首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
While glycosyltransferases are restrictively expressed in invertebrate model organisms, little is known of their glycan end products. One such restrictively expressed glycoepitope was localized to sensory and epithelial cells of leech and Caenorhabditis elegans using the Lan3‐2 monoclonal antibody. A biological function for the neural Lan3‐2 epitope was previously determined in the leech. Here we report on the chemical structure of this mannosidic epitope harvested from whole Hirudo medicinalis. Crude glycans were liberated from glycoproteins by hydrazinolysis. Re‐N‐acetylated glycans were subjected to immunoaffinity purification. The affinity‐purified glycans were fractioned by size chromatography into oligosaccharides and polysaccharides. Lan3‐2 oligosaccharide structure was characterized by gas chromatography of alditol acetates, methylation analysis, 500 MHz 1H NMR spectroscopy, matrix‐assisted laser desorption/ionization mass spectrometry, and electrospray ionization tandem MS‐MS of permethylated derivatives. The predominant components of the Lan3‐2 oligosaccharide fraction were a series of linear β‐(1,4)‐linked mannose polymers. The homologous expression of the Lan3‐2 epitope in C. elegans will facilitate the exploration of its glycosylation pathway. Other invertebrates expressing the Lan3‐2 epitope are Planaria dugesia, Capitella sp. I and Lumbriculus variegatus. The glycoepitope was not detected in the diploblastic animals Hydra littoralis and Aptaisia sp. or in deuterostomes.  相似文献   

2.
《Chirality》2017,29(10):603-609
d ‐ and l ‐Tryptophan (Trp) and d ‐ and l ‐kynurenine (KYN) were derivatized with a chiral reagent, (S )‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS), and were separated enantiomerically by high‐performance liquid chromatography (HPLC) equipped with a triazole‐bonded column (Cosmosil HILIC) using tandem mass spectrometric (MS/MS) detection. Effects of column temperature, salt (HCO2NH4) concentration, and pH of the mobile phase in the enantiomeric separation, followed by MS detection of (S )‐DBD‐PyNCS‐d ,l ‐Trp and ‐d ,l ‐KYN, were investigated. The mobile phase consisting of CH3CN/10 mM ammonium formate in H2O (pH 5.0) (90/10) with a column temperature of 50–60 °C gave satisfactory resolution (R s) and mass‐spectrometric detection. The enantiomeric separation of d ,l ‐Trp and d ,l ‐KYN produced R s values of 2.22 and 2.13, and separation factors (α) of 1.08 and 1.08, for the Trp and KYN enantiomers, respectively. The proposed LC–MS/MS method provided excellent detection sensitivity of both enantiomers of Trp and KYN (5.1–19 nM).  相似文献   

3.
Quantification of fatty acids has been crucial to elucidate lipid biosynthesis pathways in plants. To date, fatty acid identification and quantification has relied mainly on gas chromatography (GC) coupled to flame ionization detection (FID) or mass spectrometry (MS), which requires the derivatization of samples and the use of chemical standards for annotation. Here we present an alternative method based on a simple procedure for the hydrolysis of lipids, so that fatty acids can be quantified by liquid chromatography mass spectrometry (LC‐MS) analysis. Proper peak annotation of the fatty acids in the LC‐MS‐based methods has been achieved by LC‐MS measurements of authentic standard compounds and elemental formula annotation supported by 13C isotope‐labeled Arabidopsis. As a proof of concept, we have compared the analysis by LC‐MS and GC‐FID of two previously characterized Arabidopsis thaliana knock‐out mutants for FAD6 and FAD7 desaturase genes. These results are discussed in light of lipidomic profiles obtained from the same samples. In addition, we performed untargeted LC‐MS analysis to determine the fatty acid content of two diatom species. Our results indicate that both LC‐MS and GC‐FID analyses are comparable, but that because of higher sensitivity and selectivity the LC‐MS‐based method allows for a broader coverage and determination of novel fatty acids.  相似文献   

4.
Introduction – The aerial part Eupatorium lindleyanum is commonly used as an antipyretic and detoxicant clinically in traditional Chinese medicine. Our previous research showed that germacrane sesquiterpene lactones were its main active constituents, so the development of rapid and accurate methods for the identification of the sesquiterpene lactones is of great significance. Objective – To develop an HPLC‐PDA‐ESI‐MS/MS method capable for simple and rapid analysis of germacrane sesquiterpene lactones in the aerial part E. lindleyanum. Methodology – High‐performance liquid chromatography‐photodiode array detection‐electrospray ionization‐tandem mass spectrometry was used to analyze germacrane sesquiterpene lactones of Eupatorium lindleyanum. The fragmentation behavior of germacrane sesquiterpene lactones in a Micromass Q/TOF Mass Spectrometer was discussed, and 9 germacrane sesquiterpene lactones were identified by comparison of their characteristic data of HPLC and MS analyses with those obtained from reference compounds. Results – The investigated germacrane sesquiterpene lactones were identified as eupalinolides C (1), 3β‐acetoxy‐8β‐(4′‐hydroxy‐tigloyloxy)‐14‐hydroxy‐costunolide (2), eupalinolides A (3), eupalinolides B (4), eupalinolides E (5), 3β‐acetoxy‐8β‐(4′‐oxo‐tigloyloxy)‐14‐hydroxy‐heliangolide (6), 3β‐acetoxy‐8β‐(4′‐oxo‐ tigloyloxy)‐14‐hydroxy‐costunolide (7), hiyodorilactone B (8), and 3β‐acetoxy‐8β‐(4′‐hydroxy‐tigloyloxy)‐ costunolide (9). Compounds 6, 7 and 9 were reported for the first time. Conclusion – HPLC‐PDA‐ESI‐MS/MS provides a new powerful approach to identify germacrane sesquiterpene lactones in E. lindleyanum rapidly and accurately. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.

Introduction

The dynamic headspace sampling technique using thermal desorption, gas chromatography‐mass spectrometry (TD‐GC/MS) is a powerful method for analysing plant emissions of volatile organic compounds (VOCs), and experiments performed in sterile and controlled conditions can be useful for VOC metabolism investigations.

Objective

The main purpose of this study was to set up a laboratory high‐throughput glass chamber for whole plant volatiles analysis. Brassica napus L. plantlets were tested with the developed system to better understand the relationship between low emission of induced terpene and cadmium (Cd)‐related abiotic stress.

Methodology

VOCs emitted by 28‐day‐old Brassica napus L. plantlets cultivated in vitro were trapped with our device using adsorbent cartridges that were desorbed with a thermal desorption unit before cryofocusing with a cooled injection system and programmable temperature vaporising inlet into an HP‐5 ms GC column. Terpene detection and quantitation from chromatogram profiles were acquired using selected ion monitoring (SIM) mode during full scan analysis and mass spectra were obtained with a quadrupole‐type mass spectrometer.

Results

The new trapping method produced reliable qualitative profiles of oilseed rape VOCs. Typical emissions of monoterpenes (myrcene, limonene) and sesquiterpenes (β‐elemene, (E,E)‐α‐farnesene) were found for the different concentrations tested. One‐way analysis of variance for quantitative results of (E,E)‐α‐farnesene emission rates showed a Cd concentration effect.

Conclusion

This inexpensive glass chamber has potential for wide application in laboratory sterile approach and replicated research. Moreover, the non‐invasive dynamic sampling technique could also be used to analyse volatiles under both abiotic and biotic stresses.  相似文献   

6.
Six long‐chain peptaibols, 1  –  6 , were identified from agar cultures of a marine‐derived Trichoderma longibrachiatum Rifai strain (MMS151) isolated from blue mussels. The structure elucidation was carried out using electrospray ionization ion trap mass spectrometry (ESI‐IT‐MS) and GC/EI‐MS. The long‐chain peptaibols exhibited the general building scheme Ac‐Aib‐Ala‐Aib‐Ala‐Aib‐XXX‐Gln‐Aib‐Vxx‐Aib‐Gly‐XXX‐Aib‐Pro‐Vxx‐Aib‐XXX‐Gln‐Gln‐Pheol and were similar or identical to recurrent 20‐residue peptaibols produced by Trichoderma spp. Three new sequences were identified and were called longibrachins A‐0, A‐II‐a, and A‐IV‐b. The isolated peptaibols were assayed for cytotoxic, antibacterial, and antifungal activities, and acute toxicity on Dipteran larvae.  相似文献   

7.
The purpose of the study was to see if nematodes (Caenorhabditis elegans, Caenorhabditis briggsae, and Pelodera strongyloides) produce endocannabinoids; i.e., anandamide (AEA) and 2‐arachidonoylglycerol (2‐AG). In this study, AEA and 2‐AG were identified as endogenous products from nematodes by using electrospray‐ionization ion‐trap MS/MS (ESI‐IT‐MS) experiments operated in the positive‐ionization mode. Endocannabinoids were identified by product ion scan and concentrations were measured by triple quadrupole mass spectrometry in the multiple reaction monitoring mode (MRM). Both AEA and 2‐AG were identified in all of the nematode samples, even though these species lack known cannabinoid receptors. Neither AEA nor 2‐AG were detected in the fat‐3 mutant of C. elegans, which lacks the necessary enzyme to produce arachidonic acid, the fatty acid precursor of these endocannabinoids.  相似文献   

8.
The chemical diversity of Zanthoxylum zanthoxyloides growing wild in Senegal was studied according to volatile compound classes, plant organs and sample locations. The composition of fruit essential oil was investigated using an original targeted approach based on the combination of gas chromatography (GC) and liquid chromatography (LC) both coupled with mass spectrometry (MS). The volatile composition of Zzanthoxyloides fruits exhibited relative high amounts of hydrocarbon monoterpenes (24.3 – 55.8%) and non‐terpenic oxygenated compounds (34.5 – 63.1%). The main components were (E)‐β‐ocimene (12.1 – 39%), octyl acetate (11.6 – 21.8%) and decanol (9.7 – 15.4%). The GC and GC/MS profiling of fruit essential oils showed a chemical variability according to geographical locations of plant material. The LC/MS/MS analysis of fruit oils allowed the detection of seven coumarins in trace content. The chemical composition of fruit essential oils was compared with volatile fractions of leaves and barks (root and trunk) from the same plant station. Hexadecanoic acid, germacrene D and decanal were identified as the major constituents of leaves whereas the barks (root and trunk) were dominated by pellitorine (85.8% and 57%, respectively), an atypic linear compound with amide group. The fruit essential oil exhibited interesting antimicrobial activities against Staphylococcus aureus and Candida albicans, particularly the alcohol fraction of the oil.  相似文献   

9.
Pistacia lentiscus L. seed oil is used in some Mediterranean forest area for culinary and medicinal purposes. In this study, we aim to examine, for the first time, the effect of growing area on sterol content of Pistacia lentiscus seed oil. Fruits were harvested from 13 different sites located in northern and central Tunisia. Gas chromatography‐flame‐ionization detection (GC‐FID) was used to quantify sterols and gas chromatography/mass spectrometry (GC/MS) was used to identify them. The major sterol identified was β‐sitosterol with a value ranging from 854.12 to 1224.09 mg/kg of oil, thus making up more than 54% of the total sterols. The other two main sterols were cycloartenol (11%) and 24‐methylene‐cycloartenol (5%). Statistical results revealed that growing location significantly (< 0.001) affected phytosterol levels in these oils.  相似文献   

10.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) has emerged as a promising tool to rapidly characterize Staphylococcus aureus. Different protocols have been employed, but effects of experimental factors, such as culture condition and sample preparation, on spectrum quality and reproducibility have not been rigorously examined. We applied MALDI‐TOF MS to characterize a model system consisting of five methicillin‐sensitive (MSSA) and five methicillin‐resistant S. aureus isolates (MRSA) under two culture conditions (agar and broth) and using two sample preparation methods [intact cell method and protein extraction method (PEM)]. The effects of these treatments on spectrum quality and reproducibility were quantified. PEM facilitated increases in the number of peaks and mass range width. Broth cultures further improved spectrum quality in terms of increasing the number of peaks. In addition, PEM increased reproducibility in samples prepared using identical culture conditions. MALDI imaging data suggested that the improvement in reproducibility may result from a more homogeneous distribution of sample associated with the broth/PEM treatment. Broth/PEM treatment also yielded the highest rate (96%) of correct classification for MRSA. Taken together, these results suggest that broth/PEM maximizes the performance of MALDI‐TOF MS to characterize S. aureus.

Significance and Impact of the Study

Two culture conditions (agar or broth) and two sample preparation methods (intact cell or protein extraction) were evaluated for their effects on profiling of Staphylococcus aureus using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). Results indicated that MALDI‐enabled profiling of S. aureus is most effective when cultures are grown in broth and processed using a protein extraction‐based approach. These findings should enhance future efforts to maximize the performance of this approach to characterize strains of S. aureus.  相似文献   

11.
A water soluble glucan, PLB-2C, was isolated from the water extract of the root of Pueraria lobata (Willd) Ohwi using anion-exchange and gel permeation chromatography. Its structure was investigated by gas chromatography (GC), gas chromatography–mass spectrometry (GC–MS), infrared (IR) spectra, and nuclear magnetic resonance (NMR) spectroscopy of heteronuclear single quantum coherence (HSQC) and heteronuclear multiple bond correlation (HMBC) techniques. The results indicated that PLB-2C was a linear glucan composed of (1 → 6)-α-d-Glcp. Chain conformation study showed that the polysaccharide took random coil compact conformation. In vitro cell viability assay by MTT method, its sulfated derivative PLB-2CS which was substituted at 2-O, 3-O, 4-O positions, at 0.1, 1, and 5 mg/ml, could attenuate PC12 cell damage significantly caused by hydrogen peroxide.  相似文献   

12.
Fatty acid methyl ester analysis (FAME) by gas chromatography coupled to mass spectrometry (GC‐MS) is a widely used technique in biodiesel/bioproduct (e.g. poly‐unsaturated fatty acids, PUFA) research but typically does not allow distinguishing between bound and free fatty acids. To understand and optimize biosynthetic pathways, however, the origin of the fatty acid is an important information. Furthermore the annotation of PUFAs is compromised in classical GC‐EI‐MS because the precursor molecular ion is missing. In the present protocol an alkaline methyl esterification step with TMS derivatization enabling the simultaneous analysis of bound and free fatty acids but also further lipids such as sterols in one GC‐MS chromatogram is combined. This protocol is applied to different lipid extracts from single cell algae to higher plants: Chlorella vulgaris, Chlamydomonas reinhardtii, Coffea arabica, Pisum sativum and Cuscuta japonica. Further, field ionization (GC‐FI‐MS) is introduced for a better annotation of fatty acids and exact determination of the number of double bonds in PUFAs. The proposed workflow provides a convenient strategy to analyze algae and other plant crop systems with respect to their capacity for third generation biodiesel and high‐quality bioproducts for nutrition such as PUFAs.  相似文献   

13.
Five new diterpenoid alkaloids, tianshanitines A‐E ( 1  –  5 ), along with ten known compounds ( 6  –  15 ), were isolated from the EtOH extracts of the whole plant of Delphinium tianshanicum W.T.Wang . Their structures were determined based on extensive spectroscopic analyses, including 1D‐ and 2D‐NMR, HR‐ESI‐MS, and the structure of tianshanitine C ( 3 ) was confirmed by X‐ray diffraction analysis. Tianshanitine A ( 1 ) is the first example of natural diterpenoid alkaloid containing a benzoyl group at C(1) position. Tianshanitine B ( 2 ) is a rare natural diterpenoid alkaloid bearing a OH group at C(16) position. Compounds 1  –  5 , 6 , 8 , 10 , 12 and 14 were evaluated for cytotoxicity against HCT116, MCF‐7 and HepG2 human cancer cell lines.  相似文献   

14.
Citrus × limon cv. Femminello Comune (Rutaceae) from Rocca Imperiale (Italy), one of the six Protected Geographical Indication (PGI) Italian lemon crops, has been recently received renewed interest. In this work, fresh and dried peels and leaves were extracted by hydrodistillation, supercritical fluid extraction (SFE), and Soxhlet apparatus. Chemical profile was assessed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Except for leaves extracts obtained by Soxhlet apparatus, the monoterpene hydrocarbons fraction dominated. Limonene, γ‐terpinene, and β‐pinene were the main identified compounds. The antioxidant activity was investigated using different in vitro assays namely 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH), ABTS, ferric reducing ability power (FRAP), and β‐carotene bleaching test. In DPPH test, the essential oil obtained by hydrodistillation of fresh peel exhibited the highest activity (IC50 of 1.17 mg/ml). Leaves extracted by SFE showed a good activity in both DPPH and β‐carotene bleaching test with IC50 values of 2.20 and 6.66 mg/ml, respectively. Monoterpene hydrocarbons fraction exhibited a positive Pearson's correlation coefficient with all antioxidant assays. Leaves, often considered waste material, should be considered from a different point because they represent a matrix of indisputable interest.  相似文献   

15.
Toxoplasma gondii relies on apicoplast‐localised FASII pathway and endoplasmic reticulum‐associated fatty acid elongation pathway for the synthesis of fatty acids, which flow through lipid metabolism mainly in the form of long‐chain acyl‐CoA (LCACoAs) esters. Functions of Toxoplasma acyl‐CoA transporters in lipid metabolism remain unclear. Here, we investigated the roles of acyl‐CoA‐binding protein (TgACBP1) and a sterol carrier protein‐2 (TgSCP2) as cytosolic acyl‐CoA transporters in lipid metabolism. The fluormetric binding assay and yeast complementation confirmed the acyl‐CoA binding activities of TgACBP1 and TgSCP2, respectively. Disruption of either TgACBP1 or TgSCP2 caused no obviously phenotypic changes, whereas double disruption resulted in defects in intracellular growth and virulence to mice. Gas chromatography coupled with mass spectrometry (GC–MS) results showed that TgACBP1 or TgSCP2 disruption alone led to decreased abundance of C18:1, whereas double disruption resulted in reduced abundance of C18:1, C22:1, and C24:1. 13C labelling assay combined with GC–MS showed that double disruption of TgACBP1 and TgSCP2 led to reduced synthesis rates of C18:0, C22:1, and C24:1. Furthermore, high performance liquid chromatography coupled with high resolution mass spectrometry (HPLC‐HRMS) was used for lipidomic analysis of parasites and indicated that loss of TgACBP1 and TgSCP2 caused serious defects in production of glycerides and phospholipids. Collectively, TgACBP1 and TgSCP2 play synergistic roles in lipid metabolism in T. gondii.  相似文献   

16.
In this work, a comprehensive study on the chemical constituents of the aerial parts of Rosmarinus eriocalyx (Lamiaceae), an aromatic shrub traditionally consumed as a food and herbal remedy in Algeria, is presented. The aroma profile was analysed by headspace solid phase microextraction (HS‐SPME) coupled with gas chromatography‐mass spectrometry (GC/MS), whereas the crude extract constituents were analyzed by 1H‐NMR and by high performance liquid chromatography coupled with mass spectrometry (HPLC/MSn). Thirty‐nine volatile compounds, most of them being monoterpenes, have been identified, with camphor, camphene, and α‐pinene as the most abundant constituents. 1H‐NMR analysis revealed the presence of phenolic compounds and betulinic acid while HPLC/MSn allowed the identification of glycosilated and aglyconic flavonoids as well as phenylpropanoid derivatives. Some of these constituents, namely as betulinic acid, rosmanol, and cirsimaritin were reported for the first time in Reriocalyx.  相似文献   

17.
A cell‐wall deficient strain of Chlamydomonas reinhardtii P. A Dang. CC‐849 was cotransformed with two expression vectors, p105B124 and pH105C124, containing phbB and phbC genes, respectively, from Ralstonia eutropha. The transformants were selected on Tris‐acetate‐phosphate media containing 10 μg · mL?1 Zeomycin. Upon further screening, the transgenic algae were subcloned and maintained in culture. PCR analysis demonstrated that both phbB and phbC genes were successfully integrated into the algal nuclear genome. Poly‐3‐hydroxybutyrate (PHB) synthase activity in these transgenic algae ranged from 5.4 nmol · min?1 · mg protein?1 to 126 nmol · min?1 · mg protein?1. The amount of PHB in double transgenic algae was determined by gas chromatography–mass spectrometry (GC–MS) when comparing with PHB standard. In addition, PHB granules were observed in the cytoplasm of transgenic algal cells using TEM, which indicated that PHB was synthesized in transgenic C. reinhardtii. Hence, results clearly showed that producing PHB in C. reinhardtii was feasible. Further studies would focus on enhancing PHB production in the transgenic algae and targeting the chloroplast for PHB accumulation.  相似文献   

18.
Epithelial ovarian cancer is one of the most fatal gynecological malignancies in adult women. As studies on protein N‐glycosylation have extensively reported aberrant patterns in the ovarian cancer tumor microenvironment, obtaining spatial information will uncover tumor‐specific N‐glycan alterations in ovarian cancer development and progression. matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is employed to investigate N‐glycan distribution on formalin‐fixed paraffin‐embedded ovarian cancer tissue sections from early‐ and late‐stage patients. Tumor‐specific N‐glycans are identified and structurally characterized by porous graphitized carbon‐liquid chromatography‐electrospray ionization‐tandem mass spectrometry (PGC‐LC‐ESI‐MS/MS), and then assigned to high‐resolution images obtained from MALDI‐MSI. Spatial distribution of 14 N‐glycans is obtained by MALDI‐MSI and 42 N‐glycans (including structural and compositional isomers) identified and structurally characterized by LC‐MS. The spatial distribution of oligomannose, complex neutral, bisecting, and sialylated N‐glycan families are localized to the tumor regions of late‐stage ovarian cancer patients relative to early‐stage patients. Potential N‐glycan diagnostic markers that emerge include the oligomannose structure, (Hex)6 + (Man)3(GlcNAc)2, and the complex neutral structure, (Hex)2 (HexNAc)2 (Deoxyhexose)1 + (Man)3(GlcNAc)2. The distribution of these markers is evaluated using a tissue microarray of early‐ and late‐stage patients.  相似文献   

19.
The use of quail meat and eggs has made this animal important in recent years, with its low cost and high yields. Glutathione S‐transferases (GST, E.C.2.5.1.18) are an important enzyme family, which play a critical role in detoxification system. In our study, GST was purified from quail liver tissue with 47.88‐fold purification and 12.33% recovery by glutathione agarose affinity chromatography. The purity of enzyme was checked by SDS‐PAGE method and showed a single band. In addition, inhibition effects of (3aR,4S,7R,7aS)‐2‐(4‐((E)‐3‐(aryl)acryloyl)phenyl)‐3a,4,7,7a‐tetrahydro‐1H‐4,7methanoisoindole‐1,3(2H)‐dion derivatives ( 1a–g ) were investigated on the enzyme activity. The inhibition parameters (IC50 and Ki values) were calculated for these compounds. IC50 values of these derivatives ( 1a–e ) were found as 23.00, 15.75, 115.50, 10.00, and 28.75 μM, respectively. Ki values of these derivatives ( 1a–e ) were calculated in the range of 3.04 ± 0.50 to 131.50 ± 32.50 μM. However, for f and g compounds, the inhibition effects on the enzyme were not found.  相似文献   

20.
This study was performed to determine the chemical composition, antioxidant and cytotoxic effects of essential oils extracted from the aerial parts of fresh (F‐PSEO) and air‐dried (D‐PSEO) Pallenis spinosa. The composition of the oils was analyzed by gas chromatography (GC) and GC/mass spectrometry, the antioxidant activity by free radical scavenging and metal chelating assays, and their cytotoxicity by a flow cytometry analysis. The primary components in both oils were sesquiterpene hydrocarbons and oxygentated sesquiterpenes. F‐PSEO contained 36 different compounds; α‐cadinol (16.48%), germacra‐1(10),5‐diene‐3,4‐diol (14.45%), γ‐cadinene (12.03%), and α‐muurolol (9.89%) were the principal components. D‐PSEO contained 53 molecules; α‐cadinol (19.26%), δ‐cadinene (13.93%), α‐muurolol (12.88%), and germacra‐1(10),5‐diene‐3,4‐diol (8.41%) constituted the highest percentages. Although both oils exhibited a weak radical scavenging and chelating activity, compared to α‐tocopherol and ascorbic acid, D‐PSEO showed a 2‐fold greater antioxidant activity than F‐PSEO. Furthermore, low doses of F‐PSEO were able to inhibit the growth of leukemic (HL‐60, K562, and Jurkat) and solid tumor cells (MCF‐7, HepG2, HT‐1080, and Caco‐2) with an IC50 range of 0.25 – 0.66 μg/ml and 0.50 – 2.35 μg/ml, respectively. F‐PSEO showed a ca. 2 – 3‐fold stronger cytotoxicity against the tested cells than D‐PSEO. The potent growth inhibitory effect of the plant essential oil encourages further studies to characterize the molecular mechanisms of its cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号