首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An actinomycete producing oil‐like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The 1H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography–mass spectrometry (GC‐MS) analysis, the fatty acid methyl esters were mainly composed of C14‐C16 long‐chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch.

Significance and Impact of the Study

Nowadays, production of biodiesel is based on plant oils, animal fats, algal oils and microbial oils. Lipid mostly consists of triacylglycerols (TAG), and conversion of these lipids into fatty acid short‐chain alcohol esters (methanol or ethanol) is the final step in biodiesel production. In this study, an oil‐producing Streptomyces strain was isolated from sheep faeces. The oil was composed of C14‐C16 long‐chain fatty acid methyl esters, triglycerides and monoglycerides. This is the first isolated strain‐producing biodiesel (FAME) directly from starch. Due to showing cellulase and xylanase activities, the strain would be helpful for converting renewable lignocellulose into biodiesel directly.  相似文献   

2.
Small amounts of a mixture of fatty acid short‐chain‐alkyl esters (FASCAEs) were obtained from the fruits of twelve plant species of Celastraceae family, and in five of them the FASCAEs were present not only in the arils but also in the seeds. These mixtures contained 32 individual FASCAE species, which formed four separate fractions, viz. FA methyl, ethyl, isopropyl, and butyl esters (FAMEs, FAEEs, FAIPEs, and FABEs, resp.). The FASCAE acyl components included the residues of 16 individual C14–C24 saturated, mono‐, di‐, and trienoic FAs. Linoleic, oleic, and palmitic acids, and, in some cases, also α‐linolenic acid predominated in FAMEs and FAEEs, while myristic acid was predominant in FAIPEs. It can be suggested that, in the fruit arils of some plant species, FAMEs and FAEEs were formed at the expense of a same FA pool characteristic of a given species and were strongly different from FAIPEs and FABEs esters regarding the mechanism of their biosynthesis. However, as a whole, the qualitative and quantitative composition of various FASCAE fractions, as well as their FA composition, varied considerably depending on various factors. Therefore, separate FASCAE fractions seem to be synthesized from different FA pools other than those used for triacylglycerol formation.  相似文献   

3.
Ethyl and acetate esters are naturally produced in various yeasts, plants, and bacteria. The biosynthetic pathways that produce these esters share a common reaction step, the condensation of acetyl/acyl‐CoA with an alcohol by alcohol‐O‐acetyl/acyltransferase (AATase). Recent metabolic engineering efforts exploit AATase activity to produce fatty acid ethyl esters as potential diesel fuel replacements as well as short‐ and medium‐chain volatile esters as fragrance and flavor compounds. These efforts have been limited by the lack of a rapid screen to quantify ester biosynthesis. Enzyme engineering efforts have also been limited by the lack of a high throughput screen for AATase activity. Here, we developed a high throughput assay for AATase activity and used this assay to discover a high activity AATase from tomato fruit, Solanum lycopersicum (Atf‐S.l). Atf1‐S.l exhibited broad specificity towards acyl‐CoAs with chain length from C4 to C10 and was specific towards 1‐pentanol. The AATase screen also revealed new acyl‐CoA substrate specificities for Atf1, Atf2, Eht1, and Eeb1 from Saccharomyces cerevisiae, and Atf‐C.m from melon fruit, Cucumis melo, thus increasing the pool of characterized AATases that can be used in ester biosynthesis of ester‐based fragrance and flavor compounds as well as fatty acid ethyl ester biofuels.  相似文献   

4.
Tetraselmis sp. and Nannochloropsis oculata, cultivated in industrial‐scale bioreactors, produced 2.33 and 2.44% w/w lipid (calculated as the sum of fatty acid methyl esters) in dry biomass, respectively. These lipids contained higher amounts of neutral lipids and glycolipids plus sphingolipids, than phospholipids. Lipids of Tetraselmis sp. were characterized by the presence of eicosapentaenoic acid (that was located mainly in phospholipids), and octadecatetraenoic acid (that was equally distributed among lipid fractions), while these fatty acids were completely absent in N. oculata lipids. Additionally, lipids produced by 16 newly isolated strains from Greek aquatic environments (cultivated in flask reactors) were studied. The highest percentage of lipids was found in Prorocentrum triestinum (3.69% w/w) while the lowest in Prymnesium parvum (0.47% w/w). Several strains produced lipids rich in eicosapentaenoic and docosahexaenoic acids. For instance, docosahexaenoic acid was found in high percentages in lipids of Amphidinium sp. S1, P. parvum, Prorocentrum minimum and P. triestinum, while lipids produced by Asterionella sp. (?) S2 contained eicosapentaenoic acid in high concentration. These lipids, containing ω‐3‐long‐chain polyunsaturated fatty acids, have important applications in the food and pharmaceutical industries and in aquaculture.  相似文献   

5.
The effects on growth and mortality of larvae of pink bollworm (Pectinophora gossypiella, Saunders), bollworm (Heliothis zea, Boddie) and tobacco budworm (Heliothis virescens, F.) of adding selected C10–C12 fatty acid methyl esters to a standard diet were determined. The antibiotic activity of straight chain saturated esters was compared to the activity of esters with an olefinic bond either at C-2 or terminally or with a terminal acetylenic or cyclopropyl group. The ester with the greatest activity was the naturally occurring compound methyl (Z,Z)-deca-2,8-diene-4,6-diynoate (matricaria ester) which was lethal to all pink bollworm larvae at 0.01% in the diet and lethal to all bollworm and tobacco budworm larvae at 0.05%.  相似文献   

6.
Bioassays using gravid females of the adzuki bean borer, Ostrinia scapulalis (Walker), and the Asian corn borer, O. furnacalis (Guenée) (Lepidoptera: Crambidae), showed that the presence of an egg mass of a conspecific deters oviposition. Volatile chemicals emanating from the egg mass were responsible for the deterrence, and these deterrents could be extracted from the egg mass with hexane. When fractionated using a Sep‐Pak® Plus NH2 cartridge, the deterrents were eluted with a 98 : 2 mixture of diethyl ether and acetic acid (polar lipid fraction). The polar lipid fraction contained free fatty acids with 14–20 carbons, and palmitic acid, palmitoleic acid, and oleic acid were predominant. A blend of all identified fatty acids, a blend of six major fatty acids (palmitic, palmitoleic, stearic, oleic, linoleic, and linolenic acids), a blend of the two Z‐9‐alkenoic acids (palmitoleic and oleic acids), palmitoleic acid alone, and oleic acid alone showed deterrence against O. scapulalis which was comparable to that provoked by the full egg extract. The dose‐dependency of the deterrent effects of palmitoleic acid and oleic acid was verified in O. scapulalis. The binary blend of palmitoleic acid and oleic acid was also confirmed to deter oviposition in O. furnacalis.  相似文献   

7.
Previous work from our laboratory has shown dinoflagellates, which possess the carotenoid peridinin, have been divided into two clusters based on plastid galactolipid fatty acid composition. In one cluster major forms of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), lipids that comprise the majority of photosynthetic membranes, were C18/C18 (sn‐1/sn‐2), with octadecapentaenoic [18:5(n‐3)] and octadecatetraenoic [18:4(n‐3)] acid as principal fatty acids. The other cluster contained C20/C18 major forms, with eicosapentaenoic acid [20:5(n‐3)] being the predominant sn‐1 fatty acid. In this study, we have found that Symbiodinium microadriaticum isolated from the jellyfish, Cassiopea xamachana, when grown at 30°C, produced MGDG and DGDG with a more saturated fatty acid, 18:4(n‐3), at the sn‐2 carbon than when grown at 20°C where 18:5(n‐3) predominates. This modulation of the sn‐2 fatty acid's level of saturation is mechanistically similar to what has been observed in Pyrocystis, a C20/C18 dinoflagellate. We have also examined the effect of growth temperature on the betaine lipid, diacylglycerylcarboxyhydroxymethylcholine (DGCC), which has been observed by others to be the predominant non plastidial polar lipid in dinoflagellates. Temperature effects on it were minimal, with very few modulations in fatty acid unsaturation as observed in MGDG and DGDG. Rather, the primary difference seen at the two growth temperatures was the alteration of the amount of minor forms of DGCC, as well as a second betaine lipid, diacylglyceryl‐N,N,N‐trimethylhomoserine.  相似文献   

8.
The analysis of the volatiles released by the novel bacterial isolate Chitinophaga Fx7914 revealed the presence of ca. 200 compounds including different methyl esters. These esters comprise monomethyl‐ and dimethyl‐branched, saturated, and unsaturated fatty acid methyl esters that have not been described as bacterial volatiles before. More than 30 esters of medium C‐chain length were identified, which belong to five main classes, methyl (S)‐2‐methylalkanoates (class A), methyl (S)‐2,(ω?1)‐dimethylalkanoates (class B), methyl 2,(ω?2)‐dimethylalkanoates (class C), methyl (E)‐2‐methylalk‐2‐enoates (class D), and methyl (E)‐2,(ω?1)‐dimethylalk‐2‐enoates (class E). The structures of the compounds were verified by GC/MS analysis and synthesis of the target compounds as methyl (S)‐2‐methyloctanoate ( 28 ), methyl (S)‐2,7‐dimethyloctanoate ((S)‐ 43 ), methyl 2,6‐dimethyloctanoate ( 49 ), methyl (E)‐2‐methylnon‐2‐enoate ( 20a ), and methyl (E)‐2,7‐dimethyloct‐2‐enoate ( 41a ). Furthermore, the natural saturated 2‐methyl‐branched methyl esters showed (S)‐configuration as confirmed by GC/MS experiments using chiral phases. Additionally, the biosynthetic pathway leading to the methyl esters was investigated by feeding experiments with labeled precursors. The Me group at C(2) is introduced by propanoate incorporation, while the methyl ester is formed from the respective carboxylic acid by a methyltransferase using S‐adenosylmethionine (SAM).  相似文献   

9.
The fatty acid composition of the total lipid fractions of five different Leishmania organisms grown on Eagle's medium was determined by gas chromatography. The major fatty acids identified in the total lipid fractions of L. donovani, L. tropica major, L. tropica minor, L. tropica (England strain), and L. enriettii were C12:0, C13:0, C14:0, C15:0, C16:0, C17:0, C18:0, C18:1, C18:2, and C18:3. The statistical differences among the fatty acid methyl esters of different Leishmania organisms are discussed.Gas chromatographic analysis of the fatty acid methyl esters of the total lipid fractions of the original Eagle's medium and the media after harvesting of various Leishmania species revealed the presence of C18:3 fatty acid in the total lipid fraction of the medium of L. donovani and the complete absence of 18-carbon unsaturated fatty acids in the total lipid fraction of the medium of L. enriettii. The use of such differences in the differentiation of various Leishmania species is discussed.  相似文献   

10.
Five new saccharide fatty acid esters, named nonioside P ( 3 ), nonioside Q ( 4 ), nonioside R ( 8 ), nonioside S ( 10 ), and nonioside T ( 14 ), and one new succinic acid ester, butyl 2‐hydroxysuccinate (=4‐butoxy‐3‐hydroxy‐4‐oxobutanoic acid) ( 31 ), were isolated, along with 26 known compounds, including eight saccharide fatty acid esters, 1, 2, 5, 6, 7, 9, 12 , and 13 , three hemiterpene glycosides, 15, 17 , and 18 , six iridoid glycosides, 21 – 25 , and 27 , and nine other compounds, 20, 28, 29 , and 32 – 37 , from a MeOH extract of the fruit of Morinda citrifolia (noni). Upon evaluation of these and five other glycosidic compounds, 11, 16, 19, 26 , and 30 , from M. citrifolia fruit extract for their inhibitory activities against melanogenesis in B16 melanoma cells induced with α‐melanocyte‐stimulating hormone (α‐MSH), most of the saccharide fatty acid esters, hemiterpene glycosides, and iridoid glycosides showed inhibitory effects with no or almost no toxicity to the cells. These compounds were further evaluated with respect to their cytotoxic activities against two human cancer cell lines (HL‐60 and AZ521) and their inhibitory effects on Epstein? Barr virus early antigen (EBV‐EA) activation induced with 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) in Raji cells.  相似文献   

11.
Conidiobolus coronatus is an entomopathogenic fungus which has a potential as a biological control agent of insects. The cuticular and internal lipid composition of infected and noninfected Tettigonia viridissima males were analyzed by GC/MS. A total of 49 compounds were identified in the infected and noninfected males, including fatty acids, fatty acid methyl esters (FAMEs), n‐alkanes, alcohols, sterols, and other organic compounds. The most abundant components of the cuticular and internal lipids of the insects were fatty acids. After exposure to C. coronatus, the cuticular lipids of the T. viridissima males contained 17 free fatty acids from C(8) to C(22), while the cuticular lipids of the noninfected insects contained only 15 fatty acids from C(12) to C(24). The cuticular and internal lipids of both the infected and the noninfected males also contained five FAMEs from C(15) to C(19), seven n‐alkanes from C(25) to C(34), five alcohols from C(16) to C(25), five sterols, and the following six other organic compounds: azelaic acid, phenylacetic acid, glutaric acid, benzoic acid, sebacic acid, and glycerol. The compounds which were present only in the cuticular lipids of the infected males could be due to fungal infection.  相似文献   

12.
13.
The lipid class, fatty acid, and sterol composition of eight species of ichthyotoxic marine gymnodinioid dinoflagellate (Karenia, Karlodinium, and Takayama) species was examined. The major lipid class in all species was phospholipid (78%–95%), with low levels of triacylglycerol (TAG; 0%–16%) and free fatty acid (FFA; 1%–11%). The common dinoflagellate polyunsaturated fatty acids (PUFA), octadecapentaenoic acid (OPA 18:5ω3), and docosahexaenoic acid (DHA 22:6ω3), were present in all species in varying amounts (14%–35% and 8%–23%, respectively). The very‐long‐chain PUFA (VLC‐PUFA) 28:7ω6 and 28:8ω3 were present at low levels (<1%), and the ratio of these fatty acids may be a useful chemotaxonomic marker at the species level. The typical dinoflagellate sterol dinosterol was absent from all species tested. A predominance of the 4‐methyl and 4‐desmethyl Δ8(14) sterols in all dinoflagellate species included 23‐methyl‐27‐norergosta‐8(14),22‐dien‐3β‐ol (Karenia papilionacea A. J. Haywood et Steid, 59%–66%); 27‐nor‐(24R)‐4α‐methyl‐5α‐ergosta‐8(14),22‐dien‐3β‐ol, brevesterol, (Takayama tasmanica de Salas, Bolch et Hallegraeff 84%, Takayama helix de Salas, Bolch, Botes et Hallegraeff 71%, Karenia brevis (C. C. Davis) G. Hansen et Moestrup 45%, Karlodinium KDSB01 40%, Karenia mikimotoi (Miyake et Kominami ex Oda) G. Hansen et Moestrup 38%); and (24R)‐4α‐methyl‐5α‐ergosta‐8(14),22‐dien‐3β‐ol, gymnodinosterol, (K. mikimotoi 48%, Karenia umbella de Salas, Bolch et Hallegraeff 59%, Karlodinium veneficum (D. L. Ballant.) J. Larsen 71%–83%). In Takayama species, five steroid ketones were identified, including for the first time the 3‐keto form of brevesterol and gymnodinosterol. These results indicate a biochemical link between sterol and steroid ketone biosynthesis, suggesting that selected dinoflagellates can make a significant contribution to ketones in marine sediments. The presence of steroid ketones, specific sterols, and fatty acids, and the ratio of VLC‐PUFA may prove to be a useful chemotaxonomic tool for distinguishing between morphologically similar species. The relative levels of the PUFA, OPA, and DHA, coupled with the potential inhibitory action of Δ8(14) sterols, may provide an insight into the ichthyotoxicity of these bloom‐forming dinoflagellates.  相似文献   

14.
We investigated the potential of seaweeds as feedstock for oil‐based products, and our results support macroalgae (seaweeds) as a biomass source for oil‐based bioproducts including biodiesel. Not only do several seaweeds have high total lipid content above 10% dry weight, but in the brown alga Spatoglossum macrodontum 50% of these lipids are in the form of extractable fatty acids. S. macrodontum had the highest fatty acid content (57.40 mg g?1 dw) and a fatty acid profile rich in saturated fatty acids with a high content of C18:1, which is suitable as a biofuel feedstock. Similarly, the green seaweed Derbesia tenuissima has high levels of fatty acids (39.58 mg g?1 dw), however, with a high proportion of PUFA (n‐3) (31% of total lipid) which are suitable as nutraceuticals or fish oil replacements. Across all species of algae the critical parameter of fatty acid content (measured as fatty acid methyl esters, FAME) was positively correlated (R2 = 0.67) with total lipid content. However, the proportion of fatty acids to total lipid decreased markedly with total lipid content, generally between 30% and 50%, making it an inaccurate measure of the potential to identify seaweeds suitable for oil‐based bioproducts. Finally, we quantified within species variation of fatty acids across locations and sampling periods supporting either environmental effects on quantitative fatty acid profiles, or genotypes with specific quantitative fatty acid profiles, thereby opening the possibility to optimize the fatty acid content and quality for oil production through specific culture conditions and selective breeding.  相似文献   

15.
Viet nam is known as an endemic area of melioidosis but its etiologic agent originated in Viet nam was not extensively studied. For the first time, we analyzed the cellular lipid and fatty acid compositions of 15 Vietnamese isolates of Burkholderia pseudomallei, 10 from humans and 5 from the environment. Cellular lipid compositions were analyzed by two-dimensional thin-layer chromatography on silica gel G plates. Cellular fatty acid methyl esters were analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The major lipids in all the isolates were phosphatidylglycerol (PG), two forms of phosphatidylethanolamine (PE-1 and PE-2), and two forms of ornithine-containing lipid (OL-1 and OL-2). PE-1 contained non-hydroxy fatty acids at both sn-1 and ?2 positions, while PE-2 possessed 2-hydroxy fatty acids and non-hydroxy fatty acids in a ratio of 1: 1. Since snake venom phospholipase A2 digestion of PE-2 liberated 2-hydroxy fatty acids, it was confirmed that these acids are at the sn-2 position of glycerol moiety. In both OL-1 and OL-2, amide-linked fatty acid was 3-hydroxy palmitic acid (3-OH-C16: 0), while ester-linked fatty acids were non-hydroxy acids in OL-1 and 2-hydroxy acids in OL-2. The total cellular fatty acid compositions of the test strains were characterized by the presence of 2-hydroxy palmitic (2-OH-C16: 0), 2-hydroxy hexadecenoic (2-OH-C16: 1), 2-hydroxy octadecenoic (2-OH-C18: 1), 2-hydroxy methylene octadecanoic (2-OH-C19CPA), 3-hydroxy myristic (3-OH-C14: 0) and 3-hydroxy palmitic (3-OH-C16: 0) acids. There were significant differences in the concentration of hexadecenoic (C16: 1), methylene hexadecanoic (C17CPA), octadecenoic (C18: 1) and methylene octadecanoic (C19CPA) acids among the Vietnamese isolates of B. pseudomallei. However, no significant difference was observed in cellular lipid and fatty acid components between strains of human and environmental origins.  相似文献   

16.
The AlkBGTL proteins coded on the alk operon from Pseudomonas putida GPo1 can selectively ω‐oxidize ethyl esters of C6 to C10 fatty acids in whole‐cell conversions with Escherichia coli. The major product in these conversions is the ω‐alcohol. However, AlkB also has the capacity to overoxidize the substrate to the ω‐aldehyde and ω‐acid. In this study, we show that alcohol dehydrogenase AlkJ and aldehyde dehydrogenase AlkH are able to oxidize ω‐alcohols and ω‐aldehydes of esterified fatty acids respectively. Resting E. coli expressing AlkBGTHJL enabled exclusive mono‐ethyl azelate production from ethyl nonanoate, with an initial specific activity of 61 U gcdw?1. Within 2 h, this strain produced 3.53 mM mono‐ethyl azelate, with a yield of 0.68 mol mol?1. This strain also produced mono‐ethyl dicarboxylic acids from ethyl esters of C6 to C10 fatty acids and mono‐methyl azelate from methyl nonanoate. Adding ethyl nonanoate dissolved in carrier solvent bis‐(2‐ethylhexyl) phthalate enabled an increase in product titres to 15.55 mM in two‐liquid phase conversions. These findings indicate that E. coli expressing AlkBGTHJL is an effective producer of mono‐esterified dicarboxylic acids from fatty acid esters.  相似文献   

17.
A hepatocyte line was established from the liver of white‐spotted spinefoot Siganus canaliculatus to study the biosynthesis of long‐chain polyunsaturated fatty acids (LC‐PUFA). The cells from the line, designated S. canaliculatus hepatocyte line (SCHL), grew and multiplied well in Dulbecco's modified Eagle's medium (DMEM)–F12 medium supplemented with 20 mM 4‐(2‐hydroxyethyl) piperazine‐1‐ethanesulphonic acid (HEPES), 10% foetal bovine serum (FBS) and 0·5% rainbow trout Oncorhychus mykiss serum at 28° C, showing an epithelial‐like morphology and the normal chromosome number of 48 (2n) and have been subcultured for over 60 passages. The identity of the hepatocytes was confirmed by periodic acid Schiff (PAS) staining. The mRNA expression of all genes encoding the key enzymes for LC‐PUFA biosynthesis including two desaturases (Δ4 Fad and Δ6–Δ5 Fad) and two elongases (Elovl4 and Elovl5), were detected in all cells from passages 5 to 60 and their expression levels became stable after passage 35 and showed responses to various PUFA incubation. This is similar to the situation determined in the liver of S. canaliculatus that were fed diets containing different fatty acids. These results indicated that SCHL was successfully established and can provide an in vitro tool to investigate lipid metabolism and regulatory mechanisms of LC‐PUFA biosynthesis in teleosts, especially marine species.  相似文献   

18.
The composition of cuticular and internal lipids in females of the cockroach Blatta orientalis L. exposed to the entomopathogenic fungus Conidiobolus coronatus is investigated. The compositions of the fatty acids, n‐alkanes, alcohol, sterols and methyl esters in the lipids are chemically characterized. Although contact with virulent colonies of the fungus does not induce insect mortality, significant changes in the lipid profiles, both cuticular and internal, are found. The cuticular extracts of a control group of B. orientalis females contain 24 compounds varying in carbon chain length from C6 to C22. The main cuticular fatty acids identified are: C16:1, C16:0, C18:1 and C18:0. The cuticular lipids of B. orientalis females after exposure to C. coronatus contain only 14 free fatty acids from C8 to C20. The highest concentrations identified are C16:0, C18:2 and C18:1. Analysis by gas chromatography‐mass spectrometry identifies the presence of a homologous series of n‐alkanes containing from 25 to 31 carbon atoms. In the case of the insects after fungal exposure, the content of the n‐alkanes in the cuticular lipid is two‐fold higher compared with the controls. Of the cuticular lipids, 11 alcohols are found, ranging from C12:0 to C20:0. There is no presence of alcohols in the internal lipids of the control B. orientalis females and in all of the extracts from the B. orientalis females after fungal exposure. In the samples analyzed, the most common sterol is cholesterol. This is present in the cuticular lipids and the internal lipids of all of the insects sampled. The cuticular and internal lipids of females contain five fatty acid methyl esters, ranging in size from C15 to C19.  相似文献   

19.
Representative strains of Gardnerella vaginalis were degraded using both an alkaline and an acid methanolysis and the fatty acid methyl esters released examined by thin-layer and gas chromatography. The profiles obtained were both qualitatively and quantitatively similar and were comprised of straight chain saturated and unsaturated non-hydroxylated fatty acids with hexadecanoic acid (16:0) and octadecenoic acid (18:1) the major components. All of the strains contained very characteristic polar lipid patterns consisting of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, five partially identified glycolipids and an uncharacterised phospholipid. Analyses of wall amino acid preparations using gas chromatography showed that Gardnerella vaginalis strains contain major amounts of alanine, glycine, glutamic acid and lysine. The chemical data support the integrity of the genus Gardnerella.  相似文献   

20.
In this contribution we extend our modelling work on the enzymatic production of biodiesel where we demonstrate the application of a Continuous‐Discrete Extended Kalman Filter (a state estimator). The state estimator is used to correct for mismatch between the process data and the process model for Fed‐batch production of biodiesel. For the three process runs investigated, using a single tuning parameter, qx = 2 × 10?2 which represents the uncertainty in the process model, it was possible over the entire course of the reaction to reduce the overall mean and standard deviation of the error between the model and the process data for all of the five measured components (triglycerides, diglycerides, monoglycerides, fatty acid methyl esters, and free fatty acid). The most significant reduction for the three process runs, were for the monoglyceride and free fatty acid concentration. For those components, there was over a ten‐fold decrease in the overall mean error for the state estimator prediction compared with the predictions from the pure model simulations. It is also shown that the state estimator can be used as a tool for detection of outliers in the measurement data. For the enzymatic biodiesel process, given the infrequent and sometimes uncertain measurements obtained we see the use of the Continuous‐Discrete Extended Kalman Filter as a viable tool for real time process monitoring. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:585–595, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号