首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The essential oils isolated from fresh aerial parts of Ballota macedonica (two populations) and Ballota nigra ssp. foetida were analyzed by GC and GC/MS. Eighty five components were identified in total; 60 components in B. macedonica oil (population from the Former Yugoslav Republic of Macedonia), 34 components in B. macedonica oil (population from the Republic of Serbia), and 33 components in the oil of B. nigra ssp. foetida accounting for 93.9%, 98.4%, and 95.8% of the total oils, respectively. The most abundant components in B. macedonica oils were carotol (13.7 – 52.1%), germacrene D (8.6 – 24.6%), and (E)‐caryophyllene (6.5 – 16.5%), while B. nigra ssp. foetida oil was dominated by (E)‐phytol (56.9%), germacrene D (10.0%), and (E)‐caryophyllene (4.7%). Multivariate statistical analyses (agglomerative hierarchical cluster analysis and principal component analysis) were used to compare and discuss relationships among Ballota species examined so far based on their volatile profiles. The chemical compositions of B. macedonica essential oils are reported for the first time.  相似文献   

2.
The chemical diversity of Zanthoxylum zanthoxyloides growing wild in Senegal was studied according to volatile compound classes, plant organs and sample locations. The composition of fruit essential oil was investigated using an original targeted approach based on the combination of gas chromatography (GC) and liquid chromatography (LC) both coupled with mass spectrometry (MS). The volatile composition of Zzanthoxyloides fruits exhibited relative high amounts of hydrocarbon monoterpenes (24.3 – 55.8%) and non‐terpenic oxygenated compounds (34.5 – 63.1%). The main components were (E)‐β‐ocimene (12.1 – 39%), octyl acetate (11.6 – 21.8%) and decanol (9.7 – 15.4%). The GC and GC/MS profiling of fruit essential oils showed a chemical variability according to geographical locations of plant material. The LC/MS/MS analysis of fruit oils allowed the detection of seven coumarins in trace content. The chemical composition of fruit essential oils was compared with volatile fractions of leaves and barks (root and trunk) from the same plant station. Hexadecanoic acid, germacrene D and decanal were identified as the major constituents of leaves whereas the barks (root and trunk) were dominated by pellitorine (85.8% and 57%, respectively), an atypic linear compound with amide group. The fruit essential oil exhibited interesting antimicrobial activities against Staphylococcus aureus and Candida albicans, particularly the alcohol fraction of the oil.  相似文献   

3.
Various species of the genus Phlomis have been reported to produce metabolites demonstrating significant pharmacological efficiency. In this study, the essential oils from twelve populations of Phlomis olivieri collected from natural habitats were investigated for their chemical components. The hydrodistillated essential oil analyzed by GC‐FID and GC/MS. Analyses revealed 27 compounds, constituting 90.52 – 98.51% of the essential oils. Results indicated that the major components of the essential oils from various populations of P. olivieri were germacrene D (26.54 – 56.41%), bicyclogermacrene (6.38 – 30.55%), β‐caryophyllene (5.32 – 24.52%) and α‐pinene (1.29 – 15.53%). Principal component analyses (PCA) was used to identify any geographical variations in essential oil composition. Notably, three groups of Iranian P. olivieri populations were determined according to the major compounds. Results of the in vitro antibacterial activity indicated that P. olivieri essential oils showed good inhibitory activities against bacteria, especially Bacillus subtilis. The results of this study gave new insights for cultivation and industrial uses of P. olivieri in Iran.  相似文献   

4.
Eryngium campestre and E. amethystinum are thorny herbs belonging to the Apiaceae family and spontaneously growing in stony pastures and dry meadows, preferentially on calcareous substrates. In the Mediterranean countries, these plants have been used as a food or traditional remedies to treat various ailments. In the present work, we have analyzed the chemical composition of the essential oils distilled from the aerial parts by GC‐FID and GC/MS, and evaluated their cytotoxic effects on a panel of human cancer cells, namely A375 (human malignant melanoma), MDA‐MB 231 cells (human breast adenocarcinoma), and HCT116 cells (human colon carcinoma), by the MTT assay. Furthermore, the Eryngium essential oils were evaluated for antioxidant and acetylcholinesterase (AChE) activities. The two essential oils were rich in sesquiterpene hydrocarbons, with germacrene D as the major compound, accompanied by allo‐aromadendrene, β‐elemene, spathulenol, and ledol. They turned out to be highly cytotoxic on the tumor cells, with IC50 values (1.65 – 5.32 and 1.57 – 2.99 μg/ml for E. amethystinum and E. campestre, respectively) comparable or close to those of the anticancer drug cisplatin. The E. amethystinum essential oil exhibited a moderate antioxidant activity, whereas that of E. campestre a weak AChE inhibition.  相似文献   

5.
The aim of this study was to assess the percentage and constituents variations in flowers and leaves essential oil of three Glebionis coronaria (L.) Tzvelev population, growing wildly in three different ecotypes (Utique, M'saken, and Sahara Lektar) in Tunisia. The chemical compositions of these essential oils were analyzed by the GC and GC/MS systems. Qualitative and quantitative differences were recorded between essential oils extracted from plants collected from the three geographical provinces and between organs of the same plant (leaves and flowers). In fact, 161 components representing 87.2 – 96.5% of the whole oils were identified. Myrcene (3.2 – 35.7%), (Z)‐β‐ocimene (0.6 – 23.0%), camphor (0.6 – 17.2%), cis‐chrysanthenol (0 – 6.9%), cis‐chrysanthenyl acetate (1.1 – 17.9%), isobornyl acetate (1.6 – 3.5%), (E)‐β‐farnesene (0 – 6.0%), germacrene D (0 – 8.7%), and (E,E)‐α‐farnesene (0.7 – 12.4%) were the predominant components in the oils. These major constituents occur in different amounts depending on the organs (leaves or flowers) and the geographical origin of the plant. The chemotaxonomic usefulness of these data was discussed according to results of principal component analysis (PCA). The scores, together with the loadings, revealed a different chemical pattern for each population.  相似文献   

6.
The chemical composition of the essential oils and hydrosol extract from aerial parts of Calendula arvensis L. was investigated using GC‐FID and GC/MS. Intra‐species variations of the chemical compositions of essential oils from 18 Algerian sample locations were investigated using statistical analysis. Chemical analysis allowed the identification of 53 compounds amounting to 92.3 – 98.5% with yields varied of 0.09 – 0.36% and the main compounds were zingiberenol 1 (8.7 – 29.8%), eremoligenol (4.2 – 12.5%), β‐curcumene (2.1 – 12.5%), zingiberenol 2 (4.6 – 19.8%) and (E,Z)‐farnesol (3.5 – 23.4%). The study of the chemical variability of essential oils allowed the discrimination of two main clusters confirming that there is a relation between the essential oil compositions and the harvest locations. Different concentrations of essential oil and hydrosol extract were prepared and their antioxidant activity were assessed using three methods (2,2‐diphenyl‐1‐picrylhydrazyl, Ferric‐Reducing Antioxidant Power Assay and β‐carotene). The results showed that hydrosol extract presented an interesting antioxidant activity. The in vitro antifungal activity of hydrosol extract produced the best antifungal inhibition against Penicillium expansum and Aspergillus niger, while, essential oil was inhibitory at relatively higher concentrations. Results showed that the treatments of pear fruits with essential oil and hydrosol extract presented a very interesting protective activity on disease severity of pears caused by Pexpansum.  相似文献   

7.
The intraspecific variability of Artemisia herba‐alba and A. campestris essential oils and the evaluation of their antioxidant and antiacetylcholinesterase activities were determined. Artemisia herba‐alba essential oil was found rich in camphor (19.61%), α‐thujone (19.40%), β‐thujone (9.44%), chrysanthenone (9.26%), and trans‐sabinyl acetate (8.43%). The major compounds of A. campestris essential oil were germacrene D (16.38%), β‐pinene (16.33%), and limonene (9.17%). Significant variation in the essential oil composition was observed among populations of each species. The divergence between populations was attributed to the variation of some climatic factors such as altitude, annual rainfall, winter cold stress, summer precipitation, summer drought stress, evapotranspiration, and humidity. Artemisia herba‐alba and A. campestris essential oils exhibited promising antioxidant and antiacetylcholinesterase activities. The level of activity varied significantly according to the species and the essential oil. The highest scavenging activity (IC50 = 0.14 mg/ml) and the uppermost capacity to prevent β‐carotene bleaching (IC50 = 0.10 mg/ml) characterized A. campestris from population 6. A. campestris population 3 possessed the uppermost ability to reduce ferric ions (450.7 μmol Fe2+/g EO). The population 2 of A. campestris showed the strongest antiacetylcholinesterase activity (IC50 = 0.02 mg/ml). The variation of these activities between the essential oils was explained by their composition differences.  相似文献   

8.
The tea green leafhopper, Empoasca vitis Göthe (Hemiptera: Cicadellidae), is an economically important pest of tea crops, Camellia sinensis (L.) O. Kuntze (Theaceae), in China. The use of non‐host plant essential oils for manipulation of E. vitis was investigated for potential incorporation into a ‘push‐pull’ control strategy for this pest. The effectiveness of 14 plant essential oils in repelling E. vitis was investigated in laboratory assays. Rosemary oil, geranium oil, lavender oil, cinnamon oil, and basil oil repelled leafhoppers in a Y‐shaped olfactometer. We also compared the efficacy of these five plant essential oils to repel E. vitis in the presence of a host plant volatile‐based leafhopper attractant, (Z)‐3‐hexenyl acetate, in a tea plantation. In the treatment combination, four plates (north, south, east, and west) treated with an essential oil surrounded a central sticky plate treated with (Z)‐3‐hexenyl acetate. Fewer E. vitis were found on the plates treated with rosemary oil (12.5% reduction) than on the four water‐sprayed control treatment plates surrounding a central plate with (Z)‐3‐hexenyl acetate. We compared the distribution of E. vitis on the plates, and the relative numbers of E. vitis on each plate were compared with similar plates in the control treatment. When four plates treated with rosemary oil surrounded a central (Z)‐3‐hexenyl acetate‐treated plate, the distribution of E. vitis on the different plates changed significantly compared with that of the control. Relatively fewer E. vitis were found on the east (13.0% reduction) rosemary oil‐treated plates and more E. vitis (11.3% increase) were found on the central attractant‐treated plate. Our findings indicate that rosemary oil is a promising leafhopper repellent that should be tested further in a ‘push‐pull’ strategy for control of E. vitis.  相似文献   

9.
Leaf and root essential oils of two closely related but ecologically distant Philodendron species were extracted in natural conditions in French Guiana and analysed by GC/MS to i) describe the blends of volatile organic compounds (VOCs) produced by those species and ii) analyse species and environment‐based variations in extracts composition. A total of 135 VOCs were detected with a majority of aliphatic sesquiterpenes. P. fragrantissimum produced mainly β‐bisabolene (on average 29.12% of the extract) as well as α‐ and β‐selinene (14.52% and 17.50%, respectively) while in P. melinonii, four aliphatic sesquiterpenes could alternatively be the main component: (E)‐β‐farnesene (up to 91.42% of the extract), germacrene‐D (73.74%), β‐caryophyllene (51.63%) and transα‐bergamotene (41.26%). A significant effect of species and organs on extracts composition was observed while the environment (sun exposure) only affected the relative proportions of monoterpenes and sesquiterpenes in roots of Pmelinonii. These results are discussed in the light of the potential role of leaf and root terpenes in Philodendron species.  相似文献   

10.
This study was performed to determine the chemical composition, antioxidant and cytotoxic effects of essential oils extracted from the aerial parts of fresh (F‐PSEO) and air‐dried (D‐PSEO) Pallenis spinosa. The composition of the oils was analyzed by gas chromatography (GC) and GC/mass spectrometry, the antioxidant activity by free radical scavenging and metal chelating assays, and their cytotoxicity by a flow cytometry analysis. The primary components in both oils were sesquiterpene hydrocarbons and oxygentated sesquiterpenes. F‐PSEO contained 36 different compounds; α‐cadinol (16.48%), germacra‐1(10),5‐diene‐3,4‐diol (14.45%), γ‐cadinene (12.03%), and α‐muurolol (9.89%) were the principal components. D‐PSEO contained 53 molecules; α‐cadinol (19.26%), δ‐cadinene (13.93%), α‐muurolol (12.88%), and germacra‐1(10),5‐diene‐3,4‐diol (8.41%) constituted the highest percentages. Although both oils exhibited a weak radical scavenging and chelating activity, compared to α‐tocopherol and ascorbic acid, D‐PSEO showed a 2‐fold greater antioxidant activity than F‐PSEO. Furthermore, low doses of F‐PSEO were able to inhibit the growth of leukemic (HL‐60, K562, and Jurkat) and solid tumor cells (MCF‐7, HepG2, HT‐1080, and Caco‐2) with an IC50 range of 0.25 – 0.66 μg/ml and 0.50 – 2.35 μg/ml, respectively. F‐PSEO showed a ca. 2 – 3‐fold stronger cytotoxicity against the tested cells than D‐PSEO. The potent growth inhibitory effect of the plant essential oil encourages further studies to characterize the molecular mechanisms of its cytotoxicity.  相似文献   

11.
The variation of the essential‐oil composition among ten wild populations of Stachys lavandulifolia Vahl (Lamiaceae), collected from different geographical regions of Iran, was assessed by GC‐FID and GC/MS analyses, and their intraspecific chemical variability was determined. Altogether, 49 compounds were identified in the oils, and a relatively high variation in their contents was found. The major compounds of the essential oils were myrcene (0.0–26.2%), limonene (0.0–24.5%), germacrene D (4.2–19.3%), bicyclogermacrene (1.6–18.0%), δ‐cadinene (6.5–16.0%), pulegone (0.0–15.1%), (Z)‐hex‐3‐enyl tiglate (0.0–15.1%), (E)‐caryophyllene (0.0–12.9), α‐zingiberene (0.2–12.2%), and spathulenol (1.6–11.1%). For the determination of the chemotypes and the chemical variability, the essential‐oil components were subjected to cluster analysis (CA). The five different chemotypes characterized were Chemotype I (germacrene D/bicyclogermacrene), Chemotype II (germacrene D/spathulenol), Chemotype III (limonene/δ‐cadinene), Chemotype IV (pulegone), and Chemotype V (α‐zingiberene). The high chemical variation among the populations according to their geographical and bioclimatic distribution imposes that conservation strategies of populations should be made appropriately, taking into account these factors. The in situ and ex situ conservation strategies should concern all populations representing the different chemotypes.  相似文献   

12.
The chemical composition of 48 essential‐oil samples isolated from the leaves of Xylopia aethiopica harvested in six Ivoirian forests was investigated by GC‐FID and 13C‐NMR analyses. In total, 23 components accounting for 82.5–96.1% of the oil composition were identified. The composition was dominated by the monoterpene hydrocarbons β‐pinene (up to 61.1%) and α‐pinene (up to 18.6%) and the sesquiterpene hydrocarbon germacrene D (up to 28.7%). Hierarchical cluster and principal component analyses allowed the distinction of two groups on the basis of the β‐pinene and germacrene D contents. The chemical composition of the oils of Group I (38 oil samples) was clearly dominated by β‐pinene, while those of Group II (10 samples) were characterized by the association of β‐pinene and germacrene D. The leaves collected in the four inland forests produced β‐pinene‐rich oils (Group I), while the oil samples belonging to Group II were isolated from leaves harvested in forests located near the littoral.  相似文献   

13.
The fruit essential oils of two populations of Astrantia major L. (Apiaceae, subfamily Saniculoideae) were analyzed in detail by GC and GC/MS analyses. Seventy‐six constituents identified accounted for 92.7–94.0% of the oils. The two oils differed significantly: the wild‐growing population from Serbia contained zingiberene (47.9%), β‐bisabolene (9.7%), and β‐sesquiphellandrene (7.9%), while the one from Poland (botanical gardens) was sesquiterpene‐poor with the major contributors oleic acid (38.6%), nonacosane (15.4%), and linoleic acid (5.1%). Motivated by the unresolved taxonomical relations between the Saniculoideae and Apioideae subfamilies, we performed multivariate statistical analyses on the compositional data of these A. major samples, and additional 14 Saniculoideae and 31 Apioideae taxa. This allowed us to assess the chemotaxonomical usefulness of such chemical data in differentiating taxa from these two Apiaceae subfamilies and to corroborate the existence of at least two A. major chemotypes. Diethyl ether extracts of the two samples of A. major fruits yielded seven diaryltetrahydrofurofurano lignans. Except for eudesmin that has been found for the first time in a Saniculoideae taxon, all other lignans (magnolin, epimagnolins A and B, epieudesmin, yangambin, and epiyangambin) are new for the entire plant family Apiaceae. The lignan profiles also supported the existence of two separate A. major chemotypes.  相似文献   

14.
The chemical composition, antibacterial and antioxidant activities of the essential oil obtained from Eryngium triquetrum from Algeria were studied. The chemical composition of sample oils from 25 locations was investigated using GC‐FID and GC/MS. Twenty‐four components representing always more than 87% were identified in essential oils from total aerial parts of plants, stems, flowers and roots. Falcarinol is highly dominant in the essential oil from the roots (95.5%). The relative abundance of falcarinol in the aerial parts correlates with the phenological stages of the plant. Aerial parts of E. triquetrum produce an essential oil dominated by falcarinol during the early flowering stage, and then there is a decrease in falcarinol and rebalancing of octanal during the flowering stage. To our knowledge, the present study is the first report of the chemical composition of E. triquetrum essential oil. Evaluation of the antibacterial activity by means of the paper disc diffusion method and minimum inhibitory concentration assays, showed a moderate efficiency of E. triquetrum essential oil. Using the DPPH method, the interesting antioxidant activity of E. triquetrum essential oil was established. These activities could be attributed to the dominance of falcarinol. The outcome of our literature search on the occurrence of falcarinol in essential oils suggests that E. triquetrum from Algeria could be considered as a possible source of natural falcarinol.  相似文献   

15.
The chemical composition of 45 essential oil samples isolated from the leaves of Polyalthia oliveri harvested in three Ivoirian forests was investigated by GC‐FID (retention indices measured on two columns of different polarities), and by 13C‐NMR, following a method developed in our laboratory. In total, 41 components were identified. The content of the main components varied drastically from sample to sample: (E)‐β‐caryophyllene (1.2 – 50.8%), α‐humulene (0.6 – 47.7%), isoguaiene (0 – 27.9%), alloaromadendrene (0 – 24.7%), germacrene B (0 – 18.3%), δ‐cadinene (0.4 – 19.3%), and β‐selinene (0.2 – 18.5%). The analysis of six oil samples selected in function of their chromatographic profiles is reported in detail. The 45 oil compositions were submitted to hierarchical cluster and principal components analysis, which allowed the distinction of three groups within the oil samples. The compositions of the oils from group I (15 samples) and II (12 samples) were dominated by (E)‐β‐caryophyllene and α‐humulene, respectively. Oil samples of group III (18 samples) needed to be partitioned into four subgroups III.1–III.4 whose compositions were dominated by alloaromadenrene, isoguaiene, germacrene B, and δ‐cadinene, respectively.  相似文献   

16.
Fish‐mint (Houttuynia cordataThunb .), belonging to family Saururaceae, has long been used as food and traditional herbal medicine. The present study was framed to assess the changes occurring in the essential‐oil composition of H. cordata during annual growth and to evaluate allelopathic, antibacterial, antifungal, and antiacetylcholinesterase activities. The essential‐oil content ranged from 0.06 – 0.14% and 0.08 – 0.16% in aerial parts and underground stem, respectively. The essential oils were analysed by GC‐FID, GC/MS, and NMR (1H and 13C). Major constituents of aerial‐parts oil was 2‐undecanone (19.4 – 56.3%), myrcene (2.6 – 44.3%), ethyl decanoate (0.0 – 10.6%), ethyl dodecanoate (1.1 – 8.6%), 2‐tridecanone (0.5 – 8.3%), and decanal (1.1 – 6.9%). However, major constituents of underground‐stem oil were 2‐undecanone (29.5 – 42.3%), myrcene (14.4 – 20.8%), sabinene (6.0 – 11.1%), 2‐tridecanone (1.8 – 10.5%), β‐pinene (5.3 – 10.0%), and ethyl dodecanoate (0.8 – 7.3%). Cluster analysis revealed that essential‐oil composition varied substantially due to the plant parts and season of collection. The oils exhibited significant allelopathic (inhibition: 77.8 – 88.8%; LD50: 2.45 – 3.05 μl/plate), antibacterial (MIC: 0.52 – 2.08 μl/ml; MBC: bacteriostatic) and antifungal (MIC: 2.08 – 33.33 μl/ml; MFC: 4.16 – 33.33 μl/ml) activities. The results indicate that the essential oil from Hcordata has a significant potential to allow future exploration and exploitation as a natural antimicrobial and allelopathic agent.  相似文献   

17.
Apiaceae are aromatic herbs producing essential oils which are used on an industrial scale for various purposes. Notably, Apiaceae essential oils may replace synthetic insecticides keeping most of their efficacy and avoiding environmental pollution and human poisoning. In the present work, we explored the insecticidal potential of the essential oils from five Apiaceae taxa, namely Sison amomum, Echinophora spinosa, Heracleum sphondylium subsp. sphondylium, Heracleum sphondylium subsp. ternatum, and Trachyspemum ammi, as well as their major constituents (sabinene, p‐cymene, terpinolene, myristicin, and thymol), against the filariasis vector Culex quinquefasciatus. For the purpose, the essential oils were obtained by hydrodistillation and their composition was achieved by gas chromatography/mass spectrometry (GC/MS). Their acute toxicity on third instar larvae of C. quinquefasciatus was determined. The two most active essential oils were those from T. ammi fruits and E. spinosa roots, showing LC50 below 20 μl/l and LD90 below 50 μl/l. These oils were dominated by the monoterpene phenol thymol and the phenylpropanoid myristicin, respectively, which showed the strongest larvicidal activity (LC50 of 15.1 and 16.3 μl/l, respectively) among the pure compounds tested. These results showed that Apiaceae may be useful as source of larvicidal compounds to be used for the development of cheap, effective and eco‐friendly insecticidal formulations.  相似文献   

18.
The chemical compositions of the essential oils of seven natural populations of Seseli rigidum were analyzed. The essential‐oil yield ranged from 0.16 to 2.09%. Analysis of variance (ANOVA) revealed that there were no statistically significant differences in the mean essential‐oil yields between the populations, and no significant influence of the climate or soil type on the oil yield was observed. In all 67 analyzed samples, the polyacetylene falcarinol was the main compound, followed by octanal, methyl linoleate, α‐muurolene, 3‐butylphthalide, falcarinone, muurola‐4,10(14)‐dien‐1β‐ol, β‐sesquiphellandrene, salvial‐4(14)‐en‐1‐one, δ‐amorphene, spathulenol, and isospathulenol. The principal component analysis (PCA), the canonical discriminant analysis (CDA), and the cluster analysis (CA) revealed differentiation between the populations based on the climate. Three groups of populations were formed; the first group was composed of samples growing in regions with a humid climate, with oils having high falcarinol and low sesquiterpene contents, and the second and third groups comprised samples exposed to semi‐arid climate, with oils characterized by a lower falcarinol and higher α‐muurolene, δ‐amorphene, β‐sesquiphellandrene, and salvial‐4(14)‐en‐1‐one contents. The semi‐arid populations were divided into two groups, which were distinguished based on the oil contents of sesquiterpenes, falcarinone, and 3‐butylphthalide. On the other hand, no clear separation between populations based on the different soil types could be observed.  相似文献   

19.
The composition of Enantia polycarpa Engl . & Diels leaf essential oil has been investigated for the first time using a combination of chromatographic and spectroscopic techniques. The compositions of 52 leaf essential oil samples have been subjected to statistical analysis, hierarchical cluster analysis (HCA) and principal component analysis (PCA). Four groups were differentiated, of which the compositions were dominated by β‐elemene and germacrene B (Group III, 22/52 samples); germacrene D (Group I, 16/52 samples); β‐cubebene (Group IV, 8/52 samples) and by germacrene B and germacrene D (Group II, 6/52 samples). A special attention was brought to the quantification of the thermolabile components, germacrene A, germacrene B and germacrene C, as well as that of their rearranged compounds, β‐elemene, γ‐elemene and δ‐elemene. 13C‐NMR data of β‐cubebene have been provided.  相似文献   

20.
Xanthium spinosum L. is a highly invasive plant originated from South America throughout the world as well as in Corsica Island. The chemical composition of X. spinosum essential oils from 25 Corsican locations was investigated using GC‐FID and GC/MS. Seventy‐four components, which accounted for 96.2% of the total amount, were reported for the first time in the essential oil from aerial parts. The main compounds were eudesma‐4(14),7‐dien‐1β‐ol ( 61 ; 21.3%), germacrene D ( 36 ; 8.8%) and cadalene ( 60 ; 8.7%). Comparison with the literature highlighted the originality of the Corsican essential oil and eudesma‐4(14),7‐dien‐1β‐ol could be used as taxonomical marker to the systematics of the Xanthium genus. The essential oils obtained from separate organs and during the plant vegetative cycle were also studied to gain more knowledge about the correlations between the volatile production and the phenological states of this weed. The production of oxygenated sesquiterpenes was predominant during the plant‐flowering process. The study focuses on direct correlation between the chemical composition of individual 25 oil samples and the morphological differences of the plant. Our results have gained more knowledge about the secondary metabolite production that occurs during the plant life, they could be interesting in order to manage the dispersal of X. spinosum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号