首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melanin is the major factor that determines skin color and protects from ultraviolet radiation. In present study we evaluated the anti‐melanogenesis effect of acetazolamide (ACZ) using four different approaches: enzyme kinetic, in vitro, in vivo and in silico. ACZ demonstrated significant inhibitory activity (IC50 7.895 ± 0.24 μm ) against tyrosinase as compared to the standard drug kojic acid (IC50 16.84 ± 0.64 μm ) and kinetic analyses showed that ACZ is a non‐competitive inhibitor without cytotoxic effect. In in vitro experiments, A375 human melanoma cells were treated with 20 or 40 μm of ACZ with or without 50 μm of l ‐DOPA. Western blot results showed that ACZ significantly (< 0.05) decreased the expression level of tyrosinase at 40 μm . Zebrafish embryos were treated with 10, 20 or 40 μm of ACZ and of positive control kojic acid. At 72 h of treatment with ACZ and kojic acid, ACZ significantly (< 0.001) decreased the embryos pigmentation to 40.8% of untreated embryos at the dose of 40 μm of ACZ while kojic acid decreased only 25.0% of pigmentation at the same dose of kojic acid. In silico docking were performed against tyrosinase using PyRx tool. Docking studies suggested that His244, Asn260 and His85 are the major interacting residues in the binding site of the protein. In conclusion, our results suggest that ACZ is a good candidate for the inhibition of melanin and it could be used as a lead for developing the drugs for hyperpigmentary disorders and skin whitening.  相似文献   

2.
The synthesis of celastrol analogues containing amino acid ester at the C(29) position and their evaluation for cytotoxic activities in vitro were reported. The MTT test showed that a set of derivatives with lower IC50 values than that of the positive control group cisplatin and the parent compound celastrol, which exhibited greater antiproliferative activities. The most potent title compounds 2a and 2e exhibited cytotoxic activities in vitro against HeLa and A549 cell lines with IC50 values of 0.371 and 0.237 μm , 0.235 and 0.109 μm , respectively. The apoptosis assay demonstrated that 2a and 2e can induces of A549 cell apoptosis in low concentrations. These results showed that 2a and 2e may be promising for further research as antitumor agents.  相似文献   

3.
Kalanchoe daigremontiana (Crassulaceae) is a medicinal plant native to Madagascar. The aim of this study was to investigate the flavonoid content of an aqueous leaf extract from Kdaigremontiana (Kd), and assess its antiherpetic potential. The major flavonoid, kaempferol 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside ( 1 ), was isolated from the AcOEt fraction (Kd‐AC). The BuOH‐soluble fraction afforded quercetin 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside ( 2 ) and the new kaempferol 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside‐7‐Oβ‐d ‐glucopyranoside ( 3 ), named daigremontrioside. The crude extract, Kd‐AC fraction, flavonoids 1 and 2 were evaluated using acyclovir‐sensitive strains of HSV‐1 and HSV‐2. Kd‐AC was highly active against HSV‐1 (EC50 = 0.97 μg/ml, SI > 206.1) and HSV‐2 (EC50 = 0.72 μg/ml, SI > 277.7). Flavonoids 1 and 2 showed anti‐HSV‐1 (EC50 = 7.4 μg/ml; SI > 27 and EC50 = 5.8 μg/ml; SI > 8.6, respectively) and anti‐HSV‐2 (EC50 = 9.0 μg/ml; SI > 22.2 and EC50 = 36.2 μg/ml; SI > 5.5, respectively) activities, suggesting the contribution of additional substances to the antiviral activity.  相似文献   

4.
A series of 3‐(substituted aroyl)‐4‐(3,4,5‐trimethoxyphenyl)‐1H‐pyrrole derivatives were synthesized and determined for their anticancer activity against eleven cancer cell lines and two normal tissue cell lines using MTT assay. Among the synthesized compounds, compound 3f was the most potent compound against A375, CT‐26, HeLa, MGC80‐3, NCI‐H460 and SGC‐7901 cells (IC50 = 8.2 – 31.7 μm ); 3g , 3n and 3a were the most potent compounds against CHO (IC50 = 8.2 μm ), HCT‐15 (IC50 = 21 μm ) and MCF‐7 cells (IC50 = 18.7 μm ), respectively. Importantly, all the target compounds showed no cytotoxicity towards the normal tissue cell (IC50 > 100 μm ). Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents.  相似文献   

5.
Phaeanthus vietnamensis Bân is a well‐known medicinal plant which has been used for the treatment of various inflammatory diseases in traditional medicine. Using various chromatographic methods, three new compounds, (7S,8R,8′R)‐9,9′‐epoxy‐3,5,3′,5′‐tetramethoxylignan‐4,4′,7‐triol ( 1 ), 8α‐hydroxyoplop‐11(12)‐en‐14‐one ( 5 ), and (1R,2S,4S)‐4‐acetyl‐2‐[(E)‐(cinnamoyloxy)]‐1‐methylcyclohexan‐1‐ol ( 12 ) along with twelve known compounds were isolated from the leaves of Pvietnamensis. Their chemical structures were elucidated by physical and chemical methods. All compounds were evaluated for the inhibitory activities of nitric oxide production in LPS‐stimulated BV2 cells. As the results, compound 6 showed the most potent inhibitory activity on LPS‐stimulated NO production in BV2 cells with the IC50 values of 15.7 ± 1.2 μm . Compounds 2 , 7 , and 8 significantly inhibited inflammatory NO production with IC50 values ranging from 22.6 to 25.3 μm .  相似文献   

6.
Four limonoids, 1  –  4 , five alkaloids, 5  –  9 , and four phenolic compounds, 10  –  13 , were isolated from a MeOH extract of the bark of Phellodendron amurense (Rutaceae). Among these, compound 13 was new, and its structure was established as rel‐(1R,2R,3R)‐5‐hydroxy‐3‐(4‐hydroxy‐3‐methoxyphenyl)‐6‐methoxy‐1‐(methoxycarbonylmethyl)indane‐2‐carboxylic acid methyl ester (γ‐di(methyl ferulate)) based on the spectrometric analysis. Upon evaluation of compounds 1  –  13 against the melanogenesis in the B16 melanoma cells induced with α‐melanocyte‐stimulating hormone (α‐MSH), four compounds, limonin ( 1 ), noroxyhydrastinine ( 6 ), haplopine ( 7 ), and 4‐methoxy‐1‐methylquinolin‐2(1H)‐one ( 8 ), exhibited potent melanogenesis‐inhibitory activities with almost no toxicity to the cells. Western blot analysis revealed that compound 6 inhibited melanogenesis, at least in part, by inhibiting the expression of protein levels of tyrosinase, TRP‐1, and TRP‐2 in α‐MSH‐stimulated B16 melanoma cells. In addition, when compounds 1  –  13 were evaluated for their cytotoxic activities against leukemia (HL60), lung (A549), duodenum (AZ521), and breast (SK‐BR‐3) cancer cell lines, five compounds, berberine ( 5 ), 8 , canthin‐6‐one ( 9 ), α‐di‐(methyl ferulate) ( 12 ), and 13 , exhibited cytotoxicities against one or more cancer cell lines with IC50 values in the range of 2.6 – 90.0 μm . In particular, compound 5 exhibited strong cytotoxicity against AZ521 (IC50 2.6 μm ) which was superior to that of the reference cisplatin (IC50 9.5 μm ).  相似文献   

7.
Seven triterpenoids, 1  –  7 , two diarylheptanoids, 8 and 9 , four phenolic compounds, 10  –  13 , and three other compounds, 14  –  16 , were isolated from the hexane and MeOH extracts of the bark of Myrica cerifera L. (Myricaceae). Among these compounds, betulin ( 1 ), ursolic acid ( 3 ), and myricanol ( 8 ) exhibited cytotoxic activities against HL60 (leukemia), A549 (lung), and SK‐BR‐3 (breast) human cancer cell lines (IC50 3.1 – 24.2 μm ). Compound 8 induced apoptotic cell death in HL60 cells (IC50 5.3 μm ) upon evaluation of the apoptosis‐inducing activity by flow cytometric analysis and by Hoechst 33342 staining method. Western blot analysis on HL60 cells revealed that 8 activated caspases‐3, ‐8, and ‐9 suggesting that 8 induced apoptosis via both mitochondrial and death receptor pathways in HL60. Upon evaluation of the melanogenesis‐inhibitory activity in B16 melanoma cells induced with α‐melanocyte‐stimulating hormone (α‐MSH), erythrodiol ( 7 ), 4‐hydroxy‐2‐methoxyphenyl β‐d ‐glucopyranoside ( 13 ), and butyl quinate ( 15 ) exhibited inhibitory effects (65.4 – 86.0% melanin content) with no, or almost no, toxicity to the cells (85.9 – 107.4% cell viability) at 100 μm concentration. In addition, 8 , myricanone ( 9 ), myricitrin ( 10 ), protocatechuic acid ( 11 ), and gallic acid ( 12 ) revealed potent DPPH radical‐scavenging activities (IC50 6.9 – 20.5 μm ).  相似文献   

8.
The need of new anti‐inflammatory drugs has led to the search for safer and more potent molecules in distinct sources, such as natural products. This work aimed to explore the anti‐inflammatory potential of aqueous extracts from two herbal teas (Annona muricata L. and Jasminum grandiflorum L.) in RAW 264.7 macrophages cells and in cell‐free assays. Furthermore, the phenolic composition of both extracts and of their hydrolysates was characterized by HPLC‐DAD, in order to establish possible relationships with the biological activity. In a general way, A. muricata displayed a stronger capacity to inhibit nitric oxide (NO) production and the activity of phospholipase A2 (PLA2), displaying an IC50 value of 142 μg/ml against this enzyme. A deeper look at phenolic compounds revealed that aglycones had more capacity to inhibit NO and PLA2 than their corresponding glycosides, quercetin being clearly the most potent one (IC50 = 7.47 and 1.36 μm , respectively). In addition, 5‐O‐caffeoylquinic acid, at 1.56 μm , could also inhibit PLA2 (ca. 35%). Our findings suggest that the consumption of both herbal teas may be a preventive approach to inflammatory disorders.  相似文献   

9.
Activity‐guided fractionation strategy was used to investigate chemical constituents from the roots of Podocarpus macrophyllus. Successfully, two new norditerpenes, 2β‐hydroxymakilactone A ( 1 ) and 3β‐hydroxymakilactone A ( 2 ), along with ten known analogues ( 3  –  12 ) were isolated. The structures of 1 and 2 were elucidated by spectroscopic analysis including 1D‐, 2D‐NMR, and HR‐ESI‐MS data. The previously reported structure of 2,3‐dihydro‐2α‐hydroxypodolide was revised as 2,3‐dihydro‐2β‐hydroxypodolide ( 3 ) by spectroscopic analysis, and was further confirmed by X‐ray crystallographic analysis. Cytotoxic activities of all isolated compounds against five human solid tumour cell lines (AGS, HeLa, MDA‐MB‐231, HepG‐2, and PANC‐1) were evaluated. All of them exhibited anti‐proliferative activities (IC50 = 0.3 – 27 μm ), except for 10 . Compounds 1 , 4 , 5 , 6 , and 8 exhibited potent inhibitory activities with IC50 < 1 μm against HeLa and AGS cells.  相似文献   

10.
Plant phenolics are known to display many pharmacological activities. In the current study, eight phenolic compounds, e.g., luteolin 5‐O‐β‐glucoside ( 1 ), methyl rosmarinate ( 2 ), apigenin ( 3 ), vicenin 2 ( 4 ), lithospermic acid ( 5 ), soyasaponin II ( 6 ), rubiadin 3‐O‐β‐primeveroside ( 7 ), and 4‐(β‐d ‐glucopyranosyloxy)benzyl 3,4‐dihydroxybenzoate ( 8 ), isolated from various plant species were tested at 0.2 mm against carbonic anhydrase‐II (CA‐II) and urease using microtiter assays. Urease inhibition rate for compounds 1  –  8 ranged between 5.0 – 41.7%, while only compounds 1 , 2 , and 4 showed a considerable inhibition over 50% against CA‐II with the IC50 values of 73.5 ± 1.05, 39.5 ± 1.14, and 104.5 ± 2.50 μm , respectively, where IC50 of the reference (acetazolamide) was 21.0 ± 0.12 μm . In silico experiments were also performed through two docking softwares (Autodock Vina and i‐GEMDOCK) in order to find out interactions between the compounds and CA‐II. Actually, compounds 6 (30.0%) and 7 (42.0%) possessed a better binding capability toward the active site of CA‐II. According to our results obtained in this study, among the phenolic compounds screened, particularly 1 , 2 , and 4 appear to be the promising inhibitors of CA‐II and may be further investigated as possible leads for diuretic, anti‐glaucoma, and antiepileptic agents.  相似文献   

11.
The present study was undertaken to investigate antioxidant, antigenotoxic, and antiproliferative activity of butanol fraction (Bmbu) from bark of medicinal plant Butea monosperma. Antioxidant potency of Bmbu was examined by various in vitro assays. It was also investigated for antigenotoxic activity using Escherichia coli. PQ37 employing SOS chromotest. Further, cytotoxic and apoptosis inducing activity of Bmbu was evaluated in MCF‐7 breast cancer cells. Bmbu showed potent free radical scavenging ability in ABTS assay (IC50 56.70 μg/ml) and anti‐lipid peroxidation ability (IC50 40.39 μg/ml). 4NQO and H2O2 induced genotoxicity was suppressed by Bmbu in SOS chromotest by 74.26% and 82.02% respectively. It also inhibited the growth of MCF‐7 cells with GI50 value of 158.71 μg/ml. Induction of apoptosis in MCF‐7 cells by Bmbu treatment was deciphered using confocal microscopy, flow cytometry, and neutral comet assay. Bmbu treatment increased cell population in sub‐G1 phase (69.6%) indicating apoptotic cells. Further, Bmbu treatment resulted in increased reactive oxygen species generation and decreased mitochondrial membrane potential indicating involvement of mitochondrial dependent pathway of apoptosis. HPLC profiling showed the presence of polyphenols such as ellagic acid, catechin, quercetin, and gallic acid as its major constituents. Consequently, it is suggested that the phytoconstituents from this plant may be further exploited for development of novel drug formulation with possible therapeutic implication.  相似文献   

12.
European Pharmacopoeia accepts two equivalent species Solidago canadensis L. and Sgigantea Aiton as goldenrod (Solidaginis herba). We compared phytochemical profile of both species from invasive populations in Poland. Further, we compared in vitro antimutagenic and antioxidant activities of solvent extracts from aerial (AP) and underground parts (UP). In Sgigantea, flavonoid profile was dominated by quercetin glycosides, with quercitrin as the major compound. In Scanadensis, quercetin and kaempferol rutinosides were two major constituents. Caffeoylquinic acids (CQAs) were less diverse with 5‐CQA as a main compound. In UP, over 20 putative diterpenoids were detected, mostly unidentified. Several CQAs were present in higher amounts than in AP. Antioxidant and antimutagenic activities were different between species and organs, with the strongest inhibition of lipid peroxidation by Et2O and AcOEt fractions from AP of both species (IC50 13.33 – 16.89 μg/mL) and BuOH fraction from Sgigantea UP (IC50 = 13.32 μg/mL). Chemical mutagenesis was completely inhibited by non‐polar fractions, but oxidative mutagenesis was inhibited up to 35% only by Scanadensis. No clear relationship was found between chemical profiles and antimutagenic activity. In conclusion, both species have diverse activity and their phytochemical profiles should be considered in quality evaluation. UP of these weeds can also provide potential chemopreventive substances for further studies.  相似文献   

13.
The arial parts of Scutellaria barbata D. Don (Lamiaceae) efficiently inhibited NO production in BV2 microglial cells, and the active constituents were further isolated based on activity‐guided isolation using silica‐gel column chromatography, RP‐C18 MPLC and prep‐HPLC. As the results, 2 flavonoids including 6‐methoxynaringenin ( 1 ) and 6‐O‐methylscutellarein ( 5 ), and 6 neo‐clerodane diterpenes such as scutebarbatine W ( 2 ), scutebatas B ( 3 ), scutebarbatine B ( 4 ), scutebarbatine A ( 6 ), 6‐O‐nicotinolylscutebarbatine G ( 7 ), and scutebarbatine X ( 8 ) were isolated. The structures of these compounds were elucidated based on NMR and MS data, and the comparison of literature values. All the compounds except compound 7 inhibited NO production efficiently with IC50 values of lower than 50 μm . Particularly, compounds 1 and 8 were the most efficient with IC50 values of 25.8 and 27.4 μm , respectively. This is the first report suggesting the potential of S. barbata on the reduction of neuroinflammation.  相似文献   

14.
Following an in vitro bioactivity‐guided fractionation procedure, 14 compounds including eight flavonoids and six phenylpropanoids were isolated and identified from the AcOEt fraction of Clinopodium chinense (Benth .) O. Kuntze . All constituents were tested for α‐glucosidase and high glucose‐induced injury in human umbilical vein endothelial cells (HUVECs) inhibitory activities. All constituents exhibited varying degrees α‐glucosidase inhibitory activity and protective activity on HUVECs. Among them, luteolin ( 2 ), eriodictyol ( 5 ), ethyl rosmarinate ( 13 ), and clinopodic acids B ( 14 ) were proved to be potent α‐glucosidase inhibitors with IC50 value ranging from 0.6 to 2.0 μm . Additionally, luteolin ( 2 ), naringenin ( 4 ), eriodictyol ( 5 ), ethyl (2R)‐3‐(3, 4‐dihydroxyphenyl)‐2‐hydroxypropanate ( 9 ), caffeic acid ( 11 ), ethyl rosmarinate ( 13 ), and clinopodic acids B ( 14 ) significantly ameliorate HUVECs injury induced by high glucose with an approximate EC50 value of 3 – 36 μm . These results suggest that the 14 bioactive constituents were responsible for hypoglycemic and protective vascular endothelium effect of C. chinense (Benth .) O. Kuntze and their structure–activity relationship was also analyzed briefly. Eriodictyol, luteolin, ethyl rosmarinate, and clinopodic acids B were the potential lead compounds of antidiabetic drugs.  相似文献   

15.
Six new compounds including two furanone derivatives sclerotiorumins A and B ( 1 and 2 ), one novel oxadiazin derivative sclerotiorumin C ( 3 ), one pyrrole derivative 1‐(4‐benzyl‐1H‐pyrrol‐3‐yl)ethanone ( 4 ), and two complexes of neoaspergillic acid aluminiumneohydroxyaspergillin ( 5 ) and ferrineohydroxyaspergillin ( 6 ) were isolated from the co‐culture of marine‐derived fungi Aspergillus sclerotiorum and Penicillium citrinum. Compound 3 was the first natural 1,2,4‐oxadiazin‐6‐one. Compound 5 showed significant and selective cytotoxicity against human histiocytic lymphoma U937 cell line (IC50 = 4.2 μm ) and strong toxicity towards brine shrimp (LC50 = 6.1 μm ), and oppositely increased the growth and biofilm formation of Staphylococcus aureus.  相似文献   

16.
Previously, we showed that the antimicrobial cationic and amphipathic octadecapeptide AmyI‐1‐18 from rice α‐amylase (AmyI‐1) inhibited the endotoxic activity of lipopolysaccharide (LPS) from Escherichia coli. In addition, we demonstrated that several AmyI‐1‐18 analogs containing arginine or leucine substitutions, which were designed on the basis of the helical wheel projection of AmyI‐1‐18, exhibited higher antimicrobial activity against human pathogenic microorganisms than AmyI‐1‐18. In the present study, anti‐inflammatory (anti‐endotoxic) activities of five AmyI‐1‐18 analogs containing arginine or leucine substitutions were investigated. Two single arginine‐substituted and two single leucine‐substituted AmyI‐1‐18 analogs inhibited the production of LPS‐induced nitric oxide in mouse macrophages (RAW264) more effectively than AmyI‐1‐18. These data indicate that enhanced cationic and hydrophobic properties of AmyI‐1‐18 are associated with improved anti‐endotoxic activity. In subsequent chromogenic Limulus amebocyte lysate assays, 50% inhibitory concentrations (IC50) of the three AmyI‐1‐18 analogs (G12R, D15R, and E9L) were 0.11–0.13 μm , indicating higher anti‐endotoxic activity than that of AmyI‐1‐18 (IC50, 0.22 μm ), and specific LPS binding activity. In agreement, surface plasmon resonance analyses confirmed direct LPS binding of three AmyI‐1‐18 analogs. In addition, AmyI‐1‐18 analogs exhibited little or no cytotoxic activity against RAW264 cells, indicating that enhancements of anti‐inflammatory and LPS‐neutralizing activities following replacement of arginine or leucine did not result in significant increases in cytotoxicity. This study shows that the arginine‐substituted and leucine‐substituted AmyI‐1‐18 analogs with improved anti‐endotoxic and antimicrobial activities have clinical potential as dual‐function host defense agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Seven phenolic compounds, 1 – 7 , including a new organic acid gallate, mucic acid 1‐ethyl 6‐methyl ester 2‐O‐gallate ( 7 ), were isolated from the MeOH extract of the fruits of Phyllanthus emblica L. (Euphorbiaceae). The structures were elucidated on the basis of extensive spectroscopic analysis and comparison with literature data. Upon evaluated for their antioxidant abilities by 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH), 2,2′‐azinobis(3‐ethylbenzthiazoline‐6‐sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays. The inhibitory activities against melanogenesis in B16 melanoma cells induced by α‐MSH, as well as cytotoxic activities against four human cancer cell lines were also evaluated. All phenolic compounds, 1 – 7 , exhibited potent antioxidant abilities (DPPH: IC50 5.6 – 12.9 μm ; ABTS: 0.87 – 8.43 μm Trolox/μm ; FRAP: 1.01 – 5.79 μm Fe2+/μm , respectively). Besides, 5 – 7 , also exhibited moderate inhibitory activities against melanogenesis (80.7 – 86.8% melanin content), even with no or low toxicity to the cells (93.5 – 101.6% cell viability) at a high concentration of 100 μm . Compounds 1 – 3 exhibited cytotoxic activity against one or more cell lines (IC50 13.9 – 68.4%), and compound 1 with high tumor selectivity for A549 (SI 3.2).  相似文献   

18.
Bioactivity‐guided fractionation of antileishmanial active extract from leaves of Casearia arborea led to isolation of three metabolites: tricin ( 1 ), 1′,6′‐di‐Oβ‐d ‐vanilloyl glucopyranoside ( 2 ) and vanillic acid ( 3 ). Compound 1 demonstrated the highest activity against the intracellular amastigotes of Leishmania infantum, with an IC50 value of 56 μm . Tricin ( 1 ) demonstrated selectivity in mammalian cells (SI > 7) and elicited immunomodulatory effect on host cells. The present work suggests that tricin modulated the respiratory burst of macrophages to a leishmanicidal state, contributing to the parasite elimination. Therefore, the natural compound tricin could be further explored in drug design studies for leishmaniasis treatment.  相似文献   

19.
Urease enzyme plays a crucial role in the survival of Helicobacter pylori that contributes to different diseases, including peptic ulcer (gastric and duodenal ulcers). Coagulansin A is the steroidal lactone (withanolide) found in plants of solanaceae family such Withania coagulans. The current study was carried out to examine the in vitro urease, COX‐2 inhibitory activity and effect on type II collagen expression of coagulansin A. Moreover, we investigated cytotoxic effects on rabbit articular chondrocytes through MTT assay. COX‐2 and type II collagen expressions were determined through a Western blot method. Molecular docking and simulation studies of urease (PDBID 4H9M) and COX‐2 (PDBID 5F1A) proteins were also performed as an in silico approach. Results showed that COX‐2 expression was decreased dose dependably, significantly higher expression of type II collagen was observed at higher doses. In the current study, coagulansin A was found as non‐toxic, and showed notable urease inhibitory activity in non‐competitive manner with IC50 23.14 μm in comparison to reference drug thiourea 17.81 μm . Significant decrease in COX‐2 expression (40%) and increase in type II collagen (20%) were observed as compared to control. In silico results unveiled the strong binding affinities of coagulansin A with both of these urease and COX‐2 proteins. Therefore, herein we proposed the significant antiurease potential of this compound that could be used in treating different diseases such as ulcers. Moreover, detailed in vivo studies and molecular mechanism based studies are suggested.  相似文献   

20.
A series of novel quinazolinone derivatives containing a substituted amino moiety were synthesized, evaluated for their cytotoxic and antibacterial activities. The results of MTT assay showed that all synthesized target compounds 5A  –  5O showed potent cytotoxicity against SGC‐7901 (IC50, 0.72 – 1.41 μm ). Moreover, the compounds 5D , 5I , and 5K showed better selectivity as compared with positive controls pemetrexed and MTX due to weak cytotoxicity against normal tissue cell line HUVSMC. Among synthesized compounds, the compounds 5E , 5J , 5L , and 5N showed broad‐spectrum cytotoxic activities against at least four cancer cell lines at a micromolar level. The results of antibacteria evaluation revealed that all synthesized compounds showed good to moderate antibacterial activities against Gram‐negative bacteria Escherichia coli. Among them, the MIC values of the compounds 5C , 5F , and 5M were 0.31 μg/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号