首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
An extensive phytochemical study of the aerial parts of Vernonia guineensis Benth. (Asteraceae) led to the isolation of a new flavone, vernoguinoflavone and a naturally isolated glycerol ester, eicosanoic acid 2‐hydroxy‐1,3‐propanediyl ester, together with eighteen known secondary metabolites including quercetin, luteolin, vernopicrin, vernomelitensin, β‐amyrin, oleanolic acid, ursolic acid, lupeol, betulinic acid, β‐carotene, a mixture of stigmasterol and β‐sitosterol, β‐sitosterol‐3‐Oβ‐D‐glucoside, 2,3‐dihydroxypropyl heptacosanoate, pentacosanoic acid, docosan‐1‐ol, tritriacontan‐1‐ol, and heptatriacontan‐1‐ol. Eleven compounds are reported herein for the first time from this species. The structures of these compounds were elucidated on the basis of extensive spectroscopic analyses, particularly 1D and 2D NMR, and HR‐ESI‐MS and by comparison of their data with those reported in the literature. The crude extract, fractions and some isolated compounds were evaluated for their antibacterial activity against Gram‐negative bacteria: Escherichia coli (ATCC 25922), Shigella flexineri (NR 518), Salmonella muenchen, Salmonella typhimurium and Salmonella typhi (ATCC 19430). All the tested compounds demonstrated inhibitory activities against the tested enteric bacteria with MIC values ranging from 3.12 to 100 μg/ml. Three flavonoids isolated from the most active fraction demonstrated the best bioactivities against Escherichia coli, Salmonella muenchen and Salmonella typhimurium with MIC values ranging from 3.12 to 25 μg/mL.  相似文献   

2.
Investigation of yellow flower extract of Tagetes patula L. led to the identification of an aggregate of five phytoceramides. Among them, (2R)‐2‐hydroxy‐N‐[(2S,3S,4R,8E)‐1,3,4‐trihydroxyicos‐8‐en‐2‐yl]icosanamide, (2R)‐2‐hydroxy‐N‐[(2S,3S,4R,8E)‐1,3,4‐trihydroxyicos‐8‐en‐2‐yl]heneicosanamide, (2R)‐2‐hydroxy‐N‐[(2S,3S,4R,8E)‐1,3,4‐trihydroxyicos‐8‐en‐2‐yl]docosanamide, and (2R)‐2‐hydroxy‐N‐[(2S,3S,4R,8E)‐1,3,4‐trihydroxyicos‐8‐en‐2‐yl]tricosanamide were identified as new compounds and termed as tagetceramides, whereas (2R)‐2‐hydroxy‐N‐[(2S,3S,4R,8E)‐1,3,4‐trihydroxyicos‐8‐en‐2‐yl]tetracosanamide was a known ceramide. A steroid (β‐sitosterol glucoside) was also isolated from the subsequent fraction. The structures of these compounds were determined on the basis of spectroscopic analyses, as well as chemical method. Several other compounds were also identified by GC/MS analysis. The fractions and some commercial products, a ceramide HFA, β‐sitosterol, and stigmasterol were evaluated against an economically important cyst nematode, Heterodera zeae. Ceramide HFA showed 100 % mortality, whereas, β‐sitosterol and stigmasterol were 40–50 % active, at 1 % concentration after 24 h of exposure time, while β‐sitosterol glucoside revealed no activity against the nematode.  相似文献   

3.
Semisynthetic functionalized triterpenes (4α,14‐dimethyl‐5α,8α‐8,9‐epoxycholestan‐3β‐yl acetate; 4α,14‐dimethyl‐5α‐cholest‐8‐ene‐3,7,11‐trione; 4α,14‐dimethyl‐5α‐cholesta‐7,9(11)‐dien‐3‐one and 4α,14‐dimethyl‐5α‐cholest‐8‐en‐3β‐yl acetate), previously prepared from 31‐norlanostenol, a natural insecticide isolated from the latex of Euphorbia officinarum, have been subjected to oxidation with hydrogen peroxide (H2O2) and iodosobenzene (PhIO) catalyzed by porphyrin complexes (cytochrome P‐450 models) in order to obtain optimized derivatives with high regioselectivity. The main transformations were epoxidation of the double bonds and hydroxylations of non‐activated C–H groups and the reaction products were 25‐hydroxy‐4α,14‐dimethyl‐5α‐cholesta‐7,9(11)‐dien‐3β‐yl acetate (59 %), 25‐hydroxy‐4α,14‐dimethyl‐5α‐cholest‐8‐ene‐3,7,11‐trione (60 %), 4α,14‐dimethyl‐5α,7β‐7,8‐epoxycholest‐9(11)‐en‐3‐one (22 %), 8‐hydroxy‐4α,14‐dimethyl‐5α‐cholest‐9(11)‐ene‐3,7‐dione (16 %), 12α‐hydroxy‐4α,14‐dimethyl‐5α,7β‐7,8‐epoxycholest‐9(11)‐en‐3‐one (16 %), and 4α,14‐dimethyl‐5α,8α‐8,9‐epoxycholestan‐3β‐yl acetate (26 %), respectively. We also investigated the insect (Myzus persicae, Rhopalosiphum padi and Spodoptera littoralis) antifeedant and postingestive effects of these terpenoid derivatives. None of the compounds tested had significant antifeedant effects, however, all were more effective postingestive toxicants on S. littoralis larvae than the natural compound 31‐norlanostenol, with 4α,14‐dimethyl‐5α,8α‐8,9‐epoxycholestan‐3β‐yl acetate being the most active. The study of their structure–activity relationships points out at the importance of C3 and C7 substituents.  相似文献   

4.
A new triterpenoid, 11a.O.trans-p-coumaroyltaraxerol (1), along with 11 known triterpenoids, taraxerone (2), taraxerol (3), 2α,3β,23,24-tetrahydroxyolean-12-en-28-oic acid (4), oleanolic acid (5), β-amyrin (6), 3β,23-dihydroxylursan-12-en- 28-oic acid (7), 2α,3β-dihydroxyursan-12-en-28-oic acid (8), 2α,3β,23-trihydroxyursan-12-en-28-oic acid (9), 2α,3β,24- trihydroxyursan-12-en-28-oic acid (10), u rsolic acid (11), and 3-O-acetylursolic acid (12), was isolated from Craibiodendron henryi W. W. Smith (Ericaceae). The structures of these compounds were elucidated on the basis of spectral evidence. Antioxidant activity and vasodilator effect of compound 1 were assessed.  相似文献   

5.
Studies of the phytotoxic effects between plants can be a crucial tool in the discovery of innovative compounds with herbicide potential. In this sense, we can highlight ruzigrass (Urochloa ruziziensis), which is traditionally used in the crop rotation system in order to reduce weed emergence. The aim of this work was to characterize the secondary metabolites of ruzigrass and to evaluate its phytotoxic effects. In total, eight compounds were isolated: friedelin, oleanolic acid, α‐amyrin, 1‐dehydrodiosgenone, sitosterol and stigmasterol glycosides, tricin and p‐coumaric acid. Phytotoxic effects of the crude methanolic extract and fractions of ruzigrass were assessed using germination rate, initial seedling growth, and biomass of Bidens pilosa, Euphorbia heterophylla and Ipomoea grandifolia. Chemometric analysis discriminated the weed species into three groups, and B. pilosa was the most affected by fractions of ruzigrass. The phytotoxic activities of 1‐dehydrodiosgenone, tricin, and p‐coumaric acid are also reported, and p‐coumaric acid and 1‐dehydrodiosgenone were active against B. pilosa.  相似文献   

6.
Evaluation of phytochemical constituents and antioxidant and antimicrobial activities of hexane (PELH), dichloromethane (PELDCM), ethyl acetate (PELEA), and MeOH (PELM) extracts of young leaves of Pseudocalymma elegans have been carried out. Moreover, extracts have also been explored for the presence of sulphur containing compounds, 1,2‐dithiolane ( 33 ), diallyl disulfide ( 35 ), 3‐vinyl‐1,2‐dithiacyclohex‐5‐ene ( 37 ), and diallyl trisulfide ( 38 ) responsible for the garlic like smell of P. elegans. All the extracts were found to be antioxidant and showed potent inhibition with IC50 values of 0.168 ± 0.001, 0.128 ± 0.002, 0.221 ± 0.011, and 0.054 ± 0.001, respectively, as compared to standard drugs ascorbic acid (AA) and butylated hydroxytoluene (BHT). The ethyl acetate extract (PELE) showed excellent activities against few Gram‐positive and Gram‐negative bacteria and some fungi as compared with standard drug ceftriaxone (3rd generation cephalosporin) and nystatin, respectively. Chemical constituents of hexane, dichloromethane, and ethyl acetate extracts were identified by gas chromatography‐mass spectrometry and mass spectral library search. Over all 55 chemical constituents were first time identified from the leaves which included branched and n‐hydrocarbons, fatty acids, fatty acid methyl esters, fatty alcohols, terpenes, alkaloid, vitamins, glycosides, aromatic compounds, and sulfur containing compounds. Two known chemical constituents, ursolic acid ( 1 ) and β‐amyrin ( 2 ), were also purified for the first time from the MeOH extract. To elucidate the structures of these compounds, UV, IR, EI‐MS, 1H‐ and 13C‐NMR spectroscopy were used.  相似文献   

7.
A method is described for the chemical synthesis of stigmasta-5,24-dien-3β-ol-[26-14C] and (24S)-24-ethylcholesta-5,25-dien-3β-ol-[26-14C] (clerosterol). 28-Isofucosterol-[7-3H2] fed to developing barley seedlings (Hordeum vulgare) was incorporated into sitosterol and stigmasterol confirming the utilisation of a 24-ethylidene sterol intermediate in 24α-ethyl sterol production in this plant. Also, the use of mevalonic acid-[2-14C(4R)-4-3H1] verified the loss of the C-25 hydrogen of 28-isofucosterol during its conversion into sitosterol and stigmasterol in agreement with the previously postulated isomerisation of the 24-ethylidene sterol to a Δ24(25)-sterol prior to reduction. However, feeding stigmasta-5,24-dien-3β-ol [26-14C] to barley seedlings gave very low incorporation into sitosterol. Attempts to trap radioactivity from mevalonic-[2-14C(4R)-4-3H1] in stigmasta-5,24-dien-3β-ol when this unlabelled sterol was administered to barley seedlings gave only a very small incorporation although both 28-isofucosterol and sitosterol were labelled.  相似文献   

8.
The EtOH extract from the leaves of Oxandra sessiliflora R. E. Fries (Annonaceae) was partitioned using hexane and CH2Cl2. After several chromatographic steps, caryophyllene oxide and spathulenol were isolated from hexane phase while, from CH2Cl2 phase, we isolated (E)-phytol, spathulenol, 4β,10α-dihydroxyaromadendrane, 1β,6α-dihydroxyeudesm-4(15)-ene, and 4α,7β,10α-trihydroxyguai-5-ene, the latter being a new sesquiterpene derivative. Additionally, a mixture of steroids (campesterol, sitosterol, and stigmasterol) was obtained from the CH2Cl2 phase. The isolated compounds were characterized by mass spectrometry and analysis of their 1H and 13C NMR spectroscopic data, including bidimensional analysis.  相似文献   

9.
10.
Ethyl acetate extracts of two strains of Trichoderma koningii were evaluated for antifungal activity against soilborne pathogenic fungi, Rhizoctonia solani, Sclerotium rolfsii, Macrophomina phaseolina and Fusarium oxysporum by poisoned food technique. Secondary metabolites, namely δ-decanolactone, 6-pentyl-α-pyranone and 6-(4-oxopentyl)-2H-pyran-2-one were isolated from T. koningii (T-8) extract while palmitic acid, 6-pentyl-α-pyranone and stigmasterol were isolated from T. koningii (T-11) extract. Secondary metabolites were identified by 1H NMR, 13C NMR and mass spectroscopic methods. These metabolites were evaluated for antifungal activity against the test pathogens 6-Pentyl-α-pyranone and 6-(4-oxopentyl)-2H-pyran-2-one exhibited excellent antifungal activity against S. rolfsii. The antifungal activity though slightly less was comparable to that of hexaconazole, a commercial fungicide.  相似文献   

11.
The crude methanolic extract of Andrachne cordifolia Muell. (Euphorbiaceae) and its various fractions in different solvent systems (chloroform, ethyl acetate and n- butanol) were screened for antibacterial and antifungal activities. Crude extract and subsequent fractions demonstrated moderate to excellent antibacterial activities against the tested pathogens. Highest antibacterial activity was displayed by both chloroform and ethyl acetate fractions (100%) followed by the crude extract (68%) against Salmonella typhi. Similarly, crude extract and its subsequent fractions showed mild to excellent activities in antifungal bioassay with maximum (76%) antifungal activity against Microsporum canis by the chloroform fraction followed by the crude extract (65%).  相似文献   

12.
This article reports on the in vitro activity of the hydroalcoholic extract of Pfaffia glomerata roots, its hydrolyzed fractions, and pfaffic acid against Trypanosoma cruzi. The hydroalcoholic extract obtained from dried, milled P. glomerata roots was submitted to acid hydrolysis followed by partition with CHCl3. The concentrated CHCl3 fraction was suspended in MeOH/H2O and partitioned with hexane (F1), CHCl3 (F2), and AcOEt (F3), in this sequence. The trypanocidal activity of the hydrolyzed extract and its fractions was evaluated in vitro. The hydroalcoholic extract displayed low activity, but fraction F1 was active against trypomastigotes of the Y strain of T. cruzi, with IC50 = 47.89 μg/ml. The steroids campesterol (7.7%), stigmasterol (18.7%), β‐sitosterol (16.8%), Δ7‐stigmastenol (4.6%), and Δ7‐spinasterol (7.5%) were the major constituents of F1, along with fatty acid esters (7.6%) and eight aliphatic hydrocarbons (30.1%). Fractions F2 and F3 exhibited moderate activity, and pfaffic acid, one of the main chemical constituents of these fractions, displayed IC50 = 44.78 μm (21.06 μg/ml). On the other hand, the hydroalcoholic extract of P. glomerata roots, which is rich in pfaffosides, was inactive. Therefore, the main aglycone of pfaffosides, pfaffic acid, is much more active against trypomastigotes of the Y strain of T. cruzi than its corresponding glycosides and should be further investigated.  相似文献   

13.
Chemical investigation of the roots of Vernonia guineensis (Asteraceae) afforded a new stigmastane derivative, vernoguinoside A (1) and the known vernoguinoside (2), stigmasterol 3-O-β-d-glucoside (3) and sitosterol 3-O-β-d-glucoside (4). Their structures were elucidated by spectroscopic analysis. Antimicrobial activities of 13 and CH2Cl2–MeOH (1:1) extract were evaluated against three bacteria species (Salmonella typhi, Staphylococcus aureus and Shigella flexneri) and three yeasts species (Candida albicans, Candida parapsilosis and Cryptococcus neoformans). Compounds 1 and 2 exhibited both antibacterial and antifungal activities that varied between the microbial species (MIC = 7.81–125 μg/mL) while S. flexneri and C. albicans were sensitive to all the tested compounds.  相似文献   

14.
Four new cycloartane triterpenes, named huangqiyegenins V and VI and huangqiyenins K and L ( 1 – 4 , resp.), together with nine known triterpenoids, 5 – 13 , and eight flavonoids, 14 – 21 , were isolated from a 70%‐EtOH extract of Astragalus membranaceus leaves. The structures of the new compounds were elucidated by detailed spectroscopic analyses, and the compounds were identified as (9β,11α,16β,20R,24S)‐11,16,25‐trihydroxy‐20,24‐epoxy‐9,19‐cyclolanostane‐3,6‐dione ( 1 ), (9β,16β,24S)‐16,24,25‐trihydroxy‐9,19‐cyclolanostane‐3,6‐dione ( 2 ), (3β,6α,9β,16β,20R,24R)‐16,25‐dihydroxy‐3‐(β‐D ‐xylopyranosyloxy)‐20,24‐epoxy‐9,19‐cyclolanostan‐6‐yl acetate ( 3 ), and (3β,6α,9β,16β,24E)‐26‐(β‐D ‐glucopyranosyloxy)‐16‐hydroxy‐3‐(β‐D ‐xylopyranosyloxy)‐9,19‐cyclolanost‐24‐en‐6‐yl acetate ( 4 ). All isolated compounds were evaluated for their inhibitory activities against LPS‐induced NO production in RAW264.7 macrophage cells. Compounds 1 – 3, 14, 15 , and 18 exhibited strong inhibition on LPS‐induced NO release by macrophages with IC50 values of 14.4–27.1 μM .  相似文献   

15.
Antimicrobial‐directed phytochemical investigation of the MeOH extract of Drypetes staudtii afforded two new compounds, 4,5‐(methylenedioxy)‐o‐coumaroylputrescine ( 1 ), 4,5‐(methylenedioxy)‐o‐coumaroyl‐4′‐N‐methylputrescine ( 2 ), along with seven known natural products 4α‐hydroxyeremophila‐1,9‐diene‐3,8‐dione ( 3 ), drypemolundein B ( 4 ), friedelan‐3β‐ol ( 5 ), erythrodiol ( 6 ), ursolic acid ( 7 ), p‐coumaric acid ( 8 ), and β‐sitosterol ( 9 ). Structures of compounds 1 – 9 were elucidated with the aid of extensive NMR and mass spectral studies. All of the isolates exhibited antibacterial activity against Gram‐positive and Gram‐negative bacteria with minimum inhibitory concentration (MIC) in the range of 8 – 128 μg/ml. Compounds 1 – 2 were also moderately active against Candida albicans with an MIC value of 32 μg/ml.  相似文献   

16.
Two new oleanane‐type saponins: β‐d ‐xylopyranosyl‐(1 → 4)‐6‐deoxy‐α‐l ‐mannopyranosyl‐(1 → 2)‐1‐O‐{(3β)‐28‐oxo‐3‐[(2‐Oβ‐d ‐xylopyranosyl‐β‐d ‐glucopyranosyl)oxy]olean‐12‐en‐28‐yl}‐β‐d ‐glucopyranose ( 1 ) and 1‐O‐[(3β)‐28‐oxo‐3‐{[β‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐arabinopyranosyl‐(1 → 6)‐2‐acetamido‐2‐deoxy‐β‐d ‐glucopyranosyl]oxy}olean‐12‐en‐28‐yl]β‐d ‐glucopyranose ( 2 ), along with two known saponins: (3β)‐3‐[(β‐d ‐Glucopyranosyl‐(1 → 2)‐β‐d ‐glucopyranosyl)oxy]olean‐12‐en‐28‐oic acid ( 3 ) and (3β)‐3‐{[α‐l ‐arabinopyranosyl‐(1 → 6)‐[β‐d ‐glucopyranosyl‐(1 → 2)]‐β‐d ‐glucopyranosyl]oxy}olean‐12‐en‐28‐oic acid ( 4 ) were isolated from the acetone‐insoluble fraction obtained from the 80% aqueous MeOH extract of Albizia anthelmintica Brongn . leaves. Their structures were identified using different NMR experiments including: 1H‐ and 13C‐NMR, HSQC, HMBC and 1H,1H‐COSY, together with HR‐ESI‐MS/MS, as well as by acid hydrolysis. The four isolated saponins and the fractions of the extract exhibited cytotoxic activity against HepG‐2 and HCT‐116 cell lines. Compound 2 showed the most potent cytotoxic activity among the other tested compounds against the HepG2 cell line with an IC50 value of 3.60μm . Whereas, compound 1 showed the most potent cytotoxic effect with an IC50 value of 4.75μm on HCT‐116 cells.  相似文献   

17.
In the context of ethno botanical importance with no phytochemical investigations, Mussaenda roxburghii have been investigated to explore it's phytoconstituents and studies of their antibiofilm activity. Four compounds have been isolated from the aerial parts of this plant and were characterized as 2α,3β,19α,23‐tetrahydroxyurs‐12‐en‐28‐oic acid ( 1 ), β‐sitosterol glucoside ( 4 ), lupeol palmitate ( 5 ), and myoinositol ( 6 ). All these compounds were tested for antibacterial and antibiofilm activity against Pseudomonas aeruginosa. Compound 1 exhibited three times more antibiofilm activity with minimum inhibitory concentration (MIC) at 0.74 mm compared to that of streptomycin. Molecular docking studies exhibited a very high binding affinity of 1 with P. aeruginosa quorum sensing proteins and motility associated proteins viz. LasR and PilB, PilY1, PilT, respectively. Compound 1 was also found to be non‐cytotoxic against sheep RBC and murine peritoneal macrophages at selected sub‐MIC doses.  相似文献   

18.
The crude methanolic extract and subsequent fractions of Teucrium royleanum (Labiatea) were screened for antibacterial and antifungal activities. Against tested pathogens, crude extract and subsequent fractions demonstrated moderate to excellent antibacterial activities. Highest antibacterial activity was displayed by the ethyl acetate fraction against S. typhi (100%), against E.coli (76.7%) and against P. aerugenosa (70.8%) followed by the chloroform fraction against S. typhi (85.7%). Similarly, the crude extract and its subsequent fractions showed mild to excellent activities in the antifungal bioassay with maximum antifungal activity against M. canis (87%) by the chloroform fraction followed by the ethyl acetate (71%) and n-butanol (70%) fractions.  相似文献   

19.
Two new steroids, (22R,23S)‐3β‐hydroxy‐23‐methyl‐17,20‐epoxyergost‐5‐en‐22‐yl acetate and (22R,23S)‐5‐hydroperoxy‐23‐methyl‐5α‐17,20‐epoxyergost‐6‐ene‐3β,22‐diol, were isolated from the South China Sea soft coral Lobophytum sp., together with two related known ones. The structures of all compounds were elucidated by extensive spectroscopic analysis and by comparing their spectral data with those previously reported. The structure of (22R,23S)‐3β‐hydroxy‐23‐methyl‐17,20‐epoxyergost‐5‐en‐22‐yl acetate was further confirmed through chemical correlation. All the isolates were evaluated for the in vitro inhibitory activity against NF‐κB, a potential target for the treatment of cancer, and (22R,23S)‐5‐hydroperoxy‐23‐methyl‐5α‐17,20‐epoxyergost‐6‐ene‐3β,22‐diol exhibited moderate inhibition activity with IC50 value of 8.96 μg/mL.  相似文献   

20.
A bioassay‐guided phytochemical analysis of the ethanolic extract of Grindelia argentina Deble & Oliveira ‐Deble (Asteraceae) allowed the isolation of a known flavone, hispidulin, and three new oleanane‐type saponins, 3‐Oβ‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐Oβ‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐apiofuranosyl‐(1→3)‐β‐D ‐xylopyranosyl‐(1→3)‐α‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl ester ( 2 ), 3‐Oβ‐D ‐glucopyranosyl‐2β,3β,23‐trihydroxyolean‐12‐en‐28‐oic acid 28‐Oβ‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐apiofuranosyl‐(1→3)‐β‐D ‐xylopyranosyl‐(1→3)‐α‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl ester, ( 3 ) and 3‐Oβ‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐2β,3β,23‐trihydroxyolean‐12‐en‐28‐oic acid 28‐Oβ‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐apiofuranosyl‐(1→3)‐β‐D ‐xylopyranosyl‐(1→3)‐α‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl ester ( 4 ), named grindeliosides A–C, respectively. Their structures were determined by extensive 1D‐ and 2D‐NMR experiments along with mass spectrometry and chemical evidence. The isolated compounds were evaluated for their inhibitory activities against LPS/IFN‐γ‐induced NO production in RAW 264.7 macrophages and for their cytotoxic activities against the human leukemic cell line CCRF‐CEM and MRC‐5 lung fibroblasts. Hispidulin markedly reduced LPS/IFN‐γ‐induced NO production (IC50 51.4 μM ), while grindeliosides A–C were found to be cytotoxic, with grindelioside C being the most active against both CCRF‐CEM (IC50 4.2±0.1 μM ) and MRC‐5 (IC50 4.5±0.1 μM ) cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号