相似文献   

14.
The folding and stability of recombinant homomeric (alpha-only) pyruvate decarboxylase from yeast was investigated. Different oligomeric states (tetramers, dimers and monomers) of the enzyme occur under defined conditions. The enzymatic activity is used as a sensitive probe for structural differences between the active and inactive form (mis-assembled forms, aggregates) of the folded protein. Unfolding kinetics starting from the native protein comprise both the dissociation of the oligomers into monomers and their subsequent denaturation, which could be monitored by stopped-flow kinetics. In the course of unfolding, the tetramers do not directly dissociate into monomers, but via a stable dimeric state. Starting from the unfolded state, a reactivation of homomeric pyruvate decarboxylase requires both refolding to monomers and their correct association to enzymatically active dimers or tetramers. The reactivation yield under the in vitro conditions used follows an optimum behavior.  相似文献   

15.
Mutations at many different sites in the gene encoding human Cu,Zn superoxide dismutase (SOD) are known to be causative agents in amyotrophic lateral sclerosis (ALS). One explanation for the molecular basis of this pathology is the aggregation of marginally soluble, partially structured states whose populations are enhanced in the protein variants. As a benchmark for testing this hypothesis, the equilibrium and kinetic properties of the reversible folding reaction of a metal-free variant of SOD were investigated. Reversibility was achieved by replacing the two non-essential cysteine residues with non-oxidizable analogs, C6A/C111S, to produce apo-AS-SOD. The metal-free pseudo-wild-type protein is folded and dimeric in the absence of chemical denaturants, and its equilibrium folding behavior is well described by an apparent two-state mechanism involving the unfolded monomer and the native dimer. The apparent free energy of folding in the absence of denaturant and at standard state is -20.37(+/- 1.04) kcal (mol dimer)(-1). A global analysis of circular dichroism kinetic traces for both unfolding and refolding reactions, combined with results from small angle X-ray scattering and time-resolved fluorescence anisotropy measurements, supports a sequential mechanism involving the unfolded monomer, a folded monomeric intermediate, and the native dimer. The rate-limiting monomer folding reaction is followed by a near diffusion-limited self-association reaction to form the native dimer. The relative population of the folded monomeric intermediate is predicted not to exceed 0.5% at micromolar concentrations of protein under equilibrium and both strongly unfolding and refolding conditions for metal-free pseudo-wild-type SOD.  相似文献   

16.
Equilibrium and kinetic studies of the guanidine hydrochloride induced unfolding-refolding of dimeric cytoplasmic creatine kinase have been monitored by intrinsic fluorescence, far ultraviolet circular dichroism, and 1-anilinonaphthalene-8-sulfonate binding. The GuHCl induced equilibrium-unfolding curve shows two transitions, indicating the presence of at least one stable equilibrium intermediate in GuHCl solutions of moderate concentrations. This intermediate is an inactive monomer with all of the thiol groups exposed. The thermodynamic parameters obtained by analysis using a three-state model indicate that this intermediate is similar in energy to the fully unfolded state. There is a burst phase in the refolding kinetics due to formation of an intermediate within the dead time of mixing (15 ms) in the stopped-flow apparatus. Further refolding to the native state after the burst phase follows biphasic kinetics. The properties of the burst phase and equilibrium intermediates were studied and compared. The results indicate that these intermediates are similar in some respects, but different in others. Both are characterized by pronounced secondary structure, compact globularity, exposed hydrophobic surface area, and the absence of rigid side-chain packing, resembling the "molten globule" state. However, the burst phase intermediate shows more secondary structure, more exposed hydrophobic surface area, and more flexible side-chain packing than the equilibrium intermediate. Following the burst phase, there is a fast phase corresponding to folding of the monomer to a compact conformation. This is followed by rapid assembly to form the dimer. Neither of the equilibrium unfolding transitions are protein concentration dependent. The refolding kinetics are also not concentration dependent. This suggests that association of the subunits is not rate limiting for refolding, and that under equilibrium conditions, dissociation occurs in the region between the two unfolding transitions. Based upon the above results, schemes of unfolding and refolding of creatine kinase are proposed.  相似文献   

17.
The Saccharomyces cerevisiae non-Mendelian factor [URE3] propagates by a prion-like mechanism, involving aggregation of the chromosomally encoded protein Ure2. The N-terminal prion domain (PrD) of Ure2 is required for prion activity in vivo and amyloid formation in vitro. However, the molecular mechanism of the prion-like activity remains obscure. Here we measure the kinetics of folding of Ure2 and two N-terminal variants that lack all or part of the PrD. The kinetic folding behaviour of the three proteins is identical, indicating that the PrD does not change the stability, rates of folding or folding pathway of Ure2. Both unfolding and refolding kinetics are multiphasic. An intermediate is populated during unfolding at high denaturant concentrations resulting in the appearance of an unfolding burst phase and "roll-over" in the denaturant dependence of the unfolding rate constants. During refolding the appearance of a burst phase indicates formation of an intermediate during the dead-time of stopped-flow mixing. A further fast phase shows second-order kinetics, indicating formation of a dimeric intermediate. Regain of native-like fluorescence displays a distinct lag due to population of this on-pathway dimeric intermediate. Double-jump experiments indicate that isomerisation of Pro166, which is cis in the native state, occurs late in refolding after regain of native-like fluorescence. During protein refolding there is kinetic partitioning between productive folding via the dimeric intermediate and a non-productive side reaction via an aggregation prone monomeric intermediate. In the light of this and other studies, schemes for folding, aggregation and prion formation are proposed.  相似文献   

18.
Transient structures in unfolded proteins are important in elucidating the molecular details of initiation of protein folding. Recently, native and non-native secondary structure have been discovered in unfolded A. vinelandii flavodoxin. These structured elements transiently interact and subsequently form the ordered core of an off-pathway folding intermediate, which is extensively formed during folding of this α–β parallel protein. Here, site-directed spin-labelling and paramagnetic relaxation enhancement are used to investigate long-range interactions in unfolded apoflavodoxin. For this purpose, glutamine-48, which resides in a non-native α-helix of unfolded apoflavodoxin, is replaced by cysteine. This replacement enables covalent attachment of nitroxide spin-labels MTSL and CMTSL. Substitution of Gln-48 by Cys-48 destabilises native apoflavodoxin and reduces flexibility of the ordered regions in unfolded apoflavodoxin in 3.4 M GuHCl, because of increased hydrophobic interactions in the unfolded protein. Here, we report that in the study of the conformational and dynamic properties of unfolded proteins interpretation of spin-label data can be complicated. The covalently attached spin-label to Cys-48 (or Cys-69 of wild-type apoflavodoxin) perturbs the unfolded protein, because hydrophobic interactions occur between the label and hydrophobic patches of unfolded apoflavodoxin. Concomitant hydrophobic free energy changes of the unfolded protein (and possibly of the off-pathway intermediate) reduce the stability of native spin-labelled protein against unfolding. In addition, attachment of MTSL or CMTSL to Cys-48 induces the presence of distinct states in unfolded apoflavodoxin. Despite these difficulties, the spin-label data obtained here show that non-native contacts exist between transiently ordered structured elements in unfolded apoflavodoxin.  相似文献   

19.
Creatine kinase (CK) is a dimeric enzyme important in ATP regeneration in cells where energy demands are high. The folding of CK under equilibrium and transient conditions has been studied in detail and is found to be complex. At equilibrium in 0.8 M GuHCl, 90% of CK molecules are in the form of a partially structured, monomeric intermediate. We exploit this property to measure kinetics of refolding and unfolding to and from this equilibrium intermediate (EI), using far-UV circular dichroism and intrinsic fluorescence as structural probes. We are thus able to compare the properties of EI and the kinetic intermediate formed during the burst phase in refolding. Native CK and EI unfold with rate constants in seconds and milliseconds, respectively. As is observed for refolding of fully-denatured CK, refolding from EI to the native state shows a burst phase followed by two exponential phases. The burst phase refolding intermediate is inferred to have more structure and greater stability than the equilibrium intermediate. When refolding from the fully-denatured state in 0.8 M GuHCl, the equilibrium intermediate is formed within the dead-time of mixing in the stopped-flow apparatus. The equilibrium intermediate may thus represent a kinetic intermediate formed early during folding.  相似文献   

20.
Reversible denaturation of the gene V protein of bacteriophage f1   总被引:7,自引:0,他引:7  
H Liang  T C Terwilliger 《Biochemistry》1991,30(11):2772-2782
The guanidine hydrochloride (GuHCl)-induced denaturation of the gene V protein of bacteriophage f1 has been studied, using the chemical reactivity of a cysteine residue that is buried in the folded protein and the circular dichroism (CD) at 211 and 229 nm as measures of the fraction of polypeptide chains in the folded form. It is found that this dimeric protein unfolds in a single cooperative transition from a folded dimer to two unfolded monomers. A folded, monomeric form of the gene V protein was not detected at equilibrium. The kinetics of unfolding of the gene V protein in 3 M GuHCl and the refolding in 2 M GuHCl are also consistent with a transition between a folded dimer and two unfolded monomers. The GuHCl concentration dependence of the rates of folding and unfolding suggests that the transition state for folding is near the folded conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号