首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The essential oils from the leaves of Citrus macroptera and C. hystrix, collected in New Caledonia, have been analyzed by gas chromatography/mass spectrometry (GC/MS) and evaluated for their antimicrobial activity. A total of 35 and 38 constituents were identified, representing 99.1 and 89.0% of the essential oils, respectively. Both essential oils were rich in monoterpenes (96.1 and 87.0%, resp.), with β‐pinene as major component (33.3 and 10.9%, resp.), and poor in limonene (2.4 and 4.7%, resp.). Other main components of C. macroptera oil were α‐pinene (25.3%), p‐cimene (17.6%), (E)‐β‐ocimene (6.7%), and sabinene (4.8%). The essential oil of C. hystrix was characterized by high contents of terpinen‐4‐ol (13.0%), α‐terpineol (7.6%), 1,8‐cineole (6.4%), and citronellol (6.0%). The antimicrobial activity was evaluated against five bacteria and five fungi strains. Both oils were inactive against bacteria. However, the C. macroptera leaf oil exhibited a pronounced activity against Trichophyton mentagrophytes var. interdigitale, with a minimal‐inhibitory concentration (MIC) of 12.5 μg/ml.  相似文献   

2.
The composition of the essential oil isolated from leaves and flowers of Pulicaria incisa sub. candolleana E. Gamal ‐Eldin , growing in Egypt, was analysed by GC and GC‐MS. Forty‐nine and 68 compounds were identified from the oils of the leaves and flowers accounting for 86.69 and 84.29%, respectively of the total detected constituents. Both leaves and flowers oils were characterized by the high content of carvotanacetone with 66.01, 50.87 and chrysanthenone 13.26, 24.3%, respectively. The cytotoxic activity of both essential oils was evaluated against hepatocellular carcinoma cell line HEPG‐2, using MTT assay and vinblastine as a reference drug. Leaf oil showed higher activity with IC50 11.4 μg/ml compared with 37.4 μg/ml for flower oil. The antimicrobial activity of both oils was evaluated using agar well diffusion method towards two representatives for each of Gram positive and Gram negative bacteria as well as four representatives for fungi. The minimum inhibitory concentration of both essential oils against bacterial and fungal strains was obtained in the range of 0.49 – 15.63 μg/ml.  相似文献   

3.
The essential oils from the leaves and rhizomes of Alpinia pahangensis Ridl ., collected from Pahang, Peninsular Malaysia, were obtained by hydrodistillation, and their chemical compositions were determined by GC and GC/MS analyses. The major components of the rhizome oil were γ‐selinene (11.60%), β‐pinene (10.87%), (E,E)‐farnesyl acetate (8.65%), and α‐terpineol (6.38%), while those of the leaf oil were β‐pinene (39.61%), α‐pinene (7.55%), and limonene (4.89%). The investigation of the antimicrobial activity of the essential oils using the broth microdilution technique revealed that the rhizome oil of A. pahangensis inhibited five Staphylococcus aureus strains with minimum inhibitory concentration (MIC) values between 0.08 and 0.31 μg/μl, and four selected fungi with MIC values between 1.25 and 2.50 μg/μl.  相似文献   

4.
The chemical composition and antimicrobial activity of essential oils of Laserpitium latifolium and L. ochridanum were investigated. The essential oils were isolated by steam distillation and characterized by GC‐FID and GC/MS analyses. All essential oils were distinguished by high contents of monoterpenes, and α‐pinene was the most abundant compound in the essential oils of L. latifolium underground parts and fruits (contents of 44.4 and 44.0%, resp.). The fruit essential oil was also rich in sabinene (26.8%). Regarding the L. ochridanum essential oils, the main constituents were limonene in the fruit oil (57.7%) and sabinene in the herb oil (25.9%). The antimicrobial activity of these essential oils as well as that of L. ochridanum underground parts, whose composition was reported previously, was tested by the broth‐microdilution method against four Gram‐positive and three Gram‐negative bacteria and two Candida albicans strains. Except the L. latifolium underground‐parts essential oil, the other investigated oils showed a high antimicrobial potential against Staphylococcus aureus, S. epidermidis, Micrococcus luteus, or Candida albicans (minimal inhibitory concentrations of 13.0–73.0 μg/ml), comparable to or even higher than that of thymol, which was used as reference compound.  相似文献   

5.
The chemical composition of the essential oils obtained by hydrodistillation from leaves, branches and female cones of Cupressus arizonica Greene cultivated in Tunisia was determined by GC and GC/MS analysis. Significant differences were found between the constituent percentages of the different oils. Among the 87 identified components α-pinene (60.5% in female cones), umbellulone (18.4% in leaves), δ-3-carene (15.6% in branches) and cis-muurola-4(14),5-diene (9.4% in leaves) were found to be the major ones.Composition of essential oils extracted from different organs of C. arizonica Greene growing in Tunisia showed remarkable differences from the same species cultivated in Algeria, Argentina, Iran, Italy, France and Texas based on a comparison with published results. The in vitro antibacterial activity of the essential oils samples was evaluated against some Gram positive and negative bacteria.  相似文献   

6.
The oil obtained by hydrodistillation from the aerial parts of Artemisia incana (L.) Druce from Turkey was analyzed by GC and GC/MS. Sixty‐three compounds were characterized, representing 97.2% of the total components detected, and camphor (19.0%), borneol (18.9%), 1,8‐cineole (14.5%), bornyl acetate (7.8%), camphene (4.9%), and α‐thujone (4.8%) were identified as predominant components. The essential oil was also tested for its antimicrobial activity against 44 different foodborne microorganisms, including 26 bacteria, 15 fungi, and 3 yeast species. The essential oil of A. incana exhibited considerable inhibitory effects against all bacteria, fungi, and yeast species tested. However, the oil showed lower inhibitory activity against the tested bacteria than the reference antibiotics.  相似文献   

7.
The composition of the essential oils obtained by hydrodistillation of different parts of Litsea cubeba, including roots, stems, leaves, alabastra (flower buds), flowers, and fruits, were investigated by GC (RI) and GC/MS. The antimicrobial activity of the oils was assessed with disc diffusion and microbroth dilution assays. The results showed large variations in the composition among the different oils. The major components in the oils from roots and fruits, from stems, leaves, and alabastra, and from flowers were citral B (neral), β‐phellandrene, and β‐terpinene, respectively. The inhibition zone (DD) and MIC values for the bacterial strains tested, which were all sensitive to the essential oil of L. cubeba, were in the range of 10.1–35.0 mm and 100–1000 μg/ml, respectively. Hence, the oils of the various parts showed moderate activity against the tested bacteria. This investigation showed that the antibacterial activity of L. cubeba was attributed to the essential oils, thus they can be a potential medicinal resource.  相似文献   

8.
This work describes the study of the chemical composition and bioactivity of the essential oils (EOs) of the different organs (leaves, flowers, stems and roots) from Eruca vesicaria. According to the GC and GC/MS analysis, all the EOs were dominated by erucin (4‐methylthiobutyl isothiocyanate) with a percentage ranging from 17.9 % (leaves) to 98.5 % (roots). The isolated EOs were evaluated for their antioxidant (DPPH, ABTS and β‐carotene/linoleic acid), antibacterial and inhibitory property against α‐amylase and α‐glucosidase. Most EOs exhibited an interesting α‐glucosidase and α‐amylase inhibitory potential. The roots essential oil was found to be the most active with IC50 values of 0.80±0.06 and 0.11±0.01 μg mL?1, respectively. The essential oil of roots exhibited the highest antioxidant activity (DPPH, PI=92.76±0.01 %; ABTS, PI=78.87±0.19; and β‐carotene, PI=56.1±0.01 %). The isolated oils were also tested for their antibacterial activity against two Gram‐positive and three Gram‐negative bacteria. Moderate results have been noted by comparison with Gentamicin used as positive control.  相似文献   

9.
Two poorly studied, morphologically allied Alpinia species endemic to Borneo, viz., A. ligulata and A. nieuwenhuizii, were investigated here for their rhizome essential oil. The oil compositions and antimicrobial activities were compared with those of A. galanga, a better known plant. A fair number of compounds were identified in the oils by GC‐FID and GC/MS analyses, with large differences in the oil composition between the three species. The rhizome oil of A. galanga was rich in 1,8‐cineole (29.8%), while those of A. ligulata and A. nieuwenhuizii were both found to be extremely rich in (E)‐methyl cinnamate (36.4 and 67.8%, resp.). The three oils were screened for their antimicrobial activity against three Gram‐positive and three Gram‐negative bacteria and two fungal species. The efficiency of growth inhibition of Staphylococcus aureus var. aureus was found to decline in the order of A. nieuwenhuizii>A. ligulata ~ A. galanga, while that of Escherichia coli decreased in the order of A. galanga>A. nieuwenhuzii ~ A. ligulata. Only the A. galanga oil inhibited the other bacteria and the fungi tested.  相似文献   

10.
The essential oils (EOs) obtained from the leaves of Iryanthera polyneura Ducke trees was chemically Assessed and tested for the ability of inhibiting the growth of Candida albicans, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus mutans and S. sanguinis. The oil was also tested against breast (MCF‐7) and prostate (PC‐3) cancer cell lines. Minimum bactericidal concentrations (MBCs) and 50 % inhibition concentrations (IC50) values were obtained. EOs were active against Gram‐positive bacteria. Spathulenol, α‐cadinol and τ‐muurolol were major components of EOs. The oils showed a higher cytotoxicity against PC‐3 than MCF‐7 cells, although the oils were active against both cell types. Oils obtained from leaves collected in the dry season were more active against E. faecalis, S. aureus and PC‐3, while the oils obtained from leaves collected in the rainy season were more active against S. mutans, S. sanguinis and MCF‐7. The antibacterial and cytotoxic activities of the essential oils from the leaves of I. polyneura are related to the seasonal climate variation and are influenced by compounds that are minor components of the oils.  相似文献   

11.
Conyza sumatrensis (Retz.) E.Walker (Asteraceae) is a spontaneous annual herb, fairly widespread throughout Tunisia, which has rarely been studied or valued in any sector. Essential oils were obtained by hydrodistillation of different parts (flower heads, leaves, stems, and roots) of C. sumatrensis plants, which were collected in autumn (November 2007) at the flowering stage in the area of Monastir, Tunisia. In total, 98 compounds, representing 88.1–99.3% of the oil composition, were identified by GC‐FID and GC/MS analyses. The root essential oil was distinguished by its high content in acetylenes (matricaria ester, 4 ; 74.3%), while those from flower heads and leaves were dominated by oxygenated sesquiterpenes (61.1 and 50.3%, resp.). The oils of C. sumatrensis from Tunisia belonged to a matricaria ester/caryophyllene oxide chemotype. All the oils were evaluated for antibacterial, antifungal, and allelopathic activities. The results indicate that the leaf oil exhibited significant in vitro antibacterial activity against Enterococcus faecalis, Staphylococcus aureus, and Proteus mirabilis and that the C. sumatrensis oils isolated from the aerial parts presented high mycelia‐growth inhibition of Candida albicans and the filamentous fungi tested. Moreover, the essential oils of the different plant parts inhibited the shoot and root growth of Raphanus sativus (radish) seedlings. Indeed, the inhibition of the hypocotyl growth varied from 28.6 to 90.1% and that of the radicle from 42.3 to 96.2%.  相似文献   

12.
This article reports the first study of the chemical composition, and antifungal and antiproliferative properties of the volatile extracts obtained by hydrodistillation of the flower heads and leaves of the traditional Kurdish medicinal plant Pterocephalus nestorianus Nábělek , collected in the wild. A total of 55 constituents, 43 of the flower heads’ oil (PFO) and 46 of the leaves’ oil (PLO), respectively, were identified by GC/MS, constituting 99.68% and 99.04% of the two oils, respectively. The oils were obtained in 0.15% and 0.10% yields (w/w), respectively, on air‐dried vegetable material. The prevalent constituents of the PFO were α‐terpineol (2.41%), α‐linalool (6.42%), 6,10,14‐trimethylpentadecan‐2‐one (2.59%), myristic acid (24.65%), and lauric acid (50.44%), while the major components of PLO were (E)‐hex‐2‐enal (2.26%), (E)‐hex‐2‐en‐1‐ol (2.04), myristic acid (34.03%), and lauric acid (50.35%). The two oils showed significant inhibitory and fungicidal activities against the medically important fungi Candida albicans, Candida tropicalis, Microsporum canis, and Trichophyton mentagrophytes, with minimum inhibitory concentration ranging from 0.7 to 3.3 mg/ml and minimum fungicidal concentration varying from 1.4 to 6.6 mg/ml. The antiproliferative activity of the two oils was assayed against one normal and six human tumor cell lines. Both oils showed selective cytotoxic activity, with IC50 values ranging from 1.4 to 3.3 μg/ml.  相似文献   

13.
The essential oil isolated from the bark of Cinnamomum glanduliferum (Wall ) Meissn grown in Egypt was screened for its composition as well as its biological activity for the first time. The chemical composition was analyzed by GC and GC/MS. The antimicrobial activity of the oil was assessed using agar‐well diffusion method toward representatives for each of Gram‐positive bacteria, Gram‐negative bacteria, and fungi. The cytotoxic activity was checked using three human cancer cell lines. Twenty seven compounds were identified, representing 99.07% of the total detected components. The major constituents were eucalyptol (65.87%), terpinen‐4‐ol (7.57%), α‐terpineol (7.39%). The essential oil possessed strong antimicrobial activities against Escherichia coli, with an activity index of one and minimum inhibitory concentration (MIC) equaling to 0.49 μg/ml. The essential oil possessed good antimicrobial activities against methicillin‐resistant Staphylococcus aureus, Geotrichum candidum, Pseudomonas aeruginosa, Bacillus subtilis, Helicobacter pylori, Aspergillus fumigatus (MIC: 7.81, 1.95, 7.81, 0.98, 31.25, and 32.5 μg/ml, respectively). A considerable activity was reported against S. aureus and Mycobacterium tuberculosis (MIC; 32.5 and 31.25 μg/ml, respectively). The extracted oil was cytotoxic to colon (HCT‐116), liver (HepG2), and breast (MCF‐7) carcinoma cell lines with IC50 of 9.1, 42.4, and 57.3 μg/ml, respectively. These results revealed that Egyptian Cinnamomum glanduliferum bark oil exerts antimicrobial and cytotoxic activities mainly due to eucalyptol and other major compounds.  相似文献   

14.
The antimicrobial activity of five samples of Taxandria fragrans essential oil was evaluated against a range of Gram‐positive (n= 26) and Gram‐negative bacteria (n= 39) and yeasts (n= 10). The majority of organisms were inhibited and/or killed at concentrations ranging from 0.06–4.0% v/v. Geometric means of MIC were lowest for oil Z (0.77% v/v), followed by oils X (0.86%), C (1.12%), A (1.23%) and B (1.24%). Despite differences in susceptibility data between oils, oils A and X did not differ when tested at 2% v/v in a time kill assay against Staphylococcus aureus. Cytotoxicity assays using peripheral blood mononuclear cells demonstrated that T. fragrans oil was cytotoxic at 0.004% v/v but not at 0.002%. Exposure to one or more of the oils at concentrations of ≤0.002% v/v resulted in a dose responsive reduction in the production of proinflammatory cytokines IL‐6 and TNF‐α, regulatory cytokine IL‐10, Th1 cytokine IFN‐γ and Th2 cytokines IL‐5 and IL‐13 by PHA stimulated mononuclear cells. Oil B inhibited the production of all cytokines except IL‐10, oil X inhibited TNF‐α, IL‐6 and IL‐10, oil A inhibited TNF‐α and IL‐6, oil C inhibited IL‐5 and IL‐6 and oil Z inhibited IL‐13 only. IL‐6 production was significantly inhibited by the most oils (A, B, C and X), followed by TNF‐α (oils A, B and X). In conclusion, T. fragrans oil showed both antimicrobial and anti‐inflammatory activity in vitro, however, the clinical relevance of this remains to be determined.  相似文献   

15.
Essential oils of Lavandula dentata, a Tunisian native plant, were isolated from leaves and flowers by hydrodistillation in a Clevenger‐type apparatus and characterized by GC‐FID and GC/MS analyses. The average essential oil yields, means of five replicates, were higher for the flowers (8.60 mg/g) than for the leaves (6.56 mg/g). A total of 72 compounds were identified, accounting for 98.1 and 97.7% of the total oil composition of the leaves and flowers, respectively. The main essential oil constituents were 1,8‐cineole, camphor, and L ‐fenchone, accounting for 33.54, 18.89, and 8.36% in the leaf oils and for 19.85, 23.33, and 7.13% in the flower oils, respectively. Besides this quantitative variation, the results also showed considerable qualitative variation between the essential oils of the two plant parts analyzed. These differences might be adaptative responses to ecological exigencies.  相似文献   

16.
In an effort to develop local productions of aromatic and medicinal plants, a comprehensive assessment of the composition and biological activities of the essential oils (EOs) extracted from the aerial flowering parts of wild growing Lavandula stoechas L. collected from eleven different locations in northern Algeria was performed. The oils were characterized by GC‐FID and GC/MS analyses, and 121 compounds were identified, accounting for 69.88–91.2% of the total oil compositions. The eleven oils greatly differed in their compositions, since only 66 compounds were common to all oils. Major EO components were fenchone ( 2 ; 11.27–37.48%), camphor ( 3 , 1.94–21.8%), 1,8‐cineole ( 1 ; 0.16–8.71%), and viridiflorol ( 10 ; 2.89–7.38%). The assessed in vitro biological properties demonstrated that the DPPH‐based radical‐scavenging activities and the inhibition of the β‐carotene/linoleic acid‐based lipid oxidation differed by an eight‐fold factor between the most and the least active oils and were linked to different sets of molecules in the different EOs. The eleven EOs exhibited good antimicrobial activities against most of the 16 tested strains of bacteria, filamentous fungi, and yeasts, with minimum inhibitory concentrations (MICs) ranging from 0.16 to 11.90 mg/ml.  相似文献   

17.
The essential oils isolated from three organs, i.e., fruits, stems and leaves, and flowers, of the endemic North African plant Scabiosa arenaria Forssk . were screened for their chemical composition, as well as their possible antibacterial, anticandidal, and antifungal properties. According to the GC‐FID and GC/MS analyses, 61 (99.26% of the total oil composition), 79 (98.43%), and 51 compounds (99.9%) were identified in the three oils, respectively. While α‐thujone (34.39%), camphor (17.48%), and β‐thujone (15.29%) constituted the major compounds of the fruit oil, chrysanthenone (23.43%), together with camphor (12.98%) and α‐thujone (10.7%), were the main constituents of the stem and leaf oil. In the case of the flower oil, also chrysanthenone (38.52%), camphor (11.75%), and α‐thujone (9.5%) were identified as the major compounds. Furthermore, the isolated oils were tested against 16 Gram‐positive and Gram‐negative bacteria, four Candida species, and nine phytopathogenic fungal strains. It was found that the oils exhibited interesting antibacterial and anticandidal activities, comparable to those of thymol, which was used as positive control, but no activity against the phytopathogenic fungal strains was observed.  相似文献   

18.
The essential oils obtained by hydrodistillation of leaves and stems of Chloroxylon swietenia DC. were analysed by GC and GC-MS. The main components in the leaf oil were limonene, pregeijerene, geijerene and germacrene D, while stem oil was rich in limonene, methyl eugenol, pregeijerene and geijerene. The essential oils were evaluated for antimicrobial activity against two gram-positive and two gram-negative bacteria and four pathogenic fungi using agar disc diffusion technique. Subsequently, the minimum inhibitory concentration (MIC) from oils was determined by broth microdilution. Both the oils exhibited moderate to strong activities against all the organisms tested. Bacillus subtilis was most susceptible at 100 μg/ml of leaf and stem oils with inhibition zones of 15.9 and 13.1 mm respectively. Among all the fungi tested, A. niger inhibited effectively with a zone of inhibition of 14.9 and 11.5 mm for leaf and stem oils respectively. The results obtained suggest that the essential oils of the plant possess antimicrobial properties and serve as a biofriendly source of antimicrobial ingredients for the food and pharmaceutical industries.  相似文献   

19.
The chemical composition and in vitro antimicrobial activities of Dittrichia graveolens (L.) Greuter essential oil was studied. Moreover, using agglomerative hierarchical cluster (AHC) and principal component analyses (PCA), the interrelationships of the D. graveolens essential‐oil profiles characterized so far (including the sample from this study) were investigated. To evaluate the chemical composition of the essential oil, GC‐FID and GC/MS analyses were performed. Altogether, 54 compounds were identified, accounting for 92.9% of the total oil composition. The D. graveolens oil belongs to the monoterpenoid chemotype, with monoterpenoids comprising 87.4% of the totally identified compounds. The major components were borneol (43.6%) and bornyl acetate (38.3%). Multivariate analysis showed that the compounds borneol and bornyl acetate exerted the greatest influence on the spatial differences in the composition of the reported oils. The antimicrobial activity against five bacterial and one fungal strain was determined using a disk‐diffusion assay. The studied essential oil was active only against Gram‐positive bacteria.  相似文献   

20.
The composition of the essential oils obtained from the leaves and the flowers of Achillea ligustica (Asteraceae) growing in Sicily has been studied. The main constituents of the leaves were 4-terpineol (19.3%), carvone (8.9%), γ-terpinene (7.2%) and β-phellandrene (6.8%). 4-terpineol (12.0%), carvone (10.0%), and β-phellandrene (5.4%), along with linalool (20.4%) and cedrol (4.3%) were detected in the flower’s oil. Furthermore, the antimicrobial activity of the essential oils and of some of the main constituents were assayed on bacteria and fungi. In memory of Prof. Ivano Morelli (1940–2005)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号